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Rank is not a spectral invariant
by
SEBASTIEN FERENCZI (Marseille) and MARIUSZ LEMANCZYK (Torud)

Abstract. We construct two spectrally isomorphic automorphisms, the first of which is of rank
one while the second does not satisfy the weak closure theorem, hence, it is not of rank one.
DEFINITION 1. A system (R, o7, T, u) is of rank at most r if for every
partition P of 2 and for every & > 0, there exist subsets ¥y, ..., F, of Q, integers
hy,.... h, and a partition P’ such that:
— the T'F;, 1 €j<r, 0<i<h—1, are disjoint,
— |[P—P| < & for the usual distance between partitions,
~ P'is refined by the partition consisting ofthe T'F;, 1 <j<r0<ig<h—1,
and of the set O\ Jj=y Ulo! T
A system is of rank r if it is of rank at most r and not of rank at most r— 1.

The rank is of course an invariant of metrical isomorphism; it is also known
([1]) that the rank of a system is not smaller than its spectral multiplicity; it
was not yet known whether the rank is an invariant of spectral isomorphism,
ie. of jsomorphism between the associated unitary operators on L*($2). We
answer this question by constructing two spectrally isomorphic systems: the
first will be immediately recognized as a rank one system, while we shall show
that the second cannot be of rank one since it does not satisfy the weak closure
theorem (see [5]).

This example will make use of the 11ot10n of Gaussmn—Kronecker systcms

DerNrTion 2. Given a symmetrical probability ¢ on the circle we define
a (real) Gaussian system of spectral measure ¢ to be the dynamical system
Q, o, T, u) where:
- @ is R%,
— - i§ the borelian o-algebra,
— T is the shift (Tx), = X%y,
— uis defined on cylinders by letting u(x, €44, ..., x;, €A4,) be the probabili-
ty of visiting the set 4, x ... x 4, for a gaussian vector (X, ..., X} of zero
mean and covariances
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Cov(X;, X;)= [ &V da(u).
{—n.7]
Such a system is then generated by a real strongly stationary gaussian
process, namely X, = X,0T", neZ, where Xy(x) = x4.

DEFINITION 3. A subset K’ of the circle is called a Kronecker set if for every
continious complex function f of modulus one on K’ and for each & > 0, there
exists an integer n such that sup.x|f(@)—e™ <e.

We say that the Gaussian system of spectral measure ¢ is a Gaussign—
Kronecker system if ¢ is a continuous measure concentrated on K'v ~K',
where K’ is a Kronecker set contained in [0, n} (for a comstruction of
Kronecker sets see [2]). In this case, following [6], we call the set K'v —K
a semi-Kronecker set.

DEFINITION 4. A symmetrical measure ¢ on the circle (identified with the
interval [ —m, r]) is called a semi-Kronecker measure if for every even cormplex
function fe I*(S*, o) of modulus 1 and for each ¢ > 0, there exists an integer
n such that | f—yx,l, < & where x,(f) = ¢™ (this is a slightly weaker notion
than requiring ¢ to be concentrated on a semi-Kronecker set).

Construction of the rank one system. By [3], there exists a symmetrical
measure o, concentrated on A = K' U — K, such that the Gaussian—Kronecker
system of spectral measure ¢ is of rank one. Let (X, T, ) denote that system.
Since ¢ is concentrated on a semi-Kronecker set (in particular, K’ is a set
without rational relations),

)= OK,
nz0
where K, is the space of constants, K, are T-invariant subspaces and moreover
T: K,~ K, is (spectrally} isomorphic to the multiplication V: I2(S', o*")
—I3(8*, 6*™), where Vf(z) = zf(z) and o*" denotes the n-fold convolution of &.
In addition, the measures 6*", o*™ are pairwise singular.and T has simple
spectrum (see [2], 14. §4).

In (X, T, p), following Newton and Parry [7], we define an invariant
sub-s-algebra # by the following equivalence relation: for x, x' e X, x = x" iff
x, = x, for all n or x, = —x, for all n. Let us denote by (¥, T, u) the factor
system defined by ¢. Being a factor of a rank one system, (¥, T, x) must be of
rank one ([47]). The spectral analysis of (¥, T, y was made by Newton and
Parry in [7]: In particular, they proved that

I}(Y) = @ K.,
nz0
Construction of the second system. Let (¥, S) be the real Gaussian syste}n of
spectral measure ¢+og. The measure ox¢ is concentrated on the set
Ay = A+ A, which satisfies '
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A+ oo+ A NA 4+ L +A, i3 empty, mF#n.
_ [ | )

n m

Therefore (by [2], 14. §4) I*(W)} = @ ,»0 L,, where L, is the space of constants
and §: L,— L, is isomorphic to V: I*(S%, (g% 6)*") > L*(S?, (0 * 0)*"), where
Vf(z) = zf (z). This latter operator is obviously isomorphic to V: L*(S', o*")
—I2(S*, ¢*2"). Hence, (W, S) is spectrally isomorphic to (¥, T).

DEFINITION 5. By the centralizer C(6) of a system (Z, 0, v} we mean the set
of all v-preserving transformations commuting with §. We say that (Z, 6, v)
satisfies the weak closure theorem (WCT) if for each & eC(6) there exists
a sequence of positive integers (n,) such that [0™(h)—@'(h)], 0 for each
hel}(Z).

In [5], King proved that every rank one system satisfies WCT. In [8],
Thouvenot showed that every Gaussian—Kronecker system satisfies WCT. We
prove the following,

ProrosiTiON 1. Let (@, T, 1) be a Gaussian system with spectral measure
o and having simple spectrum. Then T satisfles WCT iff ¢ is a semi-Kronecker
measyre. ‘

Proof It follows from [2], 14. §1, that I*(Q) = @,20K,, K, is the space
of constants, K, is the T-invariant subspace generated by {T"X,},2% . and
K,, nz 2, are invariant subspaces generated by Hermite-It& polynomials.
Moreover, '

(1} T: K,—K, is isomorphic- to ¥: I*{(8', o) I*(S', a),

where V/(2) = zf (2).
Assume that Se C(T). Since T has simple spectrum, there exists a sequence
of polynomials p,(T) of T such that

Consequently, p,(T)(Xo)—S8X, in I}(€), which means that SX,€K,. Thus,
S restricted to K, determines an isometry of K. Conversely, if S is an isometry
of K, commuting with T on K| then by the special structure of the Gaussian
space [2(), we can extend S to a multiplication preserving map of [*(£2)
commuting with T on IZ(£2), hence to an element of C(T), Therefore, C(T) can
be identified with the Set of all isometries of K, commuting with T. By (1), this
latter set is the same as the set of all isometries P of I2(S*, o) commuting with
V. Since P(z") = P(V™(1)) = V"(P(1)) = 2" P(1), such an isometry is the multi-
plication by k = P(1). As P is an isometry, the modulus of h must be equal to 1.
 Now, T satisfies WCT iff V satisfies WCT in the sense that each isometry
commuting with V is the strong limit of powers of V. This latter condition is
equivalent to o being a semi-Kronecker measure.

for each hel*().
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PROPOSITION 2. A measure of the form ¢ o can never be a semi-Kronecker
medasure.

Proof. This measure has positive Fourier coefficients; hence it is impossi-
ble to approximate the constant —1 by characters.

COROLLARY 1. (W, §), which is spectrally isomorphic to a rank one system, is
not of rank one.

COROLLARY 2. Rank is not a spectral invariant. Also, WCT is not a spectral
property, and it is still not a spectral property when we restrict ourselves to the
class of systems which are spectrally isomorphic to rank one systems.

Remarks. The rank of (W, S) is not known.

For any measure ¢ on the circle, we can define the systems (Y, T) and (W, 3)
in the same way. These give spectrally isomorphic systems; in several other
cases we can prove that they are not metrically isomorphic, for example when
o is singular and ¢ ¢ is absolutely continuous ([7]) or when o is concentrated
on a semi-Kronecker set (using Thouvenot’s [8] theory of Gaussian—-Kronec-
ker factors). Is this true for every singular ¢?
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On the Fourier transform of ¢~ %%
by

HYEONBAE KANG (Minneapolis, Minn.)

Abstract, We prove that the Fourier transform of ¥ where y(x) is a convex polynomial
with positive coefficients can be estimated by ¢V where i (x) is the Legendre transform of y(x).

1, Introduction. In this paper we investigate the behavior of the Fourier
transform of the function e %™ where 1 is a convex polynomial on R. Since
¢~V belongs to the Schwartz class, we know that the Fourier transform of
e~¥ decays faster than the reciprocal of any polynomial. But, since the decay
of e~ js exponential, we should be able to say more about its Fourier
transform. In fact, we prove that the behavior of the Fourier transform of e V™
is controlled by e where J is the Legendre transform of iy when y belongs
to a certain class of functions. The Legendre transform of a convex function
W(x) such that (0} = y/'(0) = 0 is defined by
(1) F(x) = sup (xp—(p)).

paR

For a geometric meaning of the Legendre transform, sece {1]. A precise
statement of our result is as follows.

THEOREM. Let /(x) = 3 Ty a,x*/ be an even convex polynomial. Assume that
4, 0 for all j. Then there are positive constanis C and e depending only on
m such that

(2)‘ ‘ j P dx| £ C.//ﬂ.(l)e—aii‘(r)_

where W' (1) is the positive number w such that W(u) = 1.

If () = x?, then (x) = x*, and hence the theorem holds for e~ * since the
Fourier transform of ¢™*" is ﬁe”’"‘”‘“’“’) [21. '

3. Proofs. Let I' be the class of all nonzero even convex polynomials
W(X) = Ty ax* where a,2 0 (not all zero). We prove the theorem by

induction on the number of terms in the polynomial in [ We bégin with some
preliminary observations on convex functions and their Legendre transforms.
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