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Tensor products and Tayler’s joint spectrum
by
ZOJA CEAUSESCU* and F.-H. VASILESCU** (Bucharest)

Abstract. This work contains arefinement of a result of A. T. Dash and M. Schechter
concerning the joint spectrum of tensor produets of linéar operators of a certain type.

1. Introduction. Let Xi,..., X, be complex Banach spaces and a

a uniform cross norm [6] on their tensor product X, ® ... ® X,,. Denote
by X the completion of X; ® ... ® X,, with respect to the norm «. Suppose
that e, is a linear continuous operator on X; and setd; =1® ... 104 ®
‘RLl®... 1 (j =1,...,n). If 4 is the bicommutant of the commuting
gystem. (dy, ..., d,) in the algebra L(X) of all linear bounded operators

on X, then A. T Dash and M. Schechter [3] have shown that the following

equality holds: .
1y UA(ali ey )= U(“l: X)X v Xo(ay, X),
where o, (dy, ..., d,) denotes the joint speetrum of (dy,...,8,) in 4 and

o(a;, X;) is the usual spectrum of a; a8 an operator on X

D. Voiculescu raised within the seminar of operator theory, Institute
of Mathematics, Bucharest, 1976, the following problem: Does (1.1)
still hold if we take instead of o4(y, ..., d,) the more refined joint spec-
trum of (a,, ..., a,) on X in the sense of J. L. Taylor’s [7]*

Tt turns out that the answer to this question is positive in the case
of Hilbert spaces, and the proof of this assertion is the purpose of the
present work (sec also [11] for #n = 2).

From now on H will denote a complex Hilbert space and a = (ay, ...

., 4,) © Z(H) a commuting system of operators on H. For the conve-
nience of the reader, let us recall some definitions and results from [7], [8]
and [10].

Let s = (8, ..., 5,) be a set of indeterminates and denote by A[s]

the exterior algebra, over the complex field, with the generators s;, ..., $,-
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A7[s] will stand for the space of clements of degree p in A[s] (p
=0,1,...,n). Then we denote by A[s, H] (A?[s, H]) the tensor product
HQA[s] (H ®A?[s], respectively). An element £ ®3,, A ...
will be written simply @8, A ... AS, . The space A7 [s, H] can be endowed

with a natural structure of a Hjlbelz*)t space, defining for any pair

. A8,

£ = 2 x 8, A '

71.. . VT’ 141
1< <oa o <P

and

n = y"l"-"ps"ll\ ves /\Svp

1 <o <vp\<,ﬂ

from A”[s, H] their scalar product

&=

1< <. <vpsn

<wv1...vp5 y"l-v-"p> -

We have also

n
Als,H] = @ 47[s, H].
D=0
Let us define the operator 62: A?[s, H]—~ A?'[s, H] by the equality

n
OF (@) A ... /\.S‘,,p) = ‘Z: GBS A Sy A L AS, .
i=
»
Let also 6,: A[s, H]— A[s, H] be the operator @ 0% (where & =0:
Ar[s, H]— A'[s, H]). =0

Clearly, 62+0 8% = 0; hence 8,06, = 0.

A basic notion in the definition of the joint spectrum. of the system
a = (ay, ..., a,) in H is that of nonsingularity [7]. Shortly, & is nonsingular
on H iff Kerd, = Imé,. It is obvious that this definition makes good
sense in Banach spaces [7]. However, as is pointed out in [10], there is
a characterization of the monsingularity in Hilbert spaces which malkes
this notion easier to be handled. Namely, the system & is nonsingular on H
if and only if the operator a(a) = §,+ &, is invertible on A[s, H].

The complement of the set of all & = (2, ..., 2,) € C" with the pi‘operty
that 2—a = (2,— 64, ..., #,—a,) 18 nonsingular on H is called the (joint)
spectrum of a on H [7]; this set will be denoted by o(a, H) in the sequel.

The spectrum ¢(@, H) of o on H is compact, nonempty and it is
contained in the cartesian product o(ay, H)x ... X o(a,, H) as well as
in the joint spectrum of (ay, ..., a,) in any commutative Banach algebra
containing (ay, ..., @,). Moreover, as in the case of Banach algebras [2],
one can construct a functional caleulus with analytic functions, defined

NS, € AP[s, H]

- ©
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in peighbourhoods of o¢(a, H); for this functional caleulus a spectral
mapping theorem also holds (for details see [8]).

2. The main result. If H,, ..., H, are complex Hilbert spaces, we
denote by H;® ... ® H, their tensor product, complete for the canonical
Hilbert structure. ' '

Let us state the main result of this paper.

2.1. TIIEOREM. Assume that H,y, ..., H, are comples Hilbert spaces,
H=HQ®.. ®H,uc?(H) §=18..0184818...0L (j
=1,...,n) ond &= (8&,...,4,) « L(H). Then we have the equality

@.1) (@ H) = o(ay, H) X ... X ola,, H,).

In order to prove Theorem 2.1 we need an auxiliary result.

2.2. LovumA. Let H and K be Hilbert spaces, & = (a,, ..., a,) = ¥(H)
a commuting system, @; =&QL c L(HQK) (j=1,...,n) and o
= (ay, ... a,). Then the operators a(a’)e £(A[s, HQK]) and a(a) él
€ % (A[s, H]® K) are unitarily equivalent.

Proof. Let us remark that we can define a unitary map

Uyt AP[s, HQEK]—~ A*[s, HIQK

by the relation

41,]!,(a7<§§);1/3,1 Aees Asvp) = (ms,l/\ AS,,p) ®Y.

n
Then % = @u,: Als, HQK]—+ A[s, HIQK is unitary. Moreover, we

have =0
n
uz,_,_léfj,(m@ys,l A e /\Svp) = MMI(Zajo}@ysjAs,lA AB,p)
N ‘ Jj=1
=(2ajmsj/\svl A As,,ﬂ)@)y = (F QL) u,(2@ys, A ... M H
j=1

hence #d, = (6,®1)u. From this we obtain
a(@) @1 = 6, @1+ 6; @1 = w8+ i) 0" = ua(a’)u*;

hence a(a) ®1 and «(a’) are unitarily equivalent.

2.8. COROLLARY. With the conditions of Lemma 2.2, if K # 0, we have
the equality
olo’, HRK) = o(a, H).

Proof. Indeed, by Lemma 2.2, a(a’) is invertible if and only if
a(a) ®1 is invertible, hence if and only if «(a) is invertible (see, for example,
[6], Lemma 4.1).

Proof of Theorem 2.1. We may write

o(d, H) c o(d, H) x ... X0 (Gyy H) = 0(aq, Hy) X ...

-~

X o'(a’n! Hn))
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the lést equality being true by virtue of [5], Lemma 4.1; therefore we have
one inclusion in (2.1). . . .
The reverse inclusion will be proved by induction with respeect to n.
For n = 1 the relation (2.1) is trivial. Assume that the property is valid
for n and let us get it for n+1. Let Hyyq be an arbitrary Hilbert space
and take @,,; € £(H,). Denote by H’' the space HQ®..QH,®H,,,
=~ H®H,., and by s’ the system of indetermmi»j:es (i'}, “e38ny S 1)
= 8U(8,41)- Consider the gystems of operaatffcs G = (Giyy ey ly) and
B (@ .nny Gy dpys)y With & e Z(H'), where 3 =1®... 10418
®...01L@¢F=1,...,n+1). . ‘
Notice that we have the decomposition

(2.2) Als', H'] = A([s, B]1®3&. 4[5, H'],
where §,,1€ Z(A[s', H']) is given by ‘
- N §p41(8) = 8uqa A E, Eedls,H'].
Then thé matrix of 85 with respect:to the decomposition (2.2) has the form

8z 0
[l I P L
Cp 1841 a’

- a(d) a &
a(b)*—-—[__,( A 'n+1 j;ljl.
Gpt18n41 a(a’)
According to the proof of Lemmsa 2.2, the space A[s, H'] can be iden-
tified with A[s; H1®H,., and the operator a(d) with a(@) ®1.
Analogously, the operator &, ;8,.; can be identified with §,.1 ®ay, 1,

therefore the matrix (2.3) is unitarily equivalent to the matrix

a(&)@l i ®“:+1]

Spg1 @y (@) OL

therefore

(2.3)

(2.4)

defined on the space (A[s, HI®H, 1) Q5,1 4ls, HI®H, ;). In this

way, it b is nonsingular on H’, then both (2.4) and

[a(d)@l §:+1®%+1]

(2.5) §n+1®"':+1 a(d@)®1

are invertible, where (2.5) is (2.4) written for 5*, which is also nonsingular.

In order to prove the inclusion
“o(ag, Hy) X oo X 0(tyy Hy) X 0(tyy1, Hypy) © (b, H'),
it will be enoungh to show that if
(0 ey 0) €0 (@, Hy) X i X0 (g, Hy) X 0(tp41y Hppa)y

“
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then (0,...,0)e£(b, H'). Since we have, in particular, (0, ...,0)
eo(ay, Hy) X ... Xo(a,, H,), we obtain, by the induction hypothesis,
(0,...,0)ea(@, H). At the same time, we have also 0e0(ayy, Hyps)

Suppose, however, that b is nonsingular; hence a(b) is invertible,
and let us show that this assumption leads to a contradiction. We have
to diseuss some cases.

(@) I a(@)Als, H] = A[s, H] and a,,,H,., = H,,,, then there
are two sequences {&,}, < A[s, H], [|&] = 1 and b © Hypxy el = 1,
such that «(&)&,-»0 and a,,,m;, — 0 as - co. Then the sequence

(& ®n,) D0 & (Als, H] ®Hy 1) @ (84148, H] QH, 1)

has the proporties

(& @7) DO = 15 @mell = I1&xN 7zl = 1
and

[a(d)@l

o~ *
Spg1 0y | | £ @y
Spg1 @y

. :l~—>0 (k—~ o0),
a(d) ®L 0

and this is not possible because (2.4) is invertible.

a sequence {&.}, = A[s, H] as above and a vector neH, 4, Il =1,
such that a9 = 0. Then the sequence

(£,@m @0 e(Als, H1QH, 1)+ (5,148, H]®H, 1)

has the properties [(£, ®7)@0] =1 and

[O‘(d)‘g’l §Z~;—1®an+l:| [§Ic®ﬂ

. - -0 . (k> o0),
Sn-1 ®“:+1 a(a) ®1 0 ]

which iy a contradiction since (2.5) is invertible.

(iily If Kera(d)* = Kera(d) # 0 and 4,4 H,,y = H,y., then there
is a vector &edls, H], €] =1, such that «(@)¢ =0 and & sequence
{neh, © M, a8 in caso (1). A similar argument to that used in case (1) shows
that this situation iy again impossible.

(iv) I Kera(d) # 0 and Keral,, # 0, then a(@)é =0 and ay.n = 0
for some £edls, H] and geH,,, with |£]= 9] =1, and then the
vector (£®7)@0 = 0 is an eigenvalue of the matrix (2.5), which contra-
dicts the nonsingularity of b.

In this manner we have proved that the}on-invertibﬂity of both a(a)
and @, ; implies the non-invertibility of «(b), and this finishes the proof
of our theorem. '
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2.4. COROLLARY. With the conditions of Theorem 2.1, if f(2) is any
analytic function in an open neighbourhood G of o(&, H) in C", then there

is a system of open seis (G4, ..., G,) in C such that
a(G, H) =Gy %X ... Xx@, =@,

and o s{ystem of finite families of Jordan curves (I, ...
olag, Hy), I; <@ (j =1, ..., m) with the property

(2.6) f(dh ey dn) =

s Iw)y Ty surrounding

1 " _ -
(‘h:—zjzj ff(zl,.‘.,z,,)(uzl—al)“l®(z2—az) 1Q... @2, —a,) " dzy .. dz,,
“ FI Fn

where the left term of (2.6) is caleulated by any functional caleulus with ana-
lytic functions [8].

Proof. The existence of the sets @y, ..., G, and of the curves I, ..., I},
follows from equality (2.1).

It is clear that the right term of (2.6) defines a functional calculus
with analytic functions in the open set Gy X ... X@, o o(a, H). Since
@ X ... X @, isaholomorphy domain, it follows from a result of J. L. Taylor
[9], Prop. 4.8, that the functional calculus is uniquely determined, hence
(2.6) holds (see also [4] for some connections).

2.5. COROLLARY. With the conditions of Corollary 2.4 we have the
Sormula

{2.7) o (f(@yy -5 ) = flo (@1, Hy), ..., £, Hy))-

Proof. Fornula (2.7) follows from the spectral mapping theorem
({81, Th. 4.8).

2.6. CoroLLARY. If a;€ % (H;) are arbitrary
H=H,Q... H,,then
(2.8) (6, Q... ®ay, H) =o(ay, Hy) X ... Xola,,H,) ([1]).

Proof. Formula (2.8) is a particular case of (2.7) with f(z,...,2,)
=2 ... %, by noticing that 0,® ... ®a, =a,... a,.

(j=1,...,n) and

References

[1] A. Brown and C. Pearcy, Spectra of tensor product of operators, Proc. Amer.
Math. Soc. 17 (1966), pp. 162-166.

[2] N. Bourbaki, Théories spectrales, Hermann, Paris 1967.

[3] A.T.Dash and M. Schechter, Tensor products and joint specira, Israel J. Math.
8 (1970), pp. 191-193.

[41 M.R.Embry and M. Rosenblum, Spéctra, tensor products, and linear operator
equations, Pacific J. Math. 53 (1974), pp. 95-107.

icm

[5]

[6]
[7]

8]

(91
[10]
(1]

Tensor producte and Taylor's joint spectrum 311

T. Ichinosel, On the spectra of tensor products of linéar operalors in Banach
spaces, J. Reine Angew. Math. 244 (1970), pp. 119-153.

R. Schatten, 4 theory of eross-spaces, Princeton 1950.

J. L. Taylor, A joint specirum for several commuting operators, J. Functional
Anal. 6 (1970), pp. 172-191. . .

— The analytic functional caloulus for several commauting operators, Acta Math.
125 (1970), pp. 1-88.

— A general framework for a multi-operator functional calewlus, Advances in
Math. 9 (1972), pp. 183-252.

F.-H. Vasilescu, 4 characterication of the joint spectrum in Hilbert spaces,
Rev. Roum. Math. Pures Appl. 22 (1977), pp. 1003-1009,

— On pairs of commuting operators, Studia Math. 62 (1977), pp. 201-205.

Received May 17, 1976 (1160)


GUEST




