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Approximation properties
of the partial sums of Fourier series
of some almost periodic functions

by
PAULINA PYCH-TABERSKA [Pornah)

Abstract. Twao basic classes £, und Ay of functions almost periodic in the Stepanov sense are
considered, For functions of these clagses, four approgimation theorems concerning the pointwise
and uniform convergence of their Fourier series are proved. Also, in the case of uniformly almost
periedic functions, an estimate of the order of strong summability of these series Is obtained.

1. Preliminaries. Let S be the class of all complex-valued functions almost
periodic in the sense of Stepanov ([9], Chap. V). Suppose that the Fourier
series of a function fe8 is of the form

'] 1 r
n fx)~ 3 Ae* with A4, = lim T [ Fe= 2 de
k= Tk 0
and that 0 = 2y < A, < Ay iFhkeN = {1,2, ...}, Mo dy= 00, Ay = —4,,
[Ay+]|A -] > 0. Let & > 0 and f# > 1 be two fixed numbers. Denote by @, the
set of functions of class S, bounded on R = (—og, o), whose Fourier
exponents satisfy the condition

Agiy—Ay z o (keN),
and by 4, the set of those jeS for which
Aaar 2 Pl (keN),
Given any function fe S, consider the following partial sums of series (1):

(2) Sl Sl = 3 * A (neN),
Ak A

Introduce the auxiliary function

2
t Y e £ 3. - . T ' ‘ : |
B ) w2 sin b - A)1 sin5r+ M O<i<ny, |t>0)
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92 P. Pych-Taberska
Then the sums {2} can be written in the integral form

4 S0,[1169 = [ {F {0+ (x—0} V5,0, @) dr

0

where %, = A, if fed, and 5, = A, +a if feQ, (see [9], p. 83 and [5],
Lemma 2).

In this paper we derive some estimates for the rate of pointwise
convergence of sums (2) for functions fe, {or fed,) having some special
properties in the neighbourhood of a given point x. We also present the
corresponding estimates for the rate of nniform convergence of 5;, [f7] for some
uniformly aimost periodic lunctions f These theorems can be treated as
generalizations of main results of [6] and [10] concerning purely periodic
functions. Moreover, a contribution to the strong summability of series (1) is
given (cf. [8]).

The symbols ¢;(p} (f = 1, ...} occurring in Sections 3-5 will mean some
positive -constants depending on the indicated parameter p only.

2. Auxiliary results. Suppose that g is a (complex-valued) function
bounded on a finite interval I ={a, b].
Given any positive integer n, let us introduce the modulus of variation of
g onI:
n—1

v,{9: D) = v,(g; a, By = sup 3 |g(xz;.1)
e j=0

—g(xap)ls

where the supremum is extended over all systems IT, of n nonoverlapping open
intervals (xz;, %,;+1) contained In (a, b). Write v,(g; 1) =0. Some basic
properties of this modulus can be found in the papers of Chanturiya [6, 7].

For measurable g and ¥, , defined by (3), we give usefu] estimates for the
Lebesgue integrals of the product G, , = g¥,,.

Lemma 1. Suppose that 0 <a<b <o, 0 <A<y < w and that m de-
notes the integral part of A (ie, m =[A]). Then

4 -
ma 2{19(ﬂ)l+(!+ 251)-1;,,,“(9; a, b)}_'

Proof Introduce the points

h
” Gl,q(t) dt| g

() t;=a+jlb—aym+1) (j=0,1,..., m+1).
Write
b m i1 mootyag
| Ganltydr = Zog(fj) [ Pun@de+ Y | {g@)—g(t )} ¥, D) dt
a i= N t; =0 1
=P, +P,, say.
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By the Abel transformation,
-1

b
PL—qfaj‘PM{t)dH Z {g(tis)—g(t)} | Va,()dt

i=0 ti+1

But, if 0 <u < b, the second mean value theorem yields
4
¥, 0d € ————u"
(6) HI /'i.u ) | _1__2‘)“
Consequently,
4 a4
1P| < S m=at {a@l+ v,(g5 a, b}
In view of the obvious inequality
(7 ¥, €207 %l =) (>0,
we have
(h—myfim+1) m
Pl=| | 3 Agl+e)—gl)} ¥, (t+e)dd
4] J=0

2(b—ua)
L et
“nim1){n—A4)

and this completes the proof.

"oy {gs a, b),

LemMA 2. Let O=a < b and let A, 5, m be as in Lemma 1. Suppose that

9(0)=0.

@ If 11:>){ 1 and b <=, then

4 434 movg; O ;b/(m+1])
jG“ ) dt] < Y ) y, 7
+ 104 u,(g; 0, b)
(n—Ap*  m*

M If Azl n—A=0a>0 and b < min{r, nfa}, then
b 6 !’: ﬁ() ih ~1 3e,0g; 0,
[Guattd < 6 3 vle: U flont >)+h.f?,‘£§z.%, b

Proof. Retain the symbnls t; defined by (3), and write
TH 1

j Gty dt+ L g(t) | Pt

i
mo Ly

+ Z [ {g)—g )} P anlt)dt

Jf(u,, 1) dt =

= Zl+42+23, CERE
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Taking h = 2b/(A+n+-2), we have

A-{-n 2
S {0t

(5]
1Z,| < [ t721g() dt
1

b np—21+2
<= o (g: O, 1y).

An argument similar to that of Lemma 1, with the help of inequality (6),

leads to

b
=gl [ ¥ d

tr+a

b m-1
1Z,| < fg(ﬁ)!” qu.n(t)dfl'i' Z lg(2;41)
t J=1
(m_l_ )2 m—1 1
£ —" Y=t ) e
TE)L(T[ /1 b2 [g(t - gl )H—jgl |g{£_r+1) g(t"')l(j+.1)2 '
By the Abel transformation,

8({1+1
1Z,| < Eé—-;)—l))z{vl(g,O t)+2 Z

(j+1)2(]+2) m*

164 (q,O tf) v,,(g; 0, b)
n(n .?L)bz{z Z J? m* }

Qs Os tj+1) um(g; 01 b)}

in view of (7),

m  bim+1)

Ezalml_; I o) =g ert) d

2(m_|_ 1)2 Bin+1) m 1
g 0T e ) =
T(p—A)b? £ jgl lg(t=+1) g(tj)|j2 dt

2A-+1) {2 v.(g; 0, b)
S w= Db i)b{g g’o’t’”)(; (+1)F m? }

S-L{S Y (6],.;), tJ) Vot Q,S b)}
m(n—Ab =2 ] m

Collecting the results we get (i).

To show (ii), observe that the function ¢~ 2 -sinfat is nonincreasing on
[0, n/x]. Hence

b
[ P dtl < 2/mu))  (0<y<b).
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In view of {3), |¥; ,, () < 1/(xt} {t > 0). Using these inequalities instead of (6)
and (7), and reasoning as previously (see also the proof of Lemma 1 in [11]), we
obtain

4 ["alulg;0,1) | ,(9: 0, B)
Z é o i\t J m\Y 2
] 2| ch {j;l J.Z + m 1

i vg:0.6) 1 0a(9:0, )

1241 < )
’ ”jﬂz J TC m

Since

o+ 240
VA '”2”%”““ g(t)—g(0)dr < 3v,(g; 0, t,),

0

the desired estimate is now evident.

3. Pointwise convergence. Consider a (complex-valued) function [ defined
almost everywhere on the real line. Denote by f(x+ 0} the one-sided limits of

f at a (fixed) point x. Assuming that both these limits are finite, let us introduce

the auxiliary functions:

if t£0,

[F Gk —f (x£0)
gf“)“{o it t=0,

90 = ¢ (O +4¢: ).
Write | f]| instead of sup_ ,<,<q | f{t)] for f/ bounded on R.

THEOREM 1. Suppose that fe,, 0 < § < min{n, n/a} and that at a fixed
point x the limits f(x+0) exist. Then, for every n such that m=[4,] = 1,

|82, L7109 =3 {1 (x+0)+f (x =)}

i x5 0, 15/(M+1))

2 +r(x, o, d, f),

where

. 1 {18 5 Y)
rm(xs o, 6~f) i ;:"’; {b m(gm 0 + ZL (q 2 k > ”f“}

and Y, = [kn, (k+1in] (k=0,1,2,..).

Proof, Identity (4) and the well-known property of the function ¥, (see
(91, p. 75, (1.10.13) lead to

8,110 =47 o 0f =0 = T [ 00K, 0
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with K, = ¥,,, 1 = 4,, n = 4,+a. Divide the interval Y, into two intervals:

[0, 8] and [8, =]. The term corresponding to the first one can be estimated as
in Lemma 2(ii). In view of Lemma 1,

/14 5 {|¢! (8)— gx(O)i+(I+g>v..,+1(gx; 8, ﬁ)}

8
(3+7c)vm(gx; 0! TE) 5 “""gﬁ" m(':]x'l 0, '."C)

IJq (K

4
nmad?

Consequently,

g, 0 Jé/ m - 1;)+ 18 oa{ge Yo)

”- Qx t)K t)d"‘} J=1 _l abz m

Also, by Lemma 1,
L a0k < 0 ¥ k—{ |gx(kn)|+( ! +§)vm (g m}

2 1 2 u,(gs Y
< I o m\ x
Sy :Eliw:c( |+ kél %

Thus, we obtain our assertion.

Let @ be a continuous, convex and strictly increasing function on [0, o),
such that ®{0) = 0. Denote by V,{g; a, b} the total $-variation of a function
g on [a, b] (defined as in [6] or [11]). If g is of bounded &-variation on [«, ],

then, for every integer n,
1 1 Ir ( sa b)
p 9

(6], p. 537), where & is the function inverse to ®.

(& v{g; a, by < no~

THEOREM 2. Let a function [ of class Q, be of bounded ®-variation on
[x—d, x-+ 8] with some positive 8 € min{n, n/a}. Then, for every integer n such
that m=[A ]2 |,

|84, E100) = 31 (e + 0y 47 (x - 0}}]|

48 nt I B ] . b ] O
£ — P 1 : -1y — bl ~ ’ .
<5 ;Z,lj{ (m (gx 0, ))-’-@ (m V(h(gx ’O’j>)}4 ol 00, 8, 1),

where r,{x, a, 8, f) is defined as in Theorem 1.

Proof. Cleatly, both g} and g7 are of bounded ®-variation on {0, &].
Using inequality (8), we obtain

BN 7 {1 js
190, ——<jie -V, gF; 0, —— i - .
U’(g m+1) J{ (j "’(g 0 m+1))+(p (j Va,(gx,() m+1
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Now, our assertion follows easily from Theorem 1 {see also Lemma 2 in
[11]).

Remark 1. If the function f possesses finite one-sided limits at each
point of the. real line, then lim,, .. m " v,(g.; ¥) =0 for every k (see [7]).
Consequently, lim, ... r,(x, «, 8, f) = 0. In particular, this holds if f is of
bounded @-variation on each finite interval. If moreover

9 sup Vg (/s b, (k+2m) £ B< oo (k=0, +1, +2, ey
i

18 3
Falx, o, 8, ) < (52 n )(p 1(1) ””!

Remark 2. Since the functions ¢ are right-continuous at 0, we have
limymg Vaplgl: 0, t) = 0. Hence, under the additional assumption

Cal 1 ~ 1
(10) Y E(p l(k)<oo

ke

m 1 (5
lim - l(w ¥ (11 . 0, )) = 0.
TR jzl J U’ ¢ J

Now, we will present an estimate of the rate of pointwise conirergence of
sums (2) for functions f of class A,. The symbol || /||y will denote the norm in
the space §, defined by

then

we have

[

Wls= s 2 [l

TuroREM 3. Suppose that fe A, and that, at a (fixed) point x, the limits
f(x+0Y are finite. If, for a positive number & << =, the function [ is bounded on
[x—0, x-+48], then
13431 28 10 0.j3fim 1)
bR [1’ 1) ! i
10 ”m..(—gﬂf; 0, 9) 6

Tegon m Tegm s

1S5, L 16e) 4 (x +-0) +f - O}

whenever mo=[4,] = 1

Prool Clearly,

S, ELU) =5 S et 0 f (x - 0)) z [ 9,000, dt,

k=0 ¥
where Y, == [kn, (k+ 1)x], Q) = Pault), A= Ay = Jyar.

T - Swdin Mntheutica 96,1
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Observing that A, mﬂ:n 2 A,(f—1) and applying Lemma 2(i), we obtain

138431 i v,{g.; 0, i6/(m+1) 1¢ wv,(g.0,d)
S p—1) 2 72 Pp-1 m

3
[ 9.()Q,(0)dt| <

Further, by inequality (7),

T 2 :
|£gx(t)Qn(£)dt’ < m gl s
and

2 i ”'ffx“.s

1kz”ykgx(r)g O < o7 T gallonds < 5

Collecting the results we get the desired estimate.

Remark 3. Observe that

i gx,015/(m+1)) - 91(g 0, 15/(M+1)) 4 & _f?

;0,8
Um-(gmzos )gi sup |f(t)t

m x—d<r<x+a

Consequently, in view of the continuity of g, at t = 0, the right-hand side of the
inequality in Theorem 3 converges to zero as n— oo,

CorOLLARY 1. If fe Ay is of bounded $-variation on [x~8, x+ 0], then

185, L/ 10) = 3{ S (e + 0} +f (x— 0}

B foif(J (v 0 YR P
"“<‘~ m52 (jgl {¢ (m V&(gx ] 0: ]))+@ l(m V({J(gx H 0: ]))}—I_ ”gx“5'>

4. Uriform convergence. Suppose now that a functlon f of class § is
continuous on R, and denote by w(s, £; I) its ordinary modulus of continuity
on a finite interval I = [a, b]. Write

CU((S,f = Sup C!J((S, fa Ik)r
x .

where [, = [kn, (k+2n], k=0, +1, . Retaining the symbol of the
modulus of variation of /' on I, used in Sects 2 3, let us introduce the quantity

v (f)= sup vi(fs 1)
As is known ([6] or [107),
(11) o, (i D < 2jo(b-)aj, /1)  (jeN).

Fourier serfes of almast periodic Junctions 99
Therefore, if [ is uniformly continuous on R,

vlf) < Yelnfj, ) (jeN).

Applying the above inequalities one can estimate the expressions on the
right-hand side of the estimate in Theorem 1. Namely, we have

Jjo . f(n
Uj(.q):; 0= ;7’!_:;—1—) &3 2_1'{ (" » ‘J‘x » Y0)+(1}< ’ Qx s Y)} = 4]‘”(;:]")

and
o J0
vl g 0, mri) S S v g3 0, M +e(94; 0, 1) < 20,(f)
for j=1, ..., m. Moreover,

U9y 1) < dmoo(n/m, f)  for k=0, 1,..

Putting § = min{n, n/a} we get the following result analogous to Theorem 1 of
[6]:

Tueorem 4. If f is a uniformly continuous function of class Q, and if
m=[A]=1, then

sup 18,0100 —f (x)]

. o v I
< CZ(a)(leilim{w< )jzl ; j= §+1 T}+7)

From this theorem some sufficient conditions for the uniform convergence
of sums (2} can be deduced (see [6]). :

CoroLLary 2. If fe@, is ﬁniformly continuous on R, then
184,LS T/ 11 € ey(@) {wo(m/m, NHlogm+1)+m™H| f1},
whenever m =[] = | (¢f [4], Th, B).

COROLLARY 3. If feQ, is uniformly continmuous on R and if

S 0 (f) < oo,

i=1

then the sequence (S 1. L/]) converges uniformly on R. In particular, this is true if

" f is of bounded ®-variation on each finite interval and if conditions (9) and (10)

are fulfilled.
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Remark 4. From Theorem 3 it follows that, for any uniformly con-
tinuous function f of class A,

B+3
-1

18, [f1=F1 <9

(cf. [4], Th. 4).

w(m/m, f)  (m=[4,]21)

5. Stromg sumumability. Given any function f of class ,, with Fourier
series (1), consider the sums

(12) s[70r= 3 A (ueN).

[Ag| Sapn/2

Obviously, the sequences of sums (2) and (12) are equiconvergent, Moreover,
the rates of pointwise and uniform convergence of the sums ,[ f7](x) can be
estimated analogously to Theorems 1, 2, 4.

Here, an estimate of the Hardy type expression

L/g
HiL/1(x) = { 2 |8 L2100~ (%) } (g=2)

will be presented.

THEOREM 5. If a function f of class Q, is uniformly continuous on R, then,

for every positive integer n,
“ r NN 4001
¢ — [ ——
4(“)‘]{ #gl (w(ﬂ, j)) } +3 nvie’

where [ f|| and (3, f) have the same mearing as before.

sup  Hi[f1(0) <

e R e

Proof. Denote by s¥[f](x) the sums of the form (12) such that the
interval {fap, $o(u+ 1)) does not contain any 4,. Applying Lemma 1.10.2 of [9]
we _easily verify that

sELS10e =1 (x) = T 9 () dt
Q

where g (8) = f{x+8)+f(x—

~2f(x) and W, (1) =
n =sa(u+ 1), ie,

V.0 with 1= 4up,

4
¥, (1) = — t™*sinkat singe(2u+ 1)t

(see also [2], p. 41). Evidently, if the interval (Jou, $a(u-+ 1)) contains a Fourier
exponent 4,, then

S,u[f](x) = 5:4—1{f](x)—“(Ave“vx.*_A__ve—ij.w;).
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As is known, |A.,| € Eypn(f) where B (f) denotes the constant of the
best uniform approximation of f by entire functions of exponential type o ([3],
p. 19). Hence, by the Jackson type theorem,

04 (Wa(m/u, f)

(see e.g. [1], Sect. 105). Consequently, Hi[f](x) can be estimated from
above by

1 oo 1y 1 i n 0
{;l,-'u;lIé;gx(t)gl“+v(t)dt’q} *Cﬂ(“){ﬁ p%(w(ﬁ’f))} °

where y== y{m) equals O or 1.
Put h = 2nfan), J, = [2kr/a, 2(k+1)n/o]; write

|Ave£.l\,x+A__ve~ixvx|

# 2Anjo o
ng(f)lpu +y(D)dt = (j+ I + I )9, (8) ¥y (B)dt
4] h Znje

= W () + W (i) + Wy(),  say.

Clearly,

2
i< 200, 09 < 5() +E)w(§,f>-

From Lemma 1, with /1 = fa(u+7), n=34a(u+y+1), it follows that

W< 31 ax(t)%w(f)dtl

kel Jy
Zkn
a

4 |
[P ————— mm— cx
73 (i +7) ;;;1 K { g

+(1 +g')vm+1(gx; Jk)}:
where m = [d(u+y)/2]. Using (11), we get

3|if|| +cﬁ(oc)m(z f)

AIES

with c,t,(oc) 16(1 =+ m/o)(1+o/2) (1 -+ 4/a*)/r®. Hence

g 1 n T ) 1/q
me <t £ o} e 3 (o5 1))]
g=1 p=1
| snrn()‘fﬂ
3t \n/
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The inequality of Hardy and Littlewood ([12], Chap. XII, Th. 5.15.I1)
yields

1 = l/a
{5 ;IWZ(M)V}

8 " la 2nje s x o o q}l/q
€ —<= —— 17 “sin~tecos {2y + 1)t sin— ut dt
“oﬂ{n,‘; 5 {gx() gleosz{y+1) 7

2nfa

= 1 gx(r)r-zsingtsing(zw1)rcos;mdt
F

q} 14

1 2nfu " 1/
< ca(a)q{; [ laLore dt} ;
where cqla) = c?max{i, l/ﬁ}, ¢ = const. Consequently,

1 - g 121r/:z 1iq
{— b} le(MJI“} <Cs(a)q{— | (eoft, g, Jo))”t"‘dt}
n’.u=1 L

n . q 1/q
§ Ca(“)‘l{%ﬁ {(w("z‘“ga Hxs JO)) d”}
1/q n a3} /g
<)) o 5 ()]

Thus, the desired result follows.
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