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Drop property equals reflexivity
by

V. MONTESINOS* (Valencia)

Abstract. We prove that in a reflexive Banach spacé (X, ||-[}) property (H) of Radon-Riesz
(if {x,)7= 1 is @ sequence of elements in X converging weakly to an element x in X such that |jx,||
—|1x]l, then (x,)i%; is norm-convergent to x) is equivalent to a geometric condition (the “drop
property”) introduced by Rolewicz: ||-|| has the drop property if for every closed set § disjoint
with By (the closed unit ball of X) there exists an element xe § such that the “drop” defined by
x (the convex hull of x and By) intersects S only at x. We also prove that a Banach space is
reflexive if and only if it has an equivalent norm with drop property.

§ 1. Introduction. Let (X, || |)) be a Banach space and By its closed unit
ball. By the drop D(x, By) defined by an element xe X, x ¢ By, we shall mean
the convex hull of the set {x}u By, conv({x} U By). In [4], Dane¥ proved
(“Drop Theorem”) that, for any Banach space (X, ||-||) and every closed set
S <X at positive distance from By, there exists a point xeS such that
D(x, By) NS = {x}.

This result, as its author points out, allows to prove in.a simple way
certain theorems of Browder [2] and Zabreiko-Krasnosel’skii [17] which are
very important in the theory of nonlinear operator equations. In [14],
Rolewicz mentions a number of papers where the Dane¥ result is used.
Recently, Dane¥ has discussed the relationship between his Drop Theorem
and several other results [5].

Motivated by Dane¥ theorem, Rolewicz introduced in the aforesaid
paper the notion of drop property for the norm in a Banach space: ||| in X
has the drop property if for every closed set S disjoint with By there exists an
element xeS such that D(x, By)nS = {x}. He proved that if X is a
uniformly convex Banach space then its norm has the drop property, and also

* Supported in part by the “Consellerfa de Cultura, Educacién y Ciencia. Generalidad de
Valencia”.

This paper was written during the author’s visit to the Institute of Mathematics of the
Polish Academy of Sciences, Warsaw, 1985.

AMS Subject classification: 46B20, 46B10.

Key words and phrases: reflexive Banach spaces, geometry of Banach spaces, convexity,
drop property.
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that if the norm in a Banach space has the drop property, then the space is
reflexive. He included an example, suggested by Wojtaszczyk, of a reflexive
nonsuperreflexive Banach space such that the norm has the drop property.

The norm }|-|| in a Banach space X is k-rotund (k a positive integer
greater than 1) if, for every sequence (x,)j=; in By such that

A
11 yeenslty 00

(x)se; is a convergent sequence. Kutzarova has recently proved [12] that
every 2-rotund norm in a Banach space has the drop property, extending
Rolewicz’s result about uniformly convex norms, and she has used a notion
also introduced by Rolewicz to give a geometric characterization of reflexivi-
ty: Let A be a subset of a Banach space X. The Kuratowski index of
noncompactness of A, a(A), is the infimum of all positive numbers r such that
A can be covered by a finite number of sets of diameter less than r, Given
feX* (the topological dual of X) such that ||f]l=1 and 0 < <2, let
S(f, &) = {x: xeBy, f(x) > 1—¢}. The norm ||-|| in a Banach space X has
property (a) if, for every fe X*, ||f]| = 1,

lima(S(f, &) = 0.
£—0

Then a Banach space X is reflexive if and only if it admits an equivalent norm
with property (o).

In this paper we shall prove that in a reflexive Banach space the norm
has the drop property if and only if it has property (x) and if and only if it
has property (H) of Radon-Riesz (||| has property (H) if, for any sequence
(xn=1 in X converging weakly to an element xe X such that [1l] = 1],
(x)ai; converges to x in norm). Thanks to Rolewicz’s result about the
reflexivity of any Banach space with a norm which satisfies the drop
property, this theorem reduces the drop property of a norm to the well-
known and easy-to-handle property (H). Every k-rotund norm in a Banach
space X (k a positive integer greater than 1) (and hence every 2-rotund norm
and every uniformly convex norm) has property (H) and the space is reflexive
(see, for example, [8], VI, § 2), hence the norm has the drop property. This
allows us to give many other examples of norms with the drop property in
reflexive nonsuperreflexive Banach spaces.

As a consequence, we shall prove that every reflexive Banach space has
an equivalent norm with the drop property. This answers a question of
Rolewicz and gives a new characterization of reflexivity.

The last part of this paper deals with the behaviour of the drop property

of a morm in subspaces, quotients, substitution and Lebesgue~Bochner
spaces.

§2. Drop property and reflexivity. We recall some earlier results for
further reference:
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Tueorem 1 (Drop Theorem, Danes [4]). Let X be a Banach space and
S c X a closed subset of X at positive distance from By. Then there exists an
element xeS such that D(x, By)n S = {x}.

A sequence (x,);=; in a Banach space X such that Xy+1€D(x,, By),
n=1,2,..., will be called a stream. Notice that X,éBy, n=1,2,..., in
view of the definition of drop.

The following proposition gives a characterization of a norm with drop
property in terms of streams:

Propostrion 1 (Rolewicz [14], Proposition 2). Let (X, |1} be a Banach

space. Then ||*|| has the drop property if and only if every stream in X has
a convergent subsequence.
The norm ||-|| in a Banach space X is uniformly rotund if given & > 0

there exists & > 0 such that if x, ye Sy (the unit sphere in X) and [Jx—y|| > ¢
then ||(x~+y)/2l| < 1-4.

Tugorem 2 (Rolewicz [14], Theorems 2, 4 and 5). Let (X, [|-|| be a

Banach space. Consider the following properties:
() The norm is uniformly rotund.

(ii) The norm has the drop property.

(iii) The norm has property (x).

(iv) X is reflexive.

Then (i) = (ii) = (iii) = (iv).

It is known that the norm in a Banach space X is (k+ 1)-rotund if it is
k-rotund (k =2, 3,..)) and that a Banach space with a k-rotund norm
(k=2,3,..) is reflexive (cf, for example, [8], VII, § 2). Obviously, there are
nonreflexive Banach spaces such that the norm has property (H), as .
Kutzarova proved ([12], Theorem 1, Corollary 2) that for a Banach space X
the norm has the drop property if it is 2-rotund and that X is reflexive if and
only if it admits an equivalent norm with property ().

We shall need the following simple lemma:

Lemma. Let xy,...,x, (n=2,3,..) be elements of a normed space
(X, |I1)) such that x;. €D (x;, Bx),i =1, ..., n—1. Let zeconv(xy, ..., X,_;).
Then z¢ By and x,eD(z, By).

Proof. For n=2 the result is obvious. Let us prove the lemma for
n=3, We can suppose X; s X3, z # x;, i = 1, 2. Thus we can write

(1) Xy =}42x1+(1'—)42)b2, 0<}.2<1, szBx,
) X3 = A3 X3+ (1—43)bs, 0< A3 <1, byeBy,
(3) z=0x,+(1-0x,, 0<0<I,

hence z = 0xy +(1—0) (A x; +(1 — 1) by) = kx; +(1 —0) (1 —A,) b, where k = 6
+(1—6)Aye]4y, 1[.
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Therefore

@ xy = [ =(1=6)(1~4)b,]

and, substituting (4) in (2),

1 1 X
(B x3= E)"3 lzé"‘*‘}(‘l:k/la(l“ﬂ-z)_la A (1=0)(1—=25)] by +(1 —13) bs.

A simple computation shows that (5) is a convex combination. Moreo-
ver, using (4) in (1) we get

1 0
Xy = Elzz:i-(l—ﬂ.z)zbz

Thus z cannot belong to By.
~ Suppose now that the lemma has been proved till n>3. Let
X150, Xpeq be elements in X such that x.,eD(x, By), i = 1,...,n and
zeconv(xy, ..., x,). Obviously we can find an element ueconv(x,_y, X, such
that zeconv(xy, ..., X,_,, #). Since ueD(x,_,, By), the case n =3 gives
u¢By and x,.,eD(u, By). The induction hypothesis now yields z¢By and
X,+1€D(z, By). »

TueoREM 3. Let (X, ||| be a Banach space. Then the Jollowing state-
ments are equivalent:

(i) The norm ||| has the drop property.

(i) The norm ||| has property (o).

(iii) The norm ||| has property (H) and (X, 11-1) is reflexive.

Proof. (i)=-(ii) is contained in Theorem 2.

(ii) = (iii). Again by Theorem 2 the space (X, ||-|}) is reflexive. Let (x,)2 ,
be a sequence in Sy (the unit sphere in X) which converges weakly to
XpeS8y. Let (y);Z, be an arbitrary subsequence of (x,),. Let feX* be
such that {|fl=1 and f(xo)=1. Given ¢>0, let >0 be such that
a(S(f, ) <&, where S(f, 8) = {x: xeBy, f(x) > 1—-5}. Let ny be a positive
integer such that, for every n > n,, y,eS8(f, 6). § (f, 6) can be covered by a
finite number of sets of diameter <e. It is now clear that a diagonal
procedure allows us to select a Cauchy subsequence (=1 of (y)®,. Then
(znz1 converges to some zeX. But (2521 ‘converges weakly to Xo. So
z = X, and because (y,);2 ; was an arbitrary subsequence of (x,)® , it follows
that (x,);%; converges to x,. Thus the norm II]l has property (H).

(iif) = (i). Let (x,)2, be a non-eventually constant stream in X.

Suppose first that (||x,[[)™, does not converge to 1. If (x,)72, does not
have a convergent subsequence, then {x,: neN} is a closed set at positive
distance from By. By Theorem 1, there exists a point xe{x,: ne N} such
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that D(x, By) N {x,: ne N} = {x}, which is impossible for such a stream.
Thus (x,);=; has a convergent subsequence.

On the other hand, if (||x,/):2, converges to 1, then by the Eberlein—
Shmul'yan Theorem, there exists a point x,e X and a subsequence (y,)2,
of (xny=1 such that (y,)L, converges weakly to Xo. By the weak
lower semicontinuity of the norm, ||x,|| <1. But xpeconv’ (x;, Xs, ...
= conv(xy, Xz, ...) (the weak and norm closure, respectively). By the Lemma,
lIx]l > 1 for every xeconv(xy, X,, ..., hence x| > 1. Therefore Ixoll = 1.
Hence, because the norm ||| has property (H), (x,)2, converges in norm
te xo. By Proposition 1, the norm ||| has the drop property. =

The following theorem characterizes reflexive Banach spaces and
answers a question of Rolewicz:

Tueorem 4. Let X be a Banach space. Then the Sollowing statements are
equivalent :

(i) X is reflexive.
(i) X has an equivalent norm ||-|| with the drop property.

Proof. (i)=(ii). A reflexive Banach space is weakly compactly
generated. By Troyanski’s renorming theorem [18] X has an equivalent
norm ||-|| which is locally uniformly rotund (= LUR) (.., for any sequence

(Xe=1 and x in X such that |x,)| <1, n=1,2,..., ||x]| =1, if
lim ||x+x,)| = 2,
n-ro0

then (x,);% ; converges in norm to x). It is well known that a (LUR)-norm
has property (H) (cf, for example, [8], VII, §2). Now (ii) follows from
Theorem 3.

(i) = (i). This implication is contained in Theorem 2. w

Kutzarova’s characterization of reflexivity (see §1) follows from
Theorems 3 and 4. As we mentioned in § 1, if the norm ||-|| in a Banach
space is k-rotund (k a positive integer greater than 1), then ||-|| has property
(H) and the space is reflexive. It follows from Theorem 3 that a k-rotund
norm in a Banach space has the drop property. By Theorem 4, every
reflexive nonsuperreflexive Banach space X furnishes an example of a
nonuniformly convex norm- with the drop property (in view of Enflo’s result
[10]). Fan and Glicksberg [11] proved that the reflexive space (I(I"*, I%, ...),
(I-ll;) (the substitution space or product space; cf., for example, [8], II, § 2)
has a norm (|| +||;) which is k-rotund for all k > 1 and all sgquences (p,) of
integers 1 < p, < oo, n=1, 2, ..., and Day proved in [7] that this space is
uniformly convex if there exist numbers m and M such that l <m<p, <M
<400, n=1,2,..., and in [6] that otherwise it is not isomorphic to a
uniformly convex Bapach space. This gives another, explicit example of a
norm with the drop property in a nonsuperreflexive Banach space.

7 =~ Studin Mathematica t. 87 z. 1


GUEST


98 V. Montesinos

An alternative proof of Theorem 4 uses, instead, the following
Proposition and Corollary 3 in [16]: A Banach space X is reﬂexiue if and
only if it has an equivalent weakly 2-rotund norm (a norm |-|| in a Banach
space X is weakly 2-rotund if any sequence in its unit sphere such that

Lim ||x,+x,l| =2
is weakly Cauchy).

ProrosiTioN 2. Let (X, ||-||) be a Banach space. Then the norm has the
drop property if it is weakly 2-rotund.

Proof. By Troyanski’s result quoted in the previous paragraph, X is
reflexive. It is known [3] that, for a reflexive space, the norm ||| is weakly
2-rotund if and only if for any sequence (x,);2; in the unit sphere the
condition

lim |f (%t xm)| =2

nm—+w

for some feX*, ||fll =1,

implies that (x,)%, is convergent.

Let (x,);2; be a stream in X. Let C = conv(x,, x5, ...). By the Lemma,
flxll > 1 for every xe C. The Separation Theorem gives f & X* such that | /]|
=1and f(x) > 1 for every xeC. In particular, 1 < f(x,) <|x, ], n =1, 2, ...
If (Ix,l)7=, does mot converge to 1, the argument used in the proof of
(iii) = (1) in Theorem 3 gives a convergent subsequence of (x,),. If, on the
other hand, (j|x,]|);%, converges to 1, it follows that (f (x,)); also converges
to 1 and so does the double sequence (f (3(x,+x,)). But the norm is weakly
2-rotund and we conclude that (x,)=, converges. In both cases we apply
Proposition 1 to deduce that the norm has the drop property. m

Note that a weakly 2-rotund norm ||| and a norm [||-||| with the drop
property in a Banach space X can be different. In fact, every norm in a
finite-dimensional Banach space has the drop property (this follows from
Proposition 1 or Theorem 3), but not every such norm is weakly 2-rotund.

§ 4. Heredity of the drop property. Let (X, ||-||) be 2 Banach space and
Y a closed subspace. The induced norm in Y will be again denoted by ||-||
while the quotient norm in X/Y will be denoted by [Illq- Let g: X — X/Y be
the canonical mapping,

The following proposition is easy to prove:

ProposrTioN 3. Let (X, |||) be a Banach space such that ||*|| has the
drop property. Let Y be a closed subspace. Then @) in Y, ||| has the drop
property, (i) in X/Y, |l-HQ also has the drop property.

Proof. Both Y and X/Y are reflexive Banach spaces. Now, (i) is
obvious by Proposition 1. In order to prove (ii), let (,);%; be a sequence in
Sxy (the unit sphere in X/Y) and let X, € Sy;y be such that (%)% 1 converges
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weakly to Xo. Let (x,)i; be a sequence in X such that g(x,) =X, and
L=[Rllo SlIxall <®llg+1/n=1+1/n, n=1,2,..

The sequence (x,);%, is bounded. Let (), be an arbitrary subsequence of
(x)sz 1. By the Eberlein—Shmul'yan Theorem we can select a subsequence
(zpn=1 Of (yuh= such that (z,);2; converges weakly to some element zoe X.
By the weak lower semicontinuity of the norm, [|zo)| < 1. But (a(z))=y
converges weakly to g (z,), hence g(z,) =%, and thus |[|z,|| > ollo = 1. Hence
llzoll = 1. By Theorem 3, the norm ||-|| has property (H), so that (Zi ¢
converges in norm to z,. But ( y,)2, was an arbitrary subsequence of (x,)5%
and (q(z,)yz, converges in |-[ly to g(zo) =%,. Hence (%), converges in
[Illq to Xo and ||l has property (H). Again by Theorem 3, II“llo has the
drop property. m

Let (X, ||-]l) be a Banach space and suppose that the norm |I*)l has
property (H). Let 1 < p < 0. Then, in I?(X), the norm || *|l, has property (H)
([13, [13]). The converse is obviously true. Moreover, for 1 < p < co, IP(X) is
reflexive if and only if X is. It is worth noticing that the proof of Theorem
3.1 in [13] for a Banach space X and P(X) (1 < p < o) applies word by
word to the case of the substitution space P(X,, X, ..), implying that the
norm ||-||, in I7(Xy, X,, .. ) has property (H) if and only if the norms in X,
all have property (H) for n=1, 2, ... From this and from Theorem 3 it
follows that the norm |||, in IP(X,, X,, ...) has the drop property if and
only if the norms in X, all have the drop property for n=1, 2, ...

For the Lebesgue-Bochner spaces L7(y, X), X a Banach space, (T, X, 1)
a finite measure space, the corresponding result does not hold: Smith and
Turett [15] have given an example of a reflexive Banach space (X, || -||) such
that |[-|| has property (H) and, for every 1< p < oo, the norm -1, in
L([0, 1], 4, X) (4 the Lebesgue measure in [0, 1]) fails property (H). In view
of Theorem 3, ||| in X has the drop property, but || ‘Ji, in L*([0, 1], 4, X),
1 <p < oo, fails this property. This answers in the negative a question of
Troyanski (personal communication).

A partial positive answer is given by the following observation: (cf. [15],
Question 10): If (X, || ])) is a reflexive Banach space such that its norm |11 is
rotund (= strictly convex, i, the unit sphere does not contain any segment)
and has property (H), then ||-||, in L”(4, X), 1 <p < o0, has property (H).
Moreover, LP(u, X), 1 <p <o, is reflexive if and only if X is (this fact
follows from the well-known result that for (T, X, y) a finite measure space
and 1 <p < oo, the dual space of L?(u, X) is L1(u, X), where p~ 144~ = 1,
if and ‘only if X* has the Radon-Nikodym property with respect to p ([9],
IV.1.1)). Thus if the norm || || in X is rotund and has the drop property, then
I, in LP(u, X), 1 <p < oo, also has the drop property.
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