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The size of sums of sets
by
DANIEL M. OBERLIN* (Tallahassee, FL)

» Abstract. Lower bounds are obtained for thé Haar measure of the set K+E when K and
E are suitable subsets of a locally compact abelian group. ‘

Let G be a locally compact abelian group with Haar measure m.
Suppose that K and E are measurable subsets of G such that the sum set
K+E = {k+e: keK, ecE} is also measurable. What can one say about
m(K + E)? The papers [1], [2], [3], and a substantial portion of the book [4]
are concerned with various aspects of this question. Here we are interested in
inequalities which give a lower bound for m(K +E). One example of such an
inequality is the following theorem, a corollary of Theorem 2.2 in [4].

TrueoreM A. If G is a torus group R'/Z" for some positive integer n, and if
m(K)+m(E) < m(G), then

m(K)+m(E) < m(K+E).

This satisfying inequality provides nontrivial information when both
m(K) and m(E) are positive. But what can one say if, for example, m(K) = 0?
Here the situation has a somewhat different flavor which is typified by the
next theorem if m(K—K) # 0.

Tueorem B. Suppose K and E are subsets of the locally compact abelian
group G with K compact, E and K +E measurable. Then

*

J/m(K~K)ym(E) < m(K +E).

Theoremm B is essentially Proposition 4 below in the case n = 2, ir: which
case the constant & is easily checked to be m(K;—K,). Theorem B
generalizes and explains the result in [5].

The purpose of this paper, then, is to investigate the existence of
inequalities of the form

(n e-m(E)f < m(K+ E)
holding for some fixed subset K < G, for some Be(0, 1) and ¢ > 0 depending

* Partially supported by the National Science Foundation,
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on K, and for every measurable E < G such that K+ E is measurable, Of
course such an inequality is nontrivial only when m(E) is small and m(K)
= (. Then, at least for G = R", the smallest allowable value of f# seems to be
related to the dimension of K in G. For example, we shall see in § 2 that a
particular instance of (1) occurs when G=R" and K is a suitable k-
dimensional surface in R". Then § can be taken to be 1—(k/n).

There are three sections to this paper: § 1 contains a theorem on the
boundedness of certain multilinear forms. This theorem is a tool which is
applied in § 2 to prove inequalities of the form (1) when f is a number
1—(k/m) with k=1, 2,...,n—1.In § 3 is a supplementary result concerning
the case k =n—1.

§ 1. Boundedness of certain multilinear forms. Let G be a locally compact
abelian group. Here is some notation: if 1 is a measure on G, then JrdA(x)
denotes integration over G with respect to 1. When A is m, Haar measure on
G, the integral is written [-dx. And for 1< p <o, llgll, is the If-norm

(flgl” dx)te

of an appropriate function g on G. Letting 1 be a Borel measure on the
Cartesian product G" we wish to study inequalities of the type

)] ”angi(x——xl)gz(x—-xz)...g,,(x~x,,)du(x1, o X)dx| € C‘J[j[l gl

The result we prove here is the following theorem.
Turorem 1. Suppose that Ay, ..., A, are finite positive Borel measures on
G and suppose that for some fixed =1, 2, ..., n~1 an inequality of the form
G) |- [ +Xa oo X=Xy, Xy + . F X = X2y e X X X,)
diy(x;)dA;(x,).. .dA, (xn)l < Clfll

holds for some positive C, and for all feX(G™™Y). Then the inequality

I”!h (x—x;)dA, (x)jgz (x—x3)dA, (xz)~-~Ign(x“xn)dﬂn(xn)dx' < C, ﬁ ”91”1
J=1

holds for some constant C, and for all Gin oo goe L(G).

To get a feeling for the hypothesis of Theorem 1 (at least when [ = n—1)
define Z,,' so that _[g(x)dI,,(x}:jg(—x)dl,,(x). Then when ! =n~1 the
hypothesis is that the convolution 4, *dyx...xd,yx], is a bounded
function on G.

_ Proof of_ Theorem 1. The symbol C denotes a constant which may
increase from lme. to line. Suppose that g, ..., g, are nonnegative functions,
We start by making the change of variable X — x+x; (which requires two
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applications of Fubini's theorem) and then applying Holder’s inequality with
the exponent pair (I, l[/[I1—1]):
(4) .”‘gl(x"xl)d"tl (x,)...jg,,(x—x,,)dl,,(x,.)dx
= [...f91 () [[g2(x+x1 = X2) g3 (x+ X1 = X3) .. g (X + X1 = X,) A4, (x1)]
dd,(x,)...dA,(x,)dx
<C H.‘h“x(j' '-I[,[QZ(x+x1 =X3) o galX+xy —Xxp) dAy (M)]WR”
A (x5) ... dAy () dx)~ 1
In (4) we make the change of variable x —»x+x, and then apply H§lder’s
inequality twice —first with the exponent pai.r (1, /[1—1]) and then with the
exponent pair (/—1, [[—11/[I—2])—to obtain
(8] |Iglll,(.f....[[‘fgz(x+x1)g3(x+x,+x2—x3)...
e gy (X Xy + Xy —X,)dAy (e ] B s (x2) ... dAy (x0) dx)t= i
< Halllx(.(---.f[fg’z(xﬂﬂ) diy (3—51)]”“_1)[“(93(-’”‘3‘1 +Xx3—X3)... ‘
e g (e g 35— XD dAy () dAg (x2)] s (X3) . dAy (5, doc)f! =D
/(- 1)
< Cligslh ||92[|1(_[ . .j[ff(g3(x+x1 + X3 —X3) - G (X4 X1 + X2 = X))
dhy (x1) dig (x2) ¢ dAz (x3) ... ddy (x,) dx )=,

In (5) we make the change of variable x — XX, and then apply Holder’s
inequality twice—first with the exponent pair (I-1, [I —'1]/[1——2]) and then
with the exponent pair (I—2, [I—2}/[I-3]) — to obtain as above that (5)

is <
3
® CJI1 Ngh(f--- 5”_”(94 (X+x; 4 X3+ X3 —Xg)...
Jj=1
cerGn(X X+ X2+ X3 —x4))"'("2) diq (x,)dAy(x5)dAs (x3)]* 2/0-3)
Ay () ... dAy () dx)t ™,
After 1—4 more changes of variable and double applications of Hdlder’s
inequality we find that (6) is <
' -1
M CTlgh(f.- L] flantxs+ .- Xy =X
j=1
ey G oo Xy =X )P dA (xq) A Ay (X Nk
dAy(x) ... dA,(x,) dx).

If we make the change of variable x— x+X anq then apply Holder’s
inequality with exponent pair (2,2), we see that (7) is <
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-1
(8) le;Il}lgjll,("'..._[[j'...j(g,+1(x+x1+...+x,-—x,+1),..

(X X — %)) dAy (%) dA ()] gl (X + Ky
A X ) dxddy (%) dAg g (R )P
By the hypothesis (3), the quantity in square brackets above is <

Cy H ||.‘7/”f‘

J=l+1

Thus (8) is <

CTT lgjlh-
=1
This completes the proof of the theorem.

.§2. Applications of Theorem 1. Our first result is proved in the same
setting as Theorem 1—that of a locally compact abelian group G. The letter
m will denote the Haar measure on G.

ProrosITiON 2. Suppose that K, ..., K, are subsets of G and suppose
that each K carries a nonzero finite positive Borel measure ij. If the measures
Ay ...y Ay satisfy the hypothesis of Theorem 1 for some [ =1, l..., n—1, then

there is 8 > 0 such that the following is true: if E < G and each K,+E are m-
measurable, then !

©) 8'm(E) < [] m(K;+E).
=1
Thus if K = |J K, then
=1

(19 8""m(E)" < m(K +E).

Proof. In Theorem 1 take g; to be the indicator function of the set

~E~K;={~e—x;: ecE, x;eK,}. If ||4,|| denot
ek izey €K} If |4 denotes the total mass of A;, then

Ja;(x=x))da; (x)) = lAy).
Thus

m(ﬁE)jl—:Il “A-/” < j'j'yl(x-—xl)d11 (xl)m,"gn(x~xn)di"(x,,)dx

s C,U, llgill, = CT] m(—E—K)",

j=1
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where the second inequality is the conclusion of Theorem 1. This gives (9)
n
with & = (T IIAll)/C.
ji=1

We would like to apply Proposition 2 to produce inequalities of the
form (1) when K is a k-dimensional surface in R". A little consideration of
low-dimensional cases leads one to believe that the right choice of B here is
1—(k/n). But a little more consideration leads to the realization that for some
k-dimensional surfaces K no inequality (1) can hold for any f <1. The
problem here is geometric—a lack of curvature: if K is a bounded subset of
some (n~—1)-dimensional affine hyperplane, then it is easy to choose small
sets E such that m,(E) and m,(K +E) are comparable. The extra hypothesis
on K in the statement of Theorem 3 is present to eliminate this kind of
degeneracy. Thus if K is a curve in R" our hypothesis states that

(X, 4%+ oo FXpoy — Xt X6 K}
has positive measure in R". Our definition of a k-dimensional surface in R" is
the range of a continuously differentiable map ¢: (0, 1)*— R".
THEOREM 3. Suppose that 1 < k <n and that K is a k-dimensional surface
in R". Let | =n—k and suppose that the set

(g4 XgF oor X =Xpggs XpF oo FX = Xpi20 0005 X1 e +x,—x,): x;€K}

has positive nk-dimensional Lebesgue measure in (R"*. Then there is 6 > 0 such
that

11 om,(Ey ~%" < m,(K+E)

for any measurable E < R" such that K+E is measurable.

Proof. By regularity of m,, (11) is true for any measurable E such that
K +E is measurable if it is true for any E which is compact. We will prove
(11) for compact E by applying (10) of Proposition 2. And to apply

~ Proposition 2 we will produce nonzero measures Ay, ..., A, satisfying the

hypotheses of Theorem 1 (with I= n—k) and supported on g¢-compact
subsets K, ..., K, of K.

Suppose K = (0, 1)} where ¢: (0, 1) > R is continuously
differentiable. Write I = (0, 1)* and consider the map ¢: I" > (R defined
for t = (ty, ..., t)eI" by

(1) = B(ty, ..., L) =(0U)+@(t2)+ ... + @)
—o(ti+1), ‘P(ﬂ)*‘ et ot)— @), o @)+ - +o(t)—o(t).

The hypothesis is that M (®(I") > 0. It follows from Sard’s theorem,
continuity, and the inverse function theorem that there exist 6 > 0 and, for
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1 <j < n, nonempty open sets I; < I such that
[det®'(t;, ...t =6 el 1<jsn

n
and such that @ is one-to-one on [[ ;€I For 1<j< n define the
J=1

measure A; on R" by

fg(x)da;(x) = 5 g (@) dmy (1).

Then each 4; is a nonzero finite posnwe Borel measure supported on a g-
compact set K; = ¢(I;) < K. This theorem will be proved when we show that
the measures 1, ..., 4, satisfy the hypothesis (3) of Theorem 1. So suppose
fe B[R] is nonnegative. Then

Joorf et o X =Xpi gy ooy X b oo A X X,) dAy (%) ()
= {. _ff(¢(’1)+ F )= Pt g)y s U @(t)— (1)
Iy In
dmy(ty)...dm(t) = | f(D()dm, (1)
Ay

<67 [ () |det &' (1) dmyy (1) =0"" § fdmy(y).

I ] bi !
1 (,/l:ll J

=

J

This is enough to establish (3).

§3. A generalization of Theorem 3 when [ = 1. The purpose of this
section is to prove the following proposition. Once again G is a locally
compact abelian group with Haar measure m.

ProrosiTionN 4. Suppose that K,, ...
suppose that the set

,» K, are compact subsets of G and

{00 = X2, %1 = X3, 00y X, = x,): xe K|
has positive Haar measure in G" ', Then there is & > 0 such that

Im(E) < [ m(K;+E)
Jj=1

Jor any m-measurable E < G such that each K i+ E is m-measurable. Thus if K
= |J Kj, then
j=1

51/nm(E)1/n m(K+E)
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Proof. The proof is somewhat analogous to the proof of Theo-
rem 3. We will produce a nonzero positive Borel measure pu on

[T K; =G" such that the inequality
j=1

(12) Ij(;[ngx(x—xx)--‘g.,(x~x,.)dﬂ(x1, <oes X dx| < TT llgilly
y j=1
holds for gy, ..., g,e ' (G). (Note that this is (2) for p=C=1) The
proposition will then follow by taking g; to be the indicator function of
—E-K; as in the proof of Proposition 2.'
Making the change of variable x — x+x; shows that (12) is equivalent

to the inequality

”91 (x) § galxc+x;—x2)gs(x+x;~x3)...

i K
A
"gn(x+x1_xn)d#(xb )dxl H ”gj”l
This inequality will hold if we can choose p so that
[ fxy—x,, Xy = X3y oo Xy — X dpu(Xy, ..., Xy)

"K
P

is equal to the integral of f over {(x; —Xz, X; — X3, ..., X; —X,): X;€ K;} with
respect to the product Haar measure on G"~* for fe I! (G*™'). That x can be
so chosen is a consequence of the following simple lemma.

LEMMA. Suppose that X, and X, are compact Hausdorff spaces and that
h: X, - X,.is a continuous mapping of X, onto X,. If u, is a finite Borel
measure on X,, then there is a finite Borel measure y; on X, such that p,
=y, oh in the sense that

[gdp;, = [gohdy,
X2 X1

for continuous functions g on X,.

Proof of the lemma. The lemma is certainly true if u, is a discrete
measure. In general, let {4}},.s be a net of discrete measures each.of which
has total variation < that of y, and such that

fgdus > [gdp,

for continuous g on X,. For each « let 4 be such that uj = pjoh and
such that the total variation of 4§ is equal to that of 5. Then let w; be

4 — Studia Mathematica LXXXIIL2
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a weak* limit of some subnet of {4} )y in the Banach space of finite Borel

measures on X, regarded as the dual space of the space of continuous

functions on X,.
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Holomorphic' functions of uniformly bounded type
on nuclear Fréchet spaces

by
REINHOLD MEISE (Disseldorf) and DIETMAR VOGT (Wuppertal)

Dedicated to Professor Dr. H-G. Tillmann
on his sixtieth birthday

Abstract. It is studied under what conditions every entire function on a given nuclear
Fréchet space E (resp. every holomorphic function on an open polycylindrical set P < E) js of
uniformly bounded type. Necessary as well as sufficient conditions (resp. a characterization) are
given in terms of the invariants (LB”), (Q), (€}) known from the theory of linear operators
between Fréchet spaces. A holomorphic characterization of nuclear Fréchet spaces with (£3) is
presented and also examples and applications.

For a complex locally convex space £ we denote by H(E) the vector
space of all entire functions on E, i.e. of all continuous complex functions on
E which are Giteaux-analytic. An entire function on E is called of uniformly
bounded type if it is bounded.on all multiples of some zero neighbourhood
in E. By H,,(E) we denote the linear space of all entire functions on E which
are of uniformly bounded type. Colombeau and Mujica [4] have shown
H(E) = H,,(E) for each (DFM)-space E, while a classical example of
Nachbin [16] gives H,,(E) & H(E) for the nuclear Fréchet space E = H(C).
In [14] we have shown that a nuclear locally convex space E satisfies H (E)
= H,, (E) if and only if the entire functions on E are universally extendable
in the following sense: Whenever E is a topological linear subspace of a
locally convex space F with a fundamental system of continuous semi-norms
induced by semi-inner products, then each fe H(E) has a holomorphic
extension to F.

In the present article we investigate necessary as well as sufficient
conditions for nuclear Fréchet spaces E to satisfy the relation H(E) = H,, (E).
We prove that this relation defines a subclass which contains all spaces with
property (£) and which is contained in the subclass of spaces with property
(LB”). The properties ({3) and (LB*) have been introduced and investigated
in Vogt [25], where it has been shown that (&) is strictly stronger than
(LB ). It remains open whether the relation H(E) = H,,(E) defines a new
linear topological invariant which is inherited by quotient spaces or equals
one of the invariants (LB*) or (). :
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