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Abstract. It is proved that every infinitely divisible probability measure on
a separable Banach space I has a representation of Khintchine’s form if and only if B
is a space of cotype 2. This includes in particular results for the LP spaces, I < p <2
The converse Kolmogorov inequality is generalized to the case of random vectors.

1. Introduction. Khintchine’s form of the Lévy-Khintchine canoni-
cal representation of the characteristic function of an infinitely divis-
ible distribution in R' associates to every such distribution x a unique
triple (2, a, »), where xy is a real number, ¢ is 2 non-negative real number
and » is a finite non-negative measure satisfying »({0}) = 0 such that

(1) aly) = expfiny —a(y*2) + [E(z, y)v(do)]  tfor every y e Y,

where

1422 . )
Ko, 9) = L2 [exption) ~1- 7

1+

] for 2 #0, y e R!

(it is irrelevant how K (=, y) is defined for z = 0).

In Section 4 of this paper (Theorem 4.2) we prove that if B is a sep-
arable Banach space of cotype 2, then every infinitely divisible probability
measure on B has a unique representation which is the natural general-
ization of (1); and, conversely, if a given separable Banach space is such
that every infinitely divisible probability measure has a representation
of the form (1) (suitably generalized), then the space is of cotype 2.

* Part of this research was carried out while the first-named author was at
the Departamento de MatemAaticas, Facultad de Clencias Exactas v Naturales, Uni-
versidad Nacional de Buenos Aires, Argentina.

** While carrying out this research, the second-named author was supported
by a fellowship of the Consejo Nacional de Investigaciones Cientificas y Téenicas,
Argentina.
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In broad outlines our proof is patterned after Khintchine’s proof
for the one-dimensional ease ([8], p. 76); the crucial step is the construe-
tion of the measure . However, the infinite-dimensional situation presents
gome gerious difficulties, centered around proving the relative weak
compactness of certain sebs of measures (Theorem 4.1). The basic results
which make it possible to handle the weak compactness problems are
proved in Sections 2 and 3. Section 2 confains some general regults on
infinitely divisible probability measures on a separable Banach space.
In Section 3 we generalize an important inequality of Kolmogorov (see
e.g. [4], p. 117) to the case of Banach gpace-valued random vectors;
this result is of independent interest.

The converse part of the representation theorem (Part (2) of The-
orem 4.2) follows easily from resnlts of Maurey and Pisier [15].

We will now make some remarks on the connection of our work with
other results in the literature. Theorem 4.2 of the present paper contains
Varadhan’s representation theorem in the Hilbert space case ([19]; see
also [16], Chapter 6, Section 4); our techniques are different from Varad-
han’s in several important points. Very recently, Dettweiler ([6], Satz 2.5)
has obtained a weak form of the Lévy-Khintchine formula valid for
infinitely divisible measures on locally convex spaces(l); in this result
the information on the “generalized Poisson” part is less specific than in
our Theorem 4.2 (as should be expected, in view of part (2) of Theorem 4.2).
Satz 2.5 of [6] is based on the decomposition of an infinitely divisible
measure as the convolution of a Gaussian measure and a “generalized
Poisson” measure (Satz 1.9 of [6]), essentially due to Tortrat ([18] and
[18a]). Our work is completely independent of these results; we remark
in passing that we do not even use the one-dimensional Lévy-Khintchine
formula. More or less simultaneously with the final formulation of the results
of the present paper, Araujo and Giné [2] have obtained a representation
formula equivalent to Theorem 4.2. Their approach centers around the
problem of the integrability of Lévy measures (previously studied by
Araujo in [1]). The method of proof of the representation formula in [2]
is based on Tortrat’s decomposition and is technically different from our
work, although it uses in an essential way Theorem 3.1 of the present
paper.

We refer to [3] and [16] for definitions and results on weak conver-
gence and compactness, tightness and characteristic funetionals of prob-

(*} A similar result in the case of separable Banach spaces appears in A. de Ara-
ujo’s doctoral thesis, Department of Statistics, University of California at Berkeley,
1974. (See also J. Multivariate Anal. 8, 4 (1978), pp. 598-613.)
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abilify measures on Banach spaces. All measures will be defined on
the Borel o-algebra of a separable Banach space B; for z ¢ B, 8, will de-
note the probability measure supported by {z}. If X is an B-valued random
vector, its distribution will be denoted by £ (X). The symbol N will denote
the set of natural numbers.

2. Infinitely divisible measures in Banach spaces. Let us recall that
a probability measure u on a separable Banach space B is infinitely divisible
if for every n € N, there exists a probability measure u, on F such that
#n = u (v* denotes the nth convolution power of a finite measure »).
LimaiMA 2.1, Let i be an nfinitely divisible probability measure on a se-
parable Banach space B. Then
(@) fi(y) #0 for all y e B,
(b) There exists a unique funciion @: E' - C such that
(by) &(0) =0,
(bs) @ 1s sequentially w*-continuous,
(bs) o = exp®.
Proof. (a) Let g, be such that u) = u, and let v, = p, *f,, v = p*j.
Then %, 0, » > 0 and ¥, = »™ Tsing an elementary inequality,

(=2, 0n + 7)) < 2[L =2, (1) ]+ 2 [L =9, (32)]
or

="y +y) 1 < 2[1 =97 (y) 14+2 [1 =5 (3,)]

for y,,y, e B'. Since #(y) >0 implies limvY¥"(y) =1, it follows that
n

G ={y:p(y) 0} ={y: % (y) >0} is a norm-open subgroup of E';
since 0 €@, it follows that G = F'.

(b) Fix y € B, and define g,: R'~ C by g,(t) = p(ty) (te BY). By [4],
D. 241, there exists a unigue function 1,: B'~> € such that 1,(0) = 0, 4,
is ecintinuous and g, = exp(4,). Define ®(y) = 1,(1). Then @(0) =0
and u(y) = g, (1) = exp[D(y)] (y € B). .

We show now that @ is sequentially w*-continuous. In fact, y, =y
implies poy;*3 uoy~!, hence 0y, (1) = @(ty,) = (woy;")" (t) converges
to (uoy™) (1) = &(ty) = o,(f) wniformly en compaet intervals of R
By [4], p. 242, it follows that D(y,) = Ay, (1) converges to A,(1) = D(y).

To prove uniqueness, let @,, §, be two functions satisfying (b,),
(bs), (bg). Then for all y e E', exp[®,(y)] = exp[D,(y)], which implies
Dy (y) — Dy (y) = (2i) ke (y), with k(y) an integer. The function % is norm-
continuous and %(0) = 0; hence k(y) =0 for all y e '. W
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Let us remark that in part (b) of Lemma 2.1 we have only used the
fact that & does not vanish (the infinite divisibility of u is not otherwise
relevant).

COROLLARY 2.1. Let u be an infinitely divisible probability measure on
a separable Banach space. Then for each n € N, u has a unique n-th con-
volution root.

Proof. Assume u% = y; then i = pi. Since neither & nor g, vanish,
there exist unique functions &, @, satisfying (b;) and (b,) of Lemma 2.1,
and such that i = exp®, i, = exp®,,. It follows that n®, = &; hence
Ug = exp[@/n]. This proves the uniqueness of u,. M

We recall the following result, to be used in Lemma 2.2: if {z,: n e N}
is a sequence of probability measures on a separable Banach space ¥ such
that (1) {g,: n e N} is relatively shift-cqmpact and (2) &, converges uni-
fonnly on the balls of B’ to a function g, then there exists a probability
measure g on F such that g, = pand g = g. (This is proved as Theorem 4.5,
Chapter 6 of [16]

Lenvwra 2.2. Let u be an infinitely divisible probability measure on o separ-
able Banach space, and let u, be its m-th convolution root (n € N). If p is
o positive infeger, then {uf: ne N, ke N, k< pn} is relatively compact
for the weak topology.

Proof. Let & = {uf: neN,keN, k< pn}. Since pk+pulm " = yon

={un)? = u®, it follows from [16] (Theorem 2.2, Chapter 3) that & is
relatively shift-compact. Let {y jeN} be a sequence in . Since
(k;/n;) < p, there exists a subsequence (k; /n;) which converges to a real
number te [0, p] Sinece (u¥)" = exp[(k/n)P] (where & is defined as
in Lemma 2.1) and @ is bounded over the balls of %, it easily follows that
(y ")" converges to exp[t®] uniformly on the balls of Z'. By the rosult
quotcd above, there exists a probability measure » such that » = exp[tP]
and uki i, converges weakly to ». This proves that & is relatively weakly

compact. M
Let us recall that if » is & finite mgned measure on & separable Banach

o n
space, then the exponential of » is defined by expy = 1—1’ where

n=0
»° = &,; the series converges in the total variation norm.

THEOREM 2.1. Let p be an infinitely divisible probability measure on

@ separable Bumach space, and let u, be its n-th com;olutwn root (n € N).
Then

(a) sy > 8 (n > oc0),
(b) exp [n(u,— 8)] > p (1> o).

Proof. (a) Using the expression f, = exp[Dfn] (where @ is as in
Lemma 2.1), it is readily proved that g, -1 (n— co) uniformly over the
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balls of E'. Since u; = u, it follows from [16] (Theorem 2.2, Chapter 3)
that {u,: n € N} is relatively shift- compact By the result quoted before

Lemma 2.2, we conclude that u, = 8.
(b) Let A, = exp[n(p, — &)1 We will prove
(I) L, (1) = pu(y) (% — o) for ecach yeB’,
(IT) {].n: neN} is tight.
Tt follows that A, = g (1 - o).
To prove (I), observe first that 1, — exp [n(g,—1)] —exp[nx
X (exp[@n]—1)].
e have, for y e B’
§www
L

[nfexp [®(y)fn]—1)—~B(y)] = iﬂ o0

k=2

“22 @k, < n”lexp(|9(3))).

Therefore, 1,(y) = exp[®(y)] = f(y) for each y € B’ (in fact, the con-
vergence is uniform on the balls of E).

For the proof of (II) we shall need the following elementary fact:
n k
limexp( —-11)2? =1. To prove it, let {&: j e N} be independent
n—00 =

random vauables with (&) = Poisson with parameter 1 (je N), §, =
_STL'EJ-. It is a consequence of the weak law of large numbers that for

=1
Ja.ny 2>1, P[S,/n<<x]~1 (n— o0). But #(8,) = Poisson with para-
meter #. Therefore, as # — oo

exp( Y’—_P[s <on]-1.

By Lemma 2.2, for any n<: 1 there exists a compact set K < B
such that upf(K)> % for any pair (n, k) of positive integers such that

2n L

7
% < 2n. Choose n, 0 that # > n, implies exp(—n) Z T > 7. Then for

nz Ny

Uk
B .
In(E) = exp(—m) D'~ uk(E)
k=0
n %

nF N
> exv(—ﬂ)ziruﬁ(K) > 2.
k=0

The proof that {4,: » € N} is tight is completed by a standard argument. M
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Remark 2.1. We shall not use in the sequel the full strength of The-
orem 2.1 (b). We include this result because of its obvious interest: it
provides a canonical way of expressing an arbitrary infinitely divisible
probability meagure as the weak limit of a sequence of measures of ex-
ponential type.

The following result(®) (which will not be used in this paper) may
be proved in a similar way.

THEEOREM 2.2. Leét {,: n € N} be a sequence of probability measures
on a separable Banach space. Let {k,: n e N} be a sequence of positive in-
tegers such that k, - oo. Suppose {uf: n e N} is relatively compact. Then

(&) By i 60 (9?:—)- oo):

by If p, is symmetric (neN), then {exp[k,(u,—06)]: neN} is
relatively compact.

Remark 2.2. Let {u,;: neN, j =1,..., %)} be a triangular array
of probability measures on E. It is well Jnown that the relation between
weak compactness and weak convergence properties of {[]p.: n e N}

7
and the corresponding properties of {expL_Z' (= 80)]: m e N} plays a key

M

role in the general central limit problem for. triangular arrays; this fact
has been emphasized in [14]. Theorem 2.2 (which deals with the case of
identically distributed rows) is of some interest in view of a counterexample
of Le Cam ([14], p. 240) for general triangular arrays.

Our next proposition generalizes an inequality in Feller’s book ([7],
p. 149) and is essential for the proof of some weak compactness results
(Theorems 2.3 and 5.1). Let us recall that a generalized seminorm g on
a real vector space H is a function ¢: F—[0, co] such that g(z-+y)
< (@) +aqly), qz) = g(2) (e B,y e B, 1e R,

Leanva 2.3. Let B be a separable Banach space, and suppose q is a mea-
surable generalized seminorm on E. Let {Xj J=1,..., 0} be independent

symmetric B-valued random wvectors, 8, = Y’ X;. Then for every t > 0 such
J
that P[q(8,) > 11< (1/2),

M Plg(X;) > 11< —log (1—2P[g(S,) > t]].
=1

Proof. Let Ak=[!Z(Xj)‘<ti j:'l:'-':k_l; Q(Xk>>t]7 A =
[ sup ¢(X;)>t]. Then {4;: k=1,...,n} is disjoint and 4 = (JA4,.
k

1<k<sn

Fix &, and let Z = 2X,—8,. Then [¢(8,) <t]1N[q(2) < 1] = [¢(X) < 1],

(*) A. de Araujo communicated to us that he was independently aware of this
fact.
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and consequently
(1) 4, = (AN [g(8,) > tlu{4,n[¢(2) > 1]).

Let ¥, = —X; for j #F, =X, for j =k The symmetry and in-
dependence of {X;: j =1,...,n} implies: £(¥,,...,Y,) = L(X,,...
X,). Observe that 4, =[¢(¥)<t, j=1,...,k—1; ¢(¥,)>1] and
n
Z = 3 ¥;; it follows that P(4,.0[g(8,) >t} = P(4,n[g{Z) > t]), and
)

we -obtain from (1)

P(4) <2P(4;n[g(8,) > ]}
Adding over %,
2) P(4)<2P[q(8,) > 1].
Now

P(4) =1—P[supg(X,) < 1]
k
=1-[]Pla(xy <1
k

> 1—exp(— D Pla(Xy) > 1))
3

and therefore

(3) _}_ [¢(X) > 1< —log(1—P(4)).

The desired inequality follows from (2) and (3). M

TaeoREM 2.3. Let u be an infinitely divisible probability measure on
a separable Banach space, and let p,, be its n-th convolution root. Then there
exists a compact, convex, symmeiric set K such that {n ,un(Kcn( ) nelN }
is relatively compact.

Proof. Let » = px [, », = u,*k, (n € N). For each n €N, let {X,;:
j=1,..,n}and {X,;: j =1,...,n} be each an independent set of E-
valued mndom vectors with .SP(X,,,) = Z(X,;) = p,; assume also that
the pair of sets {Xm _7 =1,...,n}and {X,;: j=1,...,a} is independent.
Let Sn =.§‘an3 n Z-an! ‘then g(sn) = g(sn) = M (XM—X;])

3

=3 (j=1,...,m) aud 2(8,—8,) = »

Let € be a compact, convex, symmetric set such that u,(0) = (1/2) for
all n e N (recall that {x,: » € N} is tight by Theorem 2.1 (a)). Let D be
a compaet, convex, symmetric set such that »(D°) < 1/4, and define K =
O+ D. Define 1, = npn(K”n(')) (n € N); we will prove that {i,: n e N}
is relatively compact.
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By the independence of X,; and Xy,
(1/2)P[an ¢ K] < P[X;u € G]P [an¢ K]
= -P[-X;u € 07 Xnid-: -K]

< P[—an—x;jé 'D]

Let ¢ be the Minkowski functional of D. Applying Lemma 2.3, we
have for all neN

A0l = np, (K = ZP[XM'¢ K< ZZ'PEXM _X;U¢ D]
i=1 j=1

— 2 Y P[g(X, — Xiy) > 11 < —2log(L —2P[q(5,~5,) > 1])
j=1

= —2log({1—2v(D%) < 2log2.
We have shown that sup|ii,] < co. To prove the tightness of
n

{2,: we N}, let ¢ > 0 be given, and let @ be a eompact convex symmetric
set such that »(Q°) < (1/2) (1—exp(—(a/2))). Proceeding as above, we
obtain, for all neN

2@ +0)) = nu[E 0 (Q+0Y)
< nim{Q+07) < .

Remark 2.3, There are other methods of proving Theorem 2.3.
One way is to apply results of Le Cam [14], besed on a concentration
inequality. A modification of the proof of Theorem 4.3, Chapter 4 of [16],
combined with Theorem 2.1 (b) of the present work, also yields an alterna-
tive proof. Our approach is a generalization of a method of Feller
([7], p. 309); for the present purposes, it seems to be simpler and more
direct than either alternative we have mentioned.

3. The comverse Kolmogorov inequality for Bamach space valued
random vectors. Let E Dbe a separable Banach space, 1 <{p < oo, Leb
LP(F) be the vector space of (equivalence classes of) E-valued random
vectors X such that B|| X|]? < oo, endowed with the norm | X, = (B|X [RES

The following inequality (Theorem 2.6 in [9]) is easily proved. It
plays a erueial role in Theorem 3.1.

ProprosITION 3.1. Let E be a separable Banach space, 1 < p < oo.
Let X, Y be independent B-valued random vectors, X € L?(E), ¥ e L?(B),
H(X) = 0. Then

BiYIF < EIX+ Y.

THEOREM 3.1. Let B be o separable Banach space. Let {X;: j =1, ..., 1}
be independent E-valued random vectors such that, for some ¢ € [0, oo}, [ Xl < ¢
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13

as. ond B(X;) =0 (j=1,...,0). Let 8, =3 X; (k=1,...,2n), p>=1.
j=1
Then for every t>0 .

(*) -P[ sup “Sk” > t] > 9l-p [1 (t*'—(:)

1<k<sn

P4 2(1 -2l
B8, 17 ]
Proof. Let 4 = sup {iS0>¢t], 4, =1[iISlI<t for j=1,...

Ik

cory B =15 I8¢l > ¢]. Then

~d

BOSPLY = X BSIPLy) = Y B8, + (S, —SpIPLy,)
k=1 k=1

7

< D B((1841+ 18, — S)PL,)

=1

<27 Y BISUPLy) +2771 X B8, — 87 L,).
k=1 k=1

Since [IS,—l <, 1 X:l < e] < [ISel < t+c], it follows that

D BUSI L) < (40 D P(4,) = (14 0)°P(4).

k=1 k=1

On the other hand, by the independence of I, and (8,—S8;) and Prop-
osition 3.1, we have
B(I8,—8ilPL,) = (BIS, — S,l") (B (L)

< BIS,|P-P(4y)
and therefore

k3

D B8, — SlPLy) < BS,IPP(4).

k=1
Thus

B(I8,IPL4) < 27 [(t+¢)? + BIS,IP 1P (4).
Since obviously B(||S,IIP1c) < t7(L—P(4)), we have

BIS,I? < 7 +[2771 (t4+0)? + 277 B |18, P — t*1P(4).

Inequality () follows now by elementary manipulations. W
COROLLARY 3.1. Let B be a separable Banach space. Let {X;: j =1, ...
...y 0} be independent E-valued symmetric random vectors such that for some

ce[0, ), IX;I<e as. (f=1,...,n). Let 8, =3X;, p=1. Then for
j=1
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everyt >0
L[, @+ _21-,.)]
> 927P|1 .
) POS>a32] AT

Proof. According to P. Lévy’s inequality for Banach space valued
symmetric random vectors ([13], p. 12), P[ sup Sl > t]1 < 2P[|I8,] > t].

I<k<n
Inequality (#+) follows at once from this fact and Theorem 3.1.

Remark. Let g be 2 continuous seminorm on a separable Banach
space B. Then (x) and (sx) hold for g instead of [|-[, with the same proof
(using the appropriate versions of Proposition 3.1 and P. Lévy’s in-
equality).

4. Infinitely divisible measures in spaces of cotype 2. Let {g;: j e N}
be a Bernoulli sequence; that is, {5} is a sequence of independent random
variables with P[g; = 1] = P[g; = —1] = 1/2. We recall that a Banach
space H is of cotype 2 if there exists a constant ¢ > 0 such that for every
finite set {xl, w8} € B,

2 Izl < CH| Zs, a

F=1
(See [157.)
If B is a separable Banach space of cotype 2, there exists a constant
M>0 such that if X;eI?(B), B(X) =0 (j = 1 ..,n) and {X;:
j=1,...,n} are mdependent then :

Z‘Eux,.uz < MB| ﬁjxjﬂz.
j=1 iz

(This is proved as Theorem 2.1 of [10].) It is known that the L? spaces,
1< p <2 are of cotype 2.

Let E be a separable Banach space of cotype 2. If the hypotheses
of Theorem 3.1 are fulfilled, then inequality () implies (for appropriate )

@ ZEHXjIF < M[(t+0) +(2/2)](1~2P[ sup [[8,] > ¢])~
i=

<k<n

analogously, if the assumptions of Corollary 3.1 are fulfilled, then in-
equality (*+) implies (for appropriate f) .
(IT) 2, BIX;IP < M[(+0) +(£12) (1 —4P[[I8, ] > 8))"

i=1

THEOREM 4.1. Let u be an infinitely divisible probability measure on
a separable Banach space of cotype 2, and let p, be its n-th convolution root.
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Define the measure v, by

lidl
14 |l

v (da) = n u, (dx).
Then {v,: n €N} is relatively compact.
Proof. We will show that ‘;up o)l < oo and {»,: ne N} is tight.

First we prove that for any » € [0, oo), itB, ={zeck: |z}

@) supn [ oI pp () < co.
Bl‘

n
The measures o, = (1/2)(u,+5,) are symmoctric and the sequence
{o?: m & N} is relatively compact. In fact, {uf: k<<n,keN,n N} and
{fE: L <n, ke N,neN} are relatively compact by Lemma 2.2. If K

is a compact set such that (uf+a!) (K%< e for all neN, k<, h<n,

then
3 n
-k — n
op (K% =27 ”2(") Mn*llz WE®) < 62 2 (k) = ¢.
k=0 =0
For each neXN, let ¥,; (j = 1, ., 7) be independent F-valued random’

vectors with #(X,,;) = o,, T,= Z Y,;. For» > 0, define X = ¥,,1 B ¥ni)y

8 = Z Xy). Since {X{: j = 1 .., n} are independent and symmetrie

nj e

and I[XﬂJ | <7 a.s., we obtain from inequality (II)

2) [ Il p(de) = f lelP o (d) = nB | X
BT

= ZEu W< ML)+ (@)L — 4P LISV > )7

whenever > 0 satisfies P89 > t]< 1/4.
Since #(T,) = o, we may choose r arbitrarily large fmd such that
for all » e N, P[T,ll > r] <1/24. Then
PLSOY > r1< PSP > r and [Tl <y, § =1,y 0]+
+P[ sup | ¥l >r]<3PLT,N>r]<1/8

I<i<n

by inequality (2) in the proof of Lemma 2.3. By puting ¢ =1, we obtain
from (2):

supn [l p, (de) < M[@r) +(r%/2)]-2 = M (9r%).
n Br

This proves claim (1).
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By Theorem 2.3, there exists & compact (convex, symmetric) set
such that {nu,(E°N(+)): n e N} is relatively compact. Choose r so that
K < B.. Then

el

1+ el

o)l =

waa(d0) <o [ o i (@0) 4110, BS)
B, }

and consequently sup [y, << oo.

To prove the tightness of {»,: # € N}, let D be a compact set such
that np, (E°NnD°)y<eforallneN. If @ = KUD, then for all n e N

[y

'Vn(Qc) = 1~|—”.’1’/‘]|2
0

iy (G < M (@) < 2. M

Remark. An alternative proof of claim (1) in the proof of Theorem 4.1
may be constructed by using Theorem 2.1 (b) and following the line of
proot of Theorem 4.6, Chapter 6 of [16]. The crucial inequality (II) above
must be used at the appropriate point.

The following lemma is well-known; it follows from Prohorov’s exten-
sion theorem for cylinder measures ([3], Bxposé No. 7) and the fact that
on a separable Banach space every probability measure is & Radon mea-
sure.

LeMwA 4.1. Let u,v, A be cylinder measures on a separable Banach
space and assume p = vk A.

(1) If v and A are symmetric and u is a measure, then v and A are measures.
(2) If w and v are measures, then Ais a measure.
Let B be a separable Banach space. Define

1+ [l
fleif?

_ 1, Y
1+ o
0, z=0,yel.

For fixed y e B/, K(-,y) is bounded; it is continuous on {0} It
dimE = 1 (to simplify, assume B = R'), then for any y e B lim K(z, y)

2—~0
x#0

exists (and is equal to (—y2/2), which is really the natural definition of
K(0,y) in the one-dimensional case); however, the limit does not exist
for y # 0 if dim¥ > 1. This explaing a slight technical complication in
the proof of Theorem 4.2, as compared to Khintchine’s proof in the one-
dimensional case (see [8], p. 76).

explice, ) —1 ] 220, ye B
K(‘T‘yy) = [ Y ! ! ’

Leanva 4.2. Let » be a finile non-negative measure on a separable Banach
space B, such that »({0}) =0. Let &(y) = exp [ [K (2, y)v(dw)], y € B".
Then ®(0) =1 and D is positive definite and sequentially w*-continuous.
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Proof. It is obvious that &(0) = 1; the fact that @ is sequentially
w*-continuous on E’ follows from Lebesgue’s dominated convergence
theorem.

To prove that @ is positive definite, let {1,: n € N} be a sequence
of non-negative measures of finite support disjoint from {0} such that
A,~>v. Bach 4, is of the form 4, = 3 a,; 8, for certain a,; € B¥, z,; € B —{0}.

2

Let
1 + “m'njllz)
- — E x._zmﬂ. ni = OQuil————=— .
2y - H n;” 7y /31 J( “wnJHZ

Then

(exP[Zﬂn,- (84— 60)] * 5%) . )
7

7 .
= exp [Z anj(exp (3 <@y, y3) — 1=
i

©{Dujs Y ) 1A+ [l ]
1+l ) g l?

- eprK(m, y)ln(dw)] . eprK(w, y)v(dw)]

for each y € B’, since »({w: K (-,y) is discontinuous at #}) = 0. Sinee
positive definiteness is preserved by passage to the limit, the result follows.l

THEOREM 4.2. Let E be a separable Banach space.

(1) If B is of colype 2, then for every infinitely divisible probability
measure u on B there exist z, ¢ B, o centered Gaussian measure y on B and
a finite non-negative measure v on B satisfying v({0}) = 0, such that

(a) There ewists a probability measure ¢ on B with o (y) = exp [[K (v, y) X
xv{dw)], y € B'.

(b) u = 6%*'}/*9.

The triple (xy, v, v) (subject to the stated conditions) is unique.

(2) Conwversely, suppose that for every infinitely divisible probability
measure u on B there ewists @ triple (%, v, v) with the stated properties such
that (a) and (b) hold. Then E is of cotype 2.

Proof. (1) We will use an auxiliary function B: # x B’ — O, defined

by

B(ﬂ.‘, ’!/) =
l“i‘”-””‘l . ’L(éﬂ, y> . [<.’17, y>|2 ] . o E"
T -[exp(z@v,y))—l~————1+”m”2 +(1/2) Tt 250, ye

0, z=0, yek'.
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B has the following properties: for y e B, B(-, %) is a bounded conti-
nuous funection on ¥, Bz, —y) = B(—,¥) (xe ¥,y e B') and

<z, oI
lelf* (1 =+ Jlf)
Let u, be the #th convolution root of u, and let

&, 9 Ka, 1>
a I A S L
T %) 0 = |G R

(1) B{z,y) = K(z,y)+(1/2)

Saly) = ni,(dr)  (y e B'),

P
(da) = s i (02).

Then one ean write, for all y e B
) 7 [, (y)—1] = [[exp(i{w, y)) —1]nu, (dz)
=i, () — (1/2)g. (%) + [ B(, y) v, (dw).

Therefore
7 [ (9) =11 = 2 [ (— ) —1]
= —if,() = (112)gn () + [ B(2, y)7, (da)
and
3) wl(pntFa)” (1) =21 = —g,(9)+ [B(2,9) (3, + 7,)(dw) .

Theorem 2.1 implies that exp [n (#,(y) ~ 1]~+ &) (y eE'), hence
exp[n((yﬂ+y,l) (#)—2)] — (u*F)" (y). By Theorem 4.1, there exist

.subsequence {v,,k} of {»,} and a finite non-negative measure »' on E
such that »,, 2 Consequently V7, ”mc" '+ and from (3) we obtain,
letting % — oco:

{4) g(y) =limg, (y) exists

k
and
®) (u41)" (4) = exp[ —g(y) + [B(2, y) (" +)(da)].
Let vy =" —+/({0})5,. One can write
(6) [Bl@,y)v'(da) = [E(z, y)»(do)+(1/2)h(g),
where

Kz, y)I?
h =
W = [
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Let y = g—h. We will prove now that w(y)> 0 for all ye E’ Fix
y e B’ and let «: E - R! be the function

Kz, y>|?
wlw) = R+ em’ “7 Y
0, z=0,.

Then % is lower semicontinuous, bounded and

9. (%) fud h{y) :fudv'.
Hence

= fudv’ < limfutlv,% =limg, (¥) = g()
N E

. W
smce Vg, 7

We obtain now from (5) and (6)

(M (xg)" (9) = exp| —p(¥) + [K (2, 9) (v +7) (da)].

Now exp[—y/2] is the characteristic functional of a centered Gaussian
cylinder measure y on E; also, by Lemma 4.2, there exists a cylinder
measure ¢ on B such that 0 =exp[[K(z, - )v(cl:v)] Equation ™). ‘implies
that the cylinder measures y#j, yxy and o*p satisfy

Nl = (y*y)*(0*0).

Since w7 is a measure on F, it follows from Liemma 4.1 that y*y and
e+ are measures on K. But yxy = y(277%(-)); hence y is a meagure
on E. ‘ .

Let us return to (2). Passing to the limit along the subsequence {n,}
we get, by a well-known elementary argument: there exists a lmear form f:
E' — B' such that f, (y) - f(y) for all y ¢ B’ and

i(y) = exp[if (1) — (12)9(y) + [ B(o, y)»(dz)] .

or N I RS
(8) sly) = exp[ify) ~ 1Ry () + [ K@, y)v(da)]. -

Now 4, exp[—v/2] and g are sequentially w*-continuous (the first two,
because they are characteristic functionals; the third, by Lemma 4.2).
It follows that f is & sequentially w*-continuous linear form on E’; there-
fore there exists 2, € B such that f(y) = (m.,, Yy, y e B ([17], p. 150).
Equamon (8) implies that the cylmdel measures ;5, 6%, Y and g satlsfy‘

= (4, *y)*e

5 — Studia Mathematica LXV12
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Since z and (4, *y) are measures on B, 50 is ¢ by Lemma 4.1. This proves
the existence statement of the theorem. We omit the proof of uniqueness;
it is earried out as in ([16], p. 110). Let us remark that the proof of unique-
ness is valid in any separable Banach space; the cotype 2 condition is not
used.
(2) Let o be the Poisson distribution with parameter 1, and let

{¢;: j e N} be a sequence of independent random variables with #(o;)
=gx7 (jeN). We first prove: 12’ 0;%; eonverges in T*(H) implies f\j lls; 1

< co. In faet, suppose X = L*(E)— S‘ 0%, p=2L(X), and let
n j=1
4 = 3(85+ 8,y Then
]

i) = []2 ()" ) = exp [ [lexp i<z, ) —114(d0)
=1

= exp| [ K(a,)n(dn)];
where
ldz) = —20 ey
1+l

Since u is infinitely divisible, by hypothesis there exist a point
2o € B, a centered Gaussian measure y on E and a finite non-negative
measure » with »({0}) = 0 on &, such that

(@) = exp [i<ay, 1) —(1/2)p W) + [ E (@, y)v(da)].

The uniqueness of the representation implies 4, = 0, y = 0, » = 7. There-
fore

losl? fo?
2 T+l — fmﬂ(dfv) =n(@) =»(B)< oo

and consequently > |l < oo.
7

By an argument based on the closed graph theorem and analogous
to that given in [10], p. 588, it follows that there exists a constant ¢ > 0
such that for every finite set {#,, ..., 2,} < E,

(9 ;’ ot < 0B || 3 o
=1 =1

In order to complete the proof that is of cotype 2, it is enough to prove
that ¢, is not finitely representable in & ([15], p. 49). For the proof that
(a) = (b) in Corollary 1.2, p. 67, of [15] then shows that there exists a con-
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stant M > 0 such that for every finite set {»,,...,,} = E,

a0 B 3 e < 07| S

Inequalities (9) and (10) show that ¥ is of cotype 2

Suppose now that ¢, is finitely representable in E. By ([16], p. 50,
Remarque 0.2), for every n e N there exists an n-uple (2{™,...,2)
of vectors in B with [z{™}} > 1/2 such that for every sequence (o) in RY,

(11) | 2 g <

Putting «; = a;¢0; With a; € R', taking expectations and combining (9)
and (11), we obtain

< S AR

n i n
o 2
(1) 3 1P < Dl E < 0B || 37 00500 < OB( sup oy 51y
j=1 =1 F=1 1<ji<n

K3

Since H( sup |a; 0;1)* < (Ble.? 3 4])? (p any fixed real number > 2),
1<i<n j=1

& contradiction is obtained by appropriate choice of (a;);.y. M

Note. A complete characterization of the Gaussian covariance o
by continuity properties has been obtained by E. Giné and the first-
named author. This will appear elsewhere.
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Multiply self-decomposable probability measures
on Banach spaces

by
NGUYEN VAN THU (Wroclaw)

Abstract. In the present p:;per we define multiply self-decomposable probability
measures on & Banach space and give a general form of their characteristic functionals.

1. Introduction. This paper is concerned with probability measures
defined on Borel subsets of a real separable Banach space X. For a prob-
ability measure u on X, the characteristic functional g is defined on the
dual space X* by the formula

Bly) = [6vPpaz) (yeX™),
X

where (-, > denotes the dual pairing between X and X*.

Recall that a probability measure u on X is self-decomposable if
for every number ¢ in (0, 1) there exists a probabiliby measure uy, on X
such that

(1.1) By) = pleyli(y) (y e X7).

The problem of describing the class of characteristic functionals of
self-decomposable probability meagures has been completely solved by
Urbanik [8]. In the same paper the author has obtained a general form
of characteristic functionals even for a larger class of probability measures,
namely, for Levy’s measures on X.

We now introduce a concept of multiply self-decomposable probability
meagures on Banach spaces. Let I, (X) denote the class of all self-decom-
posable probability measures on X. For every integer n > 1, let L, (X)
denote the class of all measures g in L, (X) such that for every number ¢
in (0, 1) the component u, in (1.1) belongs to L, ,(X). Every measure
in L, (X) will be called n-times self-decomposable. Further, every measure

in Lo(X):= () L,(X) will be called completely self-decomposable.

n=1
Since every stable measure on X is completely self-decomposable (Prop-
osition 1.9, {3]), the set L, (X) is non-empty.
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