238 J. Stochel
References

[1] Ch.Berg, J. P.R. Christensenand P. Resscl, Harmonic Analysis on Semigroups, Springer,
Berlin 1984.

[2] L. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94.

[3] J. B. Conway, Subnormal Operators, Pitman, London 1981,

[4] M. R. Embry, A generalization of the Halmos-Bram criterion for subnormality, Acta Sci,
Math. (Szeged) 35 {1973), 61-64.

[5] A. Guichardet, Symmetric Hilber: Spaces and Related Topics, Lecture Notes in Math. 261,
‘Springer, Berlin 1972,

[6]1 P. R. Halmos, Normal dilations and extensions of operators, Summa Brasil. Math, 11 (1950),
125-134,

[71 T. kto, Gn the commutative family of subnormal operators, J. Fac. Sei. Hokkaido Univ. 14
(1958}, 1-15.

[8] A. Lambert, Subnormaiity and weighted shifts, J. London Math. Soc. (2) 14 (1976), 476-480,

[9] A. Lubin, Weighted shifts and commuting normal extensions, J. Austral. Math. Soc. Ser. A 27
(1979), 1726, '

[10] P. H. Maserick, Speciral theory af vperator-vabued transformaiions, J. Math. Anal. Appl. 41
(1973), 497-507.

[11] W. Mlak, Dilations of Hilbert space operators (General theory), Dissertationes Math, 153
(1978), 65 pp.

[12] —, Conditionally -positive definite functions on linear spaces, Ann. Polon. Math. 42 (1983),
187-239.

[13] W. Rudin, Rea] and Complex Analysis, McGraw-Hill, New York 1974,

[14] Z. Sebestyén, Dilatable operator valued functions on C*-algebras, Acta Math., Hungar, 43
(1984), 37-42.

[15] B. Simon, The P(p), Euclidean (Quantum) Field Theory, Princeton Univ, Press, 1974,

[16] J. Stochel, Seminormal composition operators on L* spaces induced by matrices, Flokkaido
Math. J. 19 (1590), 307-324,

[171 J. Stochel and F. H, Szafraniec, On normal extensions of unbounded operators. 1, 1.
Operator Theory 14 (1585), 31-55.

f18] B. Sz.-Nagy, Extensions of linear transformations in Hilbert space which extend beyond this
space, appendix to: F. Riesz and B. Sz-Nagy, Functional Analysis, Ungar, New York 1960,

[19] B. Sz-Nagy and C. Foiag, Harmonic Analysis of Operators on Hilbert Space, Akadémial
Kiado, Budapest 1970.

[20] W. Szymanski, Dilations and subnormality, Proc. Amer. Math, Soc, 101 (1987), 251--259.

[21] M. Thill, Exponentially bounded indefinite fiumctions, Math. Ann. 285 (1989), 297-307.

[22] T. T. Trent, New conditions for subnormality, Pacific J, Math. 93 (1981), 459-464.

INSTITUTE OF MATHEMATICS
JAGELLONIAN UNIVERSITY
Reymonta 4, 30-059 Krakow, Poland

Received October 10, 1989
Revised version January 36, 1990

(2613)

STUDIA MATHEMATICA 97 (3) (1991)

Weighted norm inequalities for Riesz potentials
and fractional maximal functions
in mixed norm Lebesgue spaces

by

TORD SIODIN (Umed)

Abstract. We prove a norm inequality between the Riesz potential R, f and the fractional
maximal function M,f in RY, O<a<d. The norm is a weighted mixed Lebesgue norm
Lrs  (R™=R"), where 0 <p,q<co and d=m+n, with weights in 4_,. Our proof makes
extensive use of the concept of independence of weights in A, It is shown that many of the well
known properties of Muckenhoupt weights are true in this more general form, aniong them the
P. W. Jones Factorization Theorem for A4 -weights,

0. Introduction. Let RY be the d-dimensional Euclidean space. The Riesz
potential of order a, 0 <o < d, of a function f is defined by

R f(&) = [lE=n*""f () dn.

For 0 < @ < d we also define the fractional maximal operator M, f(£) by

M, f(&) =sup|QI**~* [ |f ()l dn,
Q

where the supremum is over all cubes Q with sides parallel to the axes and
containing & When « =0 we get the usual Hardy-Littlewood maximal
operator.

Muckenhoupt and Wheeden [MW, Theorem 1] proved that if 0 < p <
and 0 < o <d then

©.1) IR fOIPw(O)dE < CM f{EPw(E)dL,

where w is a weight in the Muckenhoupt class 4, and the constant C is
independent of f. The purpose of this paper is to extend (0.1) to certain
weighted Lebesgue spaces L%, (R%) with mixed norm (see Defiition 1.2).
More precisely, we prove that

(02) ”Raf”p.q,wo,w1 g C HMuf”p,q,WD,WU

where 0 < p,q < o0, 0 < a < d and wy, w, are weights in the Muckenhcupt
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class A, (Theorem 2.1). The constant C is here independent of fand, morcover,
independent of w, and w;, in 4.

Our proof of (0.2) makes extensive use of the notion of independence of
weights in 4, introduced by A. Torchinsky in [T, Ch. IX]. We observe that
several well known properties of A4 -weights hold in this setting (Section 3). In
partlcu]ar this is true for the Rublo de Francia factorization lemma for

A,weights (Lemma 3.5). We prove (0.2) following an idea used by E. Her-
nandez [H] for the Hardy-Littlewood maximal function.

Section 1 of this paper contains our notation and basic definitions. Our
main result (Theorem 2.1) is stated in Section 2 and proved in Sectien 4. The
lemmas necessary for the proof are given in Section 3.

1. Notation and definitions. We consider the d-dimensional Euclidean
space RY = R™xR", with d = m+n. Points in R’ are denoted by £ = (x,s),
n =(y,t) and { = (z,u), where x,y,zeR" and 5,t,ueR". We use ( to denote
cubes in R? having its sides parallel to the coordinate axes. Next we define the
Muckenhoupt classes 4,. A weight w in R’ is a nonnegative and locally
integrable function which is not identically zero.

DerNITION 1.1, Let w be a weight in R%. Then

(i) w belongs to A, if
1017 [ w(&)dé < Cessinfw (),
2 1eQ

for every cube ¢ and C is independent of Q.
(i} w belongs to A, 1 <p <0, if

(lQi"‘({\M(é’)df?)'(in“l gwtf)"“"’"“dé)”"l < C;

for every cube @ and C is independent of Q.
(il) w belongs to 4 if for every 0 < ¢ < 1 there is 0 < § < 1 such that

\E| <41Q| implies JW(ﬁ)df ﬂj"w c)de,

for every cube ¢ and every measurable set E = Q.

The best constant C in (i) and (i) in Definition 1.1 is called the A -constant
of w, 1 < p < oo, A statement which does not depend on the individual weight
w but only on the 4 -constant of w is said to be independent of w in A,,,
1<p<co. Analogously a statement is said to be independent of w in A, il it
only depends on the function d = §(g) in the definition of 4,, and not on the
particular weight w. For general properties of A4,-weights, see [T, Ch. 1X].

In the following we also consider weights and Muckenhoupt classes in R™
and R". These concepts are defined in complete analogy with Definition 1.1.
We let w (&), w(x) and w(s) dencte weights in RY, R™ and R" respectively.
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DerFrviTion 1.2, Let O < p,g < oo and let w, (x) and w, (s) be weights in R™
and R" respectively. Define

1f lpgwanes = (§(F1f G5, )Pwq (x) d)#'Pw, (s) ds) V.

We denote by L22, (R the linear space of measurable functions fin RY with
1S M p.g oy < 0.

When p = q we write {f|,.ow and LE . (R, and w,, w, are dropped
from the notation if wy = w, = 1. The standard reference on mixed norm
Lebesgue spaces is [BP].

Various constants depending on parameters o, f,... are denoted by
cle, B, ..)) and may have different values at different occurrences.

2. The main result. Our main result is the following weighted norm
inequality for the Riesz potential and the fractional maximal function.

THEOREM 2.1, Let 0 < p,g < o0 and 0 < o < d and let wy{x) and w,(s) be
A -weights in R™ and R" respectively. Then

(2.1) IR, flp.qwows S CUMS |l p.g.wo.wss
with a constant C independent of f and independent of wy and w, in A.

Theorem 2.1 was proved for p = g and 4 _-weights in R? by Muckenhoupt
and Wheeden [MW, Theorem 1], except that C may be chosen independently
of win A4,. However, this follows easily from their proof. In fact, it is the
concept of independence of weights in the Muckenhoupt classes that plays
a key role in the proof of Theorem 2.1 (Section 4). This will also be evident
from the series of lemmas in Section 3.

3. Some lemmas. In this section we give the lemmas needed for the proof
of Theorem 2.1. They are all known, except for the statement of independence
in the respective Muckenhoupt classes, see [T, Ch. IX]. For the reader’s
convenience we state them in a form suitable for our purposes. We begin with
a version of the P. W. Jones factorization theorem.

Lemma 3.1, Let 1 < p < oo and let we A,. Then there are wy and wy in A,

such that w = wow} "7, and the A,-norms of wy and w; are independent of w in
Ay

Lemma 3.1 was proved in [J, Theorem, p. 5117, except for the independence
of win 4,. A careful examination of the more general result in fRAF, Theorem

2] gives the full statement of the lemma, We omit the details.

Lemma 3.2, Let 1 € p < g < oo and let we A,. Then we 4, independently of
win A,

Proof. When ¢ < oo this follows from the definition of the classes 4. For
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g = oo we use Lemma 3.1 and the proof of the Reverse Hélder Inequality in [T,
Ch. IX, Theorem 3.5 and Proposition 4.5].

Our next lemma is a partial converse of Lemma 3.2,

LemMmA 3.3. Let w be a weight in A_. Then there exist 1 <o < w and
0 < C < oo, independent of win A, such that we A, and the A ~constant of w is
at most C.

This result is mainly due to Muckenhoupt [M, p. 104]. It follows from his
proof that the numbers ¢ and C can be chosen independently of w in A .

LeMma 34. Let 1<
R” respectively. Then w(x s)
wo(x) and w(s) in A4,.

< oo and let wqo(x) and w, (s) belong to A, in R™ and

Lemoma 3.4 follows immediately from the definition of the classes 4, if
1 €p < oo, When p= oo it follows from Lemmas 3.2 and 3.3. We have now
come to the key lemma for the proof of Theorem 2.1, It is [RdAF, Lemma,
p. 539], except for the statement about independence of w in 4,, and can be
proved along the same lines. The proof is therefore omitted.

LEMMA 3.5. Let we A, 1 <p < oco.If1 £r < o0 and 1/5 = {1 —r/p| then for
every nonnegative funct:on ueL$, (RY) there exists ve LS, (R") such that (&) <
v(&) and

wed, ifrg
v 'wed, ifp<r

Moreover, 0] < cld,r,p)|ul;., and the A-constants of vw and v 1
independent of w in A,.

w are

4. Proof of Theorem 2.1. Let f, w, and w, be as in the theorem and assume
that f= 0. We begin with the case 0 <p < g < 0. Then r = ¢/p > | and we
define ¥ by 1/r+1/ = 1. Duality now gives

{4.1) IR S I3 g = ([ Rof (6, 8)7w, () dx)iiosw, (s) ds)Pia
= ([ Rof (x, 5y wq (x) dxw, (s)g (s) ds,
for some nonnegative ge L, (R”) with norm one. By Lemma 3.3 therc are
1 <o < coand 0 <M < oo,independent of w, in A, such that w, (s)€ A4, in
R" with A ,-constant at most M. Define p, = Ap and ¢, = Ag, where A > | is
such that p, > . Now we apply Lemma 3.5 to w,(s)ed,, and
1 P

—=1-2=1

P
v q q,
Hence there is v(s) & LY, (R") such that g(s) <

and w (s)v(s) belongs to A,
estimate

: (), o]y, Sclnp, 4, Mgl w,
independently of wy in A, . Then (4.1) yields the

wo (X)W, (s) belongs to A, in R* mdependamly of

icm
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< [T R, P wo (e} w4 (5)0(5) dx ds
< C [ M, fx, s wo()w, (s)e(s)dx ds,
by [MW, Theorem 1] and Lemma 3.2 with C, independent of w, (x) and w, (s)
in A,. Hlder’s inequality gives .
IR/ B asams < CHZ 108 | Mo f s < €, 4, ACY? 1M, f o

which is the desired inequality. This proves the theorem in the case p < g.

For the rest of the proof we assume that 0 < g < p < . In this case we
begin by considering the right hand side of (2.1). Define r by 1/r = p/g—1. By
duality there is a nonnegative function g(s) such that

4.2) M 15 qwoner = § ([ M f (. ¥ wo (x)dx)g (s) " wy (s)ds,
4.3) fo(syw, (s)ds = 1.

IR S113.,w0,1

Choose ¢, 1 < o < oo, as in the first case of the proof and put p, = Ap and
g, = ig, with Ag > 1 and 1> 1. Then
q 4y

and by Lemma 3.5 and (4.3) there exists o(s) such that g(s) <v(s),
[v(sywy (s)ds € c(n,p,q,4) and v(s)"'wy(s)e 4, independently of w, in 4,,.
Hoélder’s inequality and (4.2) now give

IR, S lpsgwanes = {§ ([ Raf 02, 5w (x) dx)P0 () "7 (5)7w (s) ds)

< (P RS 5, 517w, (x) dx) (5) ™2 w, () ds) 2 ([ o (sY w, () ds) P
<m0, 4, A Cy ([ | M, F x5 wo () wy ()g(s) ™" dx ds)*
=c(n,p. 4, N Cy |M, 11l 5. womss

with C, independent of wy(x) and w,(s) in Am This completes the proof of
Theorem 2.1,

Remark. It is an open question under what conditions on the weight w
Theorem 2.1 is true for the more general weighted mixed norms

17 1w = (J (F1F (6, 87w (6, 5) )i ds) He.

1__
=
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Uncomplementability of the spaces
of norm continuous functicns
in some spaces of “weakly” continuous functions

by

PAWEL DOMANSKI and LECH DREWNOWSKI (Poznan)

Abstract. The paper deals with the complementability problem for the spaces of norm
continuous functions (from compact spaces to Banach spaces) in some spacss of weaker-than-norm
{e.g., weakly or weak*) continuous functions. The results obtained are fairly general and strongly
support the conjecture that complementability can occur enly if the spaces in question coincide.

Yntroduction and main results. Throughout, we let K denote an infinite
compact Hausdorff space, X a Banach space, and t a linear Hausdorff topology |
on X which is weaker than the norm topology. Then C(K;X), the Banach
space of all (norm) continuous functions from K into X, is obviously a closed
linear subspace of C(K;X,t), the Banach space of all r-continuous (norm)
bounded functions from K to X. (Of course, both spaces are endowed with the
sup-norms.) This paper is concerned with the following

CoMIECTURE. C(K;X) is not complemented in C(K; X, 1:) unless C (K; X)
=C(K; X, 1).

As vet, we have been unable to verify this conjecture in general. Our main
result in this direction is the following

TueoreM 1. If X contains a t-convergent sequence which is not norm
convergent, then C(K;X) is not complemented in C(K;X,1).

This, in particular, covers the two most important cases.

COROLLARY 1. If X does not have the Schur property, then C(K;X) is
uncomplemented in C (K; X ,w), the space of all weakly continuous functions from
Kito X.

COROLLARY 2. If X is infinite-dimensional, then C (K ; X*) is uncomplement-
ed in C(K;X*,w*), the space of all weak* continuous functions from K to X*.
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