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Abstract. In this paper certain closed Tinvariant subsets R of [0, 1], where T is an

Expanding piecewise monotonic map on the interval, are considered. It is shown that the

Hausdorfl dimension of R is egual to the unique zero of ¢ —p(R, T, —tlog|T')), where p denctes
the pressure.

Introduction. We consider piecewise monotonic maps on the interval, i.e.
T: [0,11-[0,1] is a map and there exists a fnite partition %
={Z,, ..., Z,} of [0, 1] into disjoint intervals such that T|,, is continuous
and strlctly monotone. Furthermore, we assume that T is differentiable in the
interior of Z; and that T" can be extended to a continuous function on the
closure of Z;. We also suppose that there exists some neN with
inf, 0,1 (T (x)| > 1. Actually, we shall consider a bit more general situa-
tion.

We want to calculate the Hausdorff dimension HD,,(R) of perfect T-
invariant subsets R of [0, 1] such that T(Z N R) is an interval in R for every
ZeZ. The main theorem (Theorem 2) shows that HD, (R) is equal to the
unique zero fx of the function ¢ —-p(R, T, —tlog|T") defined on {xeR; x
> 0}, where p(-, -, -) denotes the topological pressure.

By Theorem 11 of [3] the centre of ([0, 1], T) can be written as
UgerL(6) U L, where I is at most countable, L(%) and L., are closed T
invariant subsets of [0, 1], the sets L(%) are topologically transitive, the
topological entropy of L, is zero, and the intersection of two different sets
L(6} or of some L(%) and L, is finite. If R = L(%), then R satisfies the
requirements of Theorem 2. Hence we have HD,, (R) = tg. If R = L., then
Theorem 1 gives HDY,, (R) =tz = 0.

Such a result was shown by H. McCluskey and A. Manning in [6] for a
basic set of an axiom A diffeomorphism of a surface intersected with the
unstable manifold of a point. In the case of a Markov map of the interval
the same proof works, but it becomes simpler than in [5] and [6] (cf. also
[2]). The proof of the formula for a general piecewise monotonic map T
essentially relies on an approximation of T by Markov maps.
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1. An upper. bound for the Hausdorff dimension. In this section we prove
that for any closed T-invariant subset R [0, 1] with no isolated points
there exists a unique nonnegative zero of t —p(R, T, —tlog|T'), which is an
upper bound for the Hausdorff dimension of R. It is easier to consider a
generalization of our systems.

We introduce piecewise monotonic systems (X, T, &) (we shall use the
abbreviation pm.s): X is a totally ordered set which is order complete and
its order topology is metrisable (therefore X is a compact metric space), & is
a finite partition of X into disjoint intervals, T: X — X has the property that
T|; is continuous and strictly monotone and TZ is again an interval for all
ZeZ (hence T|;: Z — TZ is a homeomorphism). If X is connected, then the
other assumptions imply that TZ is an interval for all Z e

One gets an example of a p.m.s. by taking X = [0, 1] with & a finite
partition of [0, 1] into intervals and T}, continuous and strictly monotone
(that TZ is an interval follows from the intermediate value theorem).

Our aim is to compute the Hausdorff dimension of- perfect Tinvariant
Subsets R<X such that (R, T, Z(R)) is again a pms., where Z(R)
={ZMNR; ZeZ, ZAR # 0O} and (R T, Z(R)) is an abbreviation for
(R Tla, 2 (R))

If Y'cX'is Tinvariant, f: ¥ —C is a function and neN, then deﬁne
S, f:=3r8f T For neN, define :

5’,,.:12 ZonT L2 A AT "2 Zo, 2y, ..., ZoeZ and Z £ Q).

Zis called a generator if for every sequence V;, Vi, ... with V;eZ, the set
ﬂ_,_oV- contains at most one point.

We calt (X, T, Z, m, ¢) an expanding system if (X, T, &) is a pm.s, if
Z is a generator, if m is a Borel probability measure on X with support X, if
p: X - R has the property that ¢|; tan be extended to a continuous
function on the closure of Z for all Z €% (we call this property piecewise
continuity), and satisfies

wd(m-Tly)
For an expandmg system we define the Perron—Frobemus operator P: ¥%
— P* by

Ly Pf(x}i= ¥ e""”f(y),

yeT™ 1y

; . .
= log Z _dGmz) ), supS @(x) <0 for some neN.
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where %#* is the set of all bounded, Borel measurable, complex-valued
functions on X. The property

dimz) |\
¢ =log (E,d(m T|z)1)

is equivalent to m(Pf) = m(f) for every f € ¥, where m(f):= {x fdm for
fe¥™ If X is connected, then the other assumptions imply that 2 is a
generator.

The standard wellknown example of an expanding system can be
obtained in the following way. Let X = [0, 1], and let & be a finite partition
of [0, 1] into intervals such that T[; is continuous and strictly monotone.
We assume that T is differentiable in the interior of Z. Now we can take the
Lebesgue measure for m and —log|T'| for ¢. If ¢ is piecewise continuous
and inf, gy, 13 (T (%)} > L for some n, then (X, T, &, m, ) is an expanding
system. This also explains the name “expanding”™.

Now we show some properties of expanding systems which will be
useful in the sequel

LeMma 1. Let (X, T, &, m, @) be an expanding system.

() ~00 <lim, o SUDyex S, 0 (x) = infuen 1™ UP,ex 5,0 (x) <O.
(i) If neN, Ze%,., and A =Z is a Borel set, then

(mfexpS @ (x))m(T" A) < m(4) < (supexp S, ¢(x)) m(T" ).

xcA xed

(ii) For every & > O there exists an n, such that for every integer n = nq
and Ze, one has m(Z) <e.

(iv) m(ix}) =0 for all xeX. :

Proof. (1) Since SUPxex Sn+k @ (JC) SUDxex Su (P{x) +supxeX Sk (P(x)’ it fol-
lows from Theorem 49 of [11] that lim,_n~ Vsup,.x S, @(x) exists and
equals inf,.y 1~ Sup,.x S, @(x). Now the other assertions follow, since ¢ 18
bounded and there exists an n with sup,.xS,¢(x) <0

(@)

mA)=m(ly=mP1)=_3% [ (LaexpS, ) (T"z *)dm

’ Zs!n 1 7Z
= [ {(exp$5, <o) (Th2) " )1, dm= | ((expS,@)-(T"z)~*)dm
Tz ™A

Now the assertion follows, since (T"|z)"!'xed VxeT"A.
(iii) From (ii) it follows that
m{Z) < supexpS,,H o(x) VZe#,.
xgX

Now (i) gives the desired result.
(iv) follows from (iii) and the fact that %, is a partition of X. =
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A p.ms. (X, T, &) is called complete if & consists of intervals which are
both open and closed subsets of X. Observe that T: X — X is then conti-
nuous. Hence for every integer n 3> 0, &, consists of intervals which are both
open and closed. If (X, T, &, m, @) is a complete expanding system, then ¢
is continuous.

We shall introduce a notion similar to the usual notion of Hausdorff
dimension. This notion behaves better than the usual one under some formal
operations like completion of p.ns. And, what is really important, it
coincides with the usual notion of Hausdorfl dimension for subsets of [0, 1].

ILet YSX. For t 20 and ¢ > 0 define

m(Y, t,8) :=inf{ Y m(Ay; & is an at most countable cover of Y
Aessf

by intervals with m(4) < for all 4 es/}.
Clearly e—ni(Y, ¢, 5) is decreasing. Set

m(Y, 1) :=supm(Y, t, &) =timm(Y, t, ¢).

e>0 e -+0

This is decreasing in t and inf{t > 0; m(Y, ) =0} =sup{r = 0; m(Y,1)
=}, Then
HD,(Y)i=inf{t > 0; m(Y, t) = 0} =sup{t > 0; m(Y,t) = oc}

is called the Hausdorff dimension of Y with respect to the measure m. One
easily sees that 0 < HD,,(Y) < 1 for every ¥ =X. Since m(¥) < Y scam(A)
for every measurable cover of Y which is at most countable, we have
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HD,(¥) =1 for every Borel set ¥ <X with m(Y) > 0. Thus Hausdorff .

dimension is a measure of size useful to distinguish between m-nullsets. HD,,
behaves formally like usual Hausdorff dimension. In particular, the same
proofs show that HD,(Y;) S HD,(¥;) if ¥; & ¥, S X, and HD, (U~ Y,
= sup,y HD,,(¥,) for every sequence (Y,),.n of subsets of X,

A topological dynamical system (X, T) is a continuous map T of a
compact metric space X into itself. The pressure p(X, T, f) is defined for a
continuous function f: X —R by '

X, T, f):=limlimsupn™ 1logsup Z exp(S, f (x)),
e~0 n—-w
where the supremum is taken over all (n, s)-separated subsets E of X. E ¢ X
is called (n, g}-separated if for any x  yeE there exists some j&{0, 1,
n—1} with d(Tx, T9y) > & (cf. § 9.1 of [11] for this and some alternatlve
definitions).

Denote the set of all T-invariant Borel probablhty measures by M(X, T)
and the set of all ergodic T-invariant Borel probability measures by E(X, T).
The variational principle (see e.g. Theorem 9.10 of | 117) states that

p(Xa Tfy= sup (hM(X., T)+,u(f)) = Sup (h“(X, T)+ﬂ(f));
M(X,T) ueE(X,T)

Ke
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where h, (X, T) denotes the measure-theoretic entropy of (X, T, w) (see e.g.
§44 of [11] for definition). We have p(X, T, 0) = h,, (X, T), where
h (X, T} is the topolegical entropy of (X, T) (see e.g. § 7.1 and § 7.2 of [11]
for definition).

Unfortunately, piecewise monotonic transformanons are not continuous
in general. (X, T, &, m, ¢) is a complete expanding system, and if R is a
closed T-invariant subset of X, then T|p: R —R is continuous. Therefore
(R, T) is a topological dynamical system {{R, T) is an abbreviation for
(R, T)g)). Since # (R) is a generator, we have for every continuous f: R —+R

(1.2 PR, T,f)=limn""log Y  supexp(S,f(x)),

n—eo ZeXy_1(R) xeZ

where #,(R):={Z nR; Zef.’z",,, ZNR#Q) (cf Theorem 9.6 of [11]).

If (X, T, &, m, p) is an expanding system which is not complete, then
T: X — X need not be continuous. In order to define the pressure we extend
(X, T, %, m, ¢) to a complete expanding system.

Let ¥ € X, xeY is called an isolated point of Y if there exists an open
UcX with UnY ={x}. Y is called perfect if ¥ is closed and contains no

-isolated points.

Let (X, T, %) be a pms. and suppose that X contains no isolated
points, Now we shall define the completion of (X; T, 2). This construction is
always used when one wants to make a2 p.ms. into a topological dynamical
system (cf. Walters, Hofbauver and Keller). Set

= {xeX; IyeX with either x <y and (x, y) =9
~or y<x and (y, x} = Q}u {inf X, sup X}.

Now define

o ® .
E:={infZ,supZ; ZeZ}, W:=(| TT"E\D
k=0

Wis at most countable. Set
X =(x\Wuix,x"; xeW}.
=x and define x* <y~ if x <y in X, and x~

For xeX\W set x~ =x*

C<xtif xeW. The transformation Tlxw.g can be uniquely cxtendcd to a

continuous map T: X —X. Set

Ei=1x", x*; erlu {Sc' xe(E n D)\ [inf X, supX}},

where for xeD \ {inf X, sup X}, ¥ is the unique element with ¢ither x < X and
(x, ) = or ¥ <x and (X, x) = @, Then there exists some k€N with E
=Xy, ..., Xz}, Where x; <... <Xy, (X25%50) =@ for j=1,...,k—~1,
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and (x3;_1, %) % O for j=1, ..., k. Set
@:-: {[x_zj._l, sz:],j= 1, ceny k}.

(X, T, #) is a complete pams. Hf & is a generator, then & is a generator.

If 4 is a closed subset of X, then let 4 be the closure of 4\ W in X. If 4
is a closed subset of X, and f: A —R is a piecewise continuous function,
then there exists a unique continuous function 7 ‘(A\E)A-»R wjth 7l AN UE)
= flawon. (X, T, %) is called the completion of (X, T, #), A and f are
called the extensions of A and f to (X, 7, &), Observe that the completion
depends on the partition 2. o . )

Let R be a perfect T-invariant subset of X. Then R is a perfect T
invariant subset of X, Hence (R, T) is a topological dynanmucal system. If
f: R—R is a piecewise continuous function, then f: R R is a continuous
function (in this case (R\E) = R). Now we define P(R, T,f):=p(R, 7. f).
We shall need the following lemma, which shows that p(R, T, ) does not
depend on the partition %

LemMa 2. Suppose that (X, T, &) is a pms. and that X contains no
isolated points. Let R be a perfect Tinvariant subset of X, let f: R—Rbea
plecewise continuous f_unction, and let ¥ be a finite partition of X into intervals
which refines &. If (X, T. &) is the completion.of the pms. (X, T, %), and if R
and [ are the extensions of R and f to (X, T, %), then p(R, T,/) = p(R, T.).

Proof. By the definition of p(R, T,f) we can assume that (X, T, %) is
complete and that % is a subpartition of 2. Now the lemma follows
immediately from the variational principle. m

Let (X, T, %,m, ¢) be an expanding system. Let (X, 7. #) be the
completion of (X, T, Z) and let ¢ be the extension of ¢ to (X, T, ). For a
Borel set A S X set i(4) :=m(An(X\W)). Since X\(X ~X) is at most
countable, we sec by Lemma 1 (iy) that-7 is a Borel probability measure on

X with support X. Clearly there exists an n with sup, ¢S, (x) < 0. Hence

using also the fact that # is concentrated on X nX we find that
(X, T, Z, #, §) is a complete expanding system. We call it the completion of
(X; 7: g! m, <D)~ !

‘ If A is a closed subset of X, then 4\(X n X) and 4\(X N X) are at most
countable. Since AN(XNX)=An(XNX), Lemma | (iv) shows that
HD,, (4) = HD,({A). Hence the Hausdorff dimension does not change if one
completes a set. - :

Now we can show the following lemma by adapting the proof given in
[2] to our situation (a similar proof is given in [6]).

LEmMmA 3. Suppose that (X, T, &, m, ¢) is an expanding system and that
R is a perfect Tinvariant subset of X. Then the function t— p(R, T, to)
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' defined on R is continuous and strictly decreasing, and has a unique nonnega-

tive zero tg.

Proof By the definition of the pressure we can assume that
(X, T, &, m, @) is complete, and R = X is closed and Tinvariant. The r‘nap
t+p(R, T,t@) is continwous by Theorem 9.7 (iv) .Of [11]. Since
(X, T, Z, m, ¢) is an expanding system there exists an n with sup,ex Sy @ (%)
< 0. Define . _
(1.3) ro=—n"tsupS,p(x) > 0.

xeX

Then we have for every peM(R, T) and t 2 0
t
k) = - n(S,¢) < —ir.

By-(1.3) and the variational principle this gives
PR, T, t,0) < p(R, T, 1, 9)—(t2—t1)r < (R, T, : ¢)

if t;<t;. Using p(R,T,0)=h,(R T)<w and. {1.3) now gives
lim, .. p(R, T t@) = —cc. Since h,, (R, T) =0 there exists a unique tr =20
with p(R, T, tr @) =0. m

Let (X, T, Z, m, ¢) be an expanding system, and let R be a clf)sqd T-
invariant subset of X. If R is topologically transitive (ie. R is the w_-lm'ut. set
of some element of R), then either R contains no isolated points or R is a
periodic orbit. If R is a periodic orbit, then HD,(R) =g = 0. Hence the
conclusion of Theorem 1 is valid for a topologically transitive set R? gnd the
conclusion of Theorem 2 remains valid if R is topologically transitive and
(R, T, Z(R)) is a pms. _ ‘

The next lemma will be useful in different places of this paper.

Lemma 4. Let (X, T, Z, m, ) be an expanding system. Then fo.r every
¢ > 0 there exists a finite partition %, of X into intervals, which refines &,

such that o -
' sup lo(x)—o() <& for all Ye¥,.
x,ye¥ ) N .

Proof. This is an easy consequence of the piecewise continuity of ¢ and

the compactness of X. w ..
Now we prove the mair theorem of this section. The proof is similar to
the proof given in [6]. As we consider a one-dimensional map we can use the
fact that % is a generator. Therefore our proof is a bit simpler than the

proof in [6].
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Tueorem 1. Let (X, T, &, m, @) be an expanding system. If R is q
perfect Tinvariant subset of X, then HD, (R) < t. ‘

Proof. Let t >tz. Then p(R, T, te) <0 by Lemma 3. Choose > 0
small enough that

(1.4) p(R, T, te)+1n < 0.

Set ¥:=9, as in Lemma 4, Let (X, T, %, i, §) be the completion of
(X, T, %, m ¢), and let R be the extension of R to (X, T, #). By {1.2), (1.9
and Lemma 2 there exists a § > 0 such that

(L.5) t+n"tlog Y  supexp(tS,4(x) < —§
Ye@,,,. l(ﬁ) xcY
for n large enough. Set «f,:={Y e#,; Y AR # ©}. Then Y e, if and only
if YnRe?,(R). Since ¥ was chosen as in Lemma 4 we have
(1.6) sup exp(tS, ¢ (x)) < exp(nin) sup exp(tS, G(x)
xsY xe¥ nR .

for Yed, ;. : :

Let & >0. Then by Lemma 1 (iii), m(Y) <& VYeuof,_, if n is large
enough. Since Mm(T"Y) <1 it follows from the definition of the Hausdorff
dimension, from Lemma 1 (i), and from (1.6) and (1.5) that

RS Y AIY< T supexp(sS,§(v)
’ Y

Yed, 1 Yed, ;| xe

Sexp(ntm) 3 - supexp(tS,(x) & g
: YE@,,_. 1(R) xe¥ f

if n is large enough. Now n — w0 gives m(R, t, ) = 0, and ¢ — 0 gives (R, 1)

=0. As ¢ >tz was arbitrary, we get HD,,(R) = HD (R) < tz. w

2. A formula for' the Hausdorff dimension. In this section we show that
for every petfect Tinvariant subset R X with the property that
(R, T, Z(R)) is a pms, the unique nonnegative real zero t, of
t—p(R, T, to) is equal to the Hausdorff dimension HD,(R) of R (hence
IR E[O; 1])- v

In order to prove the inequality tp < HD, (R) we need some facts
obtained mainly by Hofbauer (see eg. [3] and [4]). For the convenience of
the reader we discuss some of them.

Let (X, T, &) be a complete p.ms. and suppose that X contains no
isolated points. We define an at most countable oriented graph (2, ) for
(X, T, 2), called the Markov diagram, which describes the orbit structure of
(X, T). Let Z,eZ and let D+ @ be a closed subinterval of Z, with no
isolated points. A .nonempty C = X is called a successor of D if there is a

ZeZ with C=TDnZ, and we write D =C. As TD is a closed interval -

with no §so!a.tcd points, and as Z is a closed and open interval, each

icm
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successor C of D is again a closed subinterval of some element of % with no
isolated points. Let 2 be the smallest set with 2 < @ and such that De9®
and D —=C imply Ce®. Then (%, =) is called the Markov diagram of
(X, . %) (cf. [3]). % is at most countable and its element§ are closed
intervals with no isolated points.

Let f: X >R be a function with f|, constant for all Ze2. Since

(X, T Z) is a complete pms, f is continuous. As f|; is constant, f{, is

constant for every De®, and we denote this constant by f,. This gives rise
to a 2 x@-matrix F{f):=(Fcp)cea,pew defined by

._Jexpfc if C—D,
(@1 Fep:= {0 otherwise.

Since the number of successors of each D €9 is bounded by card 2, we have
YpecaFep <K for all Ced, where K ;= (card 2) |lexp f| -

If ¢ < 2, then denote by Fe(f) the € x $-matrix (Fep)cew,pew- Then for
every uel* (%) we have

luFe(NMs = Y, | X ucFen| € 3, el Y, Fop < K |lull

. - De¥€ Ce¥ Ce¥ De¥ .
and similarly j[Fe(f) ]l < K|l for all ¢ el®(%). Hence u —»uF4(f) is an
1! (¥)-operator and v +—F¢(f)v is an I*(¥)-operator. Denote by ||F¢(f)l| the
norm of the former operator; it is equal to the norm of the latter and we
have the formula '

) . Fe(Nll = sup ¥ Fep.
Ce¥ Dec¥

Hence _

(2.3) r(Fe(f) := lim [Fe(S)*"

n—+w

“is the spectral radius of both operators.

X 4<% and C, De¥%, we say there exists a path of length n (n 2 2)
from C to D in ¥ if there exist C,, ..., C,€¥ with C; =C, C, =D and C;

. "')Cj+1 for j—"—'- 1, ey n~1.

A subset % of @ is called irreducible if for any C, D €% there exists a
finite path from C to D in €. € is called maximal irreducible if € is
irreducible and if no € # € with € < ¢ < 2 is irreducible (in [3] the latter
sets. are called irreducible). € is called finite irreducible if  is irreducible and
finite. Define ‘ :

@4 - T:={%cP; €is maximal irreducible}.

Suppose € = 9. A sequence CqoC, .. is called an infinite path in %_if
C;€€ and C; = C;,, for all jeN,. We say that an infinite path C,C; ... in
% represents xe X if T!xeC, for j 0. Define : '
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(2.5) L(%):= {xeX; 3 an infinite path in ¥ which represents x}.

Lemma 5. Suppose that (X, T, &) is a complete pms, and that X con-
tains no isolated points. Let (@, —) be the Markov diagram of (X, T, Z).

(i) T{L(®) < L(%) for every € = .

(ii) Suppose that 6 = @ and Z € %, for some neNgy with Z N L(%6) # .
Then there exists a finite path CoCy...C, in 6 with (Y=o T/ C; =2 and
cC,cT'Z.

(it) If 4 < & is finite, then L(%) is closed. ‘

(iv) If & is a generator and if € < @ is maximal irreducible, then 1(%) is
closed. '

Proof. (i) and (i) are evident. _
(iii) is shown by a standard diagenalization argument.
(iv) is proved in [37] (see 1§ 2 and Theorem 11 (i) in [3]). w

The next lemma generalizes Theorem 7 of [3] and gives some approxi-
mation result (in the same way one can show that p(X, T, f) = logr (F(f ).

LemMma é. Let (X, T, &) be a complete piecewise monotonic system, and
suppose that X contains no isolated points and that # is a generator. Suppose

that.f: X =R is a function with f'|; constant for all Ze%. Let (2, —) be the

Markov diagram of (X, T, &).

(i)' If ¢ < @ is maximal irreducible or finite irreducible, then p(L(%), T, f)
= logr(F¢(f)). ,
(i) If 4 < @ is maximal irreducible and if

r(F%’(f)) > lim Hexpsnf”{:’;")
n—o
then for ‘every &> 0 there exists a finite irreducible ¥’ =¥ with

p{L(%), T, f)—¢ < p(L(%), T,f) < p(L(D), T.f).

Proof. (i) The proof is analogous to the proof of Theorem 7 of [3]. We
have only to substitute the notion “number of paths of length k+1 from
some fixed C to some fixed D” by “Y" exp 8, f (), where xe( V.o T7/C; and
the sum is taken over all paths Cy C, ...C, of length k+ 1 from C to D in %”.
In the case of maximal irreducible % the corollary of Theorem 10 of [3]
ensures the existence of the sets #, needed in the proof.

(i) By (i) and the continuity of log it remains to show that if the
assumptions are satisfied and § > 0, then there exists a finite irreducible
¢ =€ with r(Fe(f)) =8 < r(Fe () < r(Fe(f)) (we also use the fact that log
is increasing). o

Define . '

Doi=Z, By:=D,.,u{DeP; ICeT,_, with C»D} ' ifn>1.
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Then @, =% S... and ;3 %,= 2. Set F,(f}:= Fgg (f). Then by
Lemma 8 of [4] we have s

limsupr (F,(f)) < lim [lexp S, fI[:d".

n-rod n a0

" Now the proof of Corollary 1 {ii) to Theorem 9 in [3] shows the existence of

a nonzero nonnegative uel' (%) and a nonzero nonnegative vel®(%) with
uFg(f) = Au and Fe(f)v = Av, where A = r (F¢(f)). By the irreducibility of %
we have up >0 and vc >0 for all Ce%. Now we define for C, De%
Pepi= Fepupldvg,  7igi=Ucvc.

Then P is an irreducible stochastic ¥ x ¢-matrix, = €l' (%) and nP = n. De-
pote the entries of P" by P&, and the entrics of Fe(f)" by F&. Since P is
irreducible the number R = limsup, .., (PE)"" is independent of C and D
by Theorem 6.1 of [9]. As #P = and 7 >0, we have a positive recurrent
Markov chain, hence P — p for some pc > 0 and some d €N, and P&
for every n with 4 4n. Therefore R = 1. Since Fi%, = A"v; P /vy, we have for
all C, De¥

), —

limsup (FE)" = 4 = r(Fe(f).
Now by Theorem 3 of [8] there is a sequence %, =%, <... of finite
irreducible subsets of € with {};2,%, =% and i, .o (Fe, () = r(Fe(f ),
since the quantity R, used in [8] equals r (Fe (f))™' by the finiteness of %,.
Now the lemma is proved, since r{Fe () <r(Fe(f)) for all €' €. =

Now we show a lemma which will be ﬁseful in the proof of Lemma 3.

Lemma 7. Suppose that (X, T, Z, m, @) is a complete expanding system, °
and that R € X is perfect, Tinvariant and such that (R, T, Z(R)) is-a p.m.s.
Let € be a finite subset of the Markov diagram of (R, T, Z (R)). Then there is
a. ¢ >0 such that for every integer n2=0 and for every ZeZ, with.
ZAL(# #Q one has c<m(T"Z) < L.

‘Proof. By the construction of the Markov diagram each Ce% has no
isolated points, and hence C contains infinitely many elements. Therefore for
every Ce¥ there exists a nonempty open set U & X such that every
interval T = X with C <1 satisfies U = I. Define ¢:= min {m(Ug); Ce%}.
Since % is finite, the support of m is X, and each U is nonempty and open,
we get ¢>0. If ZeZ, with ZnL(%) # @, then ZNRNL(%) # @ and
Z "ReZ,(R). Hence by Lemma 5(ii) there is a Ce¥ with CST(ZNR) =
T"Z. Since T"Z is an interval, we have U= T"Z and therefore
csm(T'Z). =

*
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Let (X, T, &, m, ¢) be a complete expanding system. Let y be an
ergodic Tinvariant Borel probability measure on X. By the ergodic theorem
we have lim, .on" 'S, p(x) = p(p) for p-ae x. We define

{2.6) X = —ulo), the Lyapunov exponent of u.
By Lemma 1 (i} we have y, > 0. Furthermore,
2.7 h,:=h, (X, T)

is the measure-theoretic entropy of (X, T, u).

The next lemma is the basic step in proving that ¢ < HD,(R). Since
we consider a one-dimensional map, our proof is in some sense simpler than
the proof given in [5]. Instead of considerations on topological entropy for
noncompact sets used in [5] we use the Shannon—McMillan-Breiman
theorem.

- Lemwma 8. Let (X, T, &, m, @) be a complete expanding system and let
(R, T, Z (R)) be as in Lemma 7. Set

s:==sup sup |@(x)—@ ().

Zed xyel

If % is a finite irreducible subset of the Markov diagram of (R, T, Z(R)) and n
is an ergodic Tinvariant Borel probability measure on L{(%), then

h, .
Xuts$

HD,,(L(%)) >

Proof. If h, =0, then the lemma is obviously true.
Now suppose that k, > 0. Fix an arbitrary 6 €(0, h,). By the ergodic
theorem and the Shannon-McMillan—Breiman theorem (see eg. p. 93 of

[11]) there exists a Borel set 4 < L(%) with p(4) >0 and an ny > 0 such -

that for every nzn,

28 n"ls"(@(x);—x,,ua if xed,
(2.9) uZy<exp(—nh,—8) ifZeZ,and Znd#0Q.

‘Now let o >0 be so small that every interval I ¢ X with m(I) < 8¢
intersects at most two elements of Z ;- Fix an arbitrary & €(0, eg].

Let Y X be an interval with m(Y) <e. Let n>> 0 be the smallest
pumber {maybe n = c0) such that ¥ m A intersects at least three different
intervals Z,, Z,, Zy €%, Since ¢ < g, we see by the ¢hoice of &, that n—1

2 ny. If k < n, then Y m A intersects at most two elements of &,. Hence (2.9)
gives '

@10)  © p(Y nA) < 2exp(—k(h,~8) if no <k <n.

icm
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Suppose first that n < 0. As ny<n—1 <n we get by (2.10)
2.11) u(Y A A) < 2exp(—(n—1) (h, =)
' = 2exp(h,— 5) exp(—n(h,— ).

Now Lemma 1 (i) and the definition of s give for j=1,2,3

m(Z)zm(T"Z) inf exp(S,e(x)—ns).
A

xeZn
Since Z;nA # @ we get from (2.8) e:nd from Lemma 7
2.12) m(Z) = m(T"Z)exp(—n(x, +5+8)) = cexp(—nlx.+s+9)).
Set
@.13) 1= (hy— )z, +s+5).

As the interval Y intersects three different intervals Z,, Z,, Z;, it contains at
least one of them. Hence (2.11}2.13) give

@14  m(Y) = dexp(—n(h,~9) = (G exp(d—h)) u(Y N A).

If otherwise n=co, then (210) holds for every k> n,. Therefore
w{Y " A) =0, and (2.14) is trivial in this case. »

Now (2.14) gives m(4, t, &) = (c'exp(d—h,)) u(4) > 0 and by the choice
of & the same estimate is true for m(4, ). Therefore by (2.13)

HD,, (L(%) > HD,,(4) > (h,—8)/(t,+5+9),

since A = L(%). Now letting & —0 gives HD,, (L(%)) 2 h,/(x,+s), which is
the desired result. =

Remarks. f. The above proof shows that HD,(Y) = h/(x,+s) for
every Borel set ¥ = L(%) with u(Y) > 0. _ _

2. In an analogous way one can show that for every ergodic Tinvariant
Borel probability measure x on X there exists a Borel set A © X witl-_; p‘(A)
=1 and HD,,(4) < h,fy, {in [7] it is shown that this inequality is valid if A
is the set of generic points of ). Here we use instead of Lemma 7 the fact
that in(B) <1 for every Borel set B = X. By Lemma 4 we can choose s
arbitrarily small, which gives the desired result.

Now we can prove the main result, Leroma 9 will give examples of sets
which satisfy the assumptions of this theorem. Recall that tp denotes the
unique nonnegative zero of t—p(R, T, t¢) and HD,(R) denotes the Haus-
dorff dimension of R. :

Tueorem 2. Let (X, T, &, m, ¢) be an expanding system. If R is a
perfect T-invariant subset of X such that (R, T, Z (R)) is a piecewise monotonic
system, then HD,, (R) = t5. : .
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"Proof. If tg = 0 the result follows from Theorem I.
Now suppose that tz > 0. Choose an arbltrary t €(0, tz). Then Lemma 3
gives p(R, T, tp) > 0. Define
(2.15) r:=— lim n"'sup$, @(x),
#—+o0 xeX
which exists and satisfies r > 0 by Lemma 1 (i). We get for every ergodic 7~
invariant Borel probability measure x on X .

(2.16) A= 7> 0.

Now choose an arbitrary &e(0, p(R, T, tg)/(2t)). By Lemma 4 there
exists a finite partition % of X into intervals which refines % and satisfies

(217 sup sup le(xX)—o () <

Ye¥ x,yet

Let (1?, T G, m, @) be the completion of (X, T, ¥, m, @) and let R be
the extension of R to (X, T, @7) Observe that after passing to the completion
the above inequalities remain valid.

Define @,: X =R as follows: if xeY e, then set @ {x}: —mfm.qo(y)
Then ¢,y is constant for all Y e#. Furthermore, by the choice of &, by the
definition of ¢,, and by (2.15(2.17) we have
(2.18) lim n~*suptS, @, (x) € —tr <0, p(R, T, tp,) > 0.

| Sad=s] xeX

By the second inequality of (2.18), by Theorem 11 of [3], and by
Corollary 2.18 of [1] there exists a maximal ureduclble subset % of the
Markov diagram of (R, T, #(R)) such that p(L(®), T, tp,) > 0. Using (2.18)
and Lemma 6 yields that there exists a finite irreducible %' <= % such that

p(L(%), T, t@y) > 0. Therefore the variational principle gives the existence of
an ergodic Tinvariant Borel probability measure p on L(%) with h,
+u(te;) > 0. Hence

<_hn_,<£'£= hy (1+i)g y (H,E ,
~uled Txe e\ n) were\ r
where the second inequality follows from the definition of ¢ and the third
from (2.16). Now (2.17) and Lemma § give

HD,ﬁ(L(%")) (1 +f-) < HD,(R) (1 +i) = HD,,(R) ( 1 +E),

since L(#) =R Letting first ¢ —~0 and then t-—>ip we get tR HD (R)
Theorem' 1 gives the desired result. w

Remark. Theorem 2 and Lemma 3 imply that HD,,(R) = 0 is equiva-
lent to h (R, T) =0 if the assumptions of Theorem 2 are satlsﬁed
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Our restriction that (R, T, Z(R)) is a p.ms. is not very nice. We give
examples of sets which satisfy this condition. In particular, any set L{%) with
% eI does. Another family of such sets can be found in [10].

Lemma 9. Suppose that (X, T, &) is a p.ms.

(i) If R is one of the sets listed in (), {b) or (c) below, then there exists a
finite partition ¥ of X into intervals such that (R, . % (R)) is a pm.s.

(@) R=)}=,F;, where F,, ..., F, are closed intervals in X with
TR &R, ‘

(b) R is closed and satisfies T"'R = R.

© R=NEZ,X\T G, where G is Tinvariant.

(i) Suppose that (X, T, Z) is complete, that X is perfect, and that % is a
generator. If R = L(%), where % is a maximal irreducible subset of the Markov'
diagram of (X, T, &), then there exists a finite partition % of X into intervals
such that (R, T, #(R)) is a p.ms.

Proof. (i) (a) is easily shown if one considers a subpartition % of &
which contains the nonempty sets among F; ~ T~ ' F,.

(b) follows from T(ZNR)=T(ZNT 'R)=TZnR. _

(¢} One can show that T"'R = RU E, where E is finite. Consider a
finite partition % of X into intervals which refines # and contains {x} for

" every xeE. Now the proof of (b) gives the desired result.

(i) It is shown in [3] that L(%) = NZ,F\T /G, where F ={J{_, F,,
the F, are as in (i) (a), and TG < G. Now the desired result follows from (i)
(a) and (c). w .

Now we shall give some corollaries of Theorem 2. Suppose that
(X, T, #, m, ©) is a complete expanding system. Let (£, —) be the Markov
diagram of (X, T, &), and denote by I' the set of all maximal irreducible
subsets of &, Theorem 11 of [3] describes the centre Q,(X, T) of (X, T) (see

eg. §53 of [11] for definition):

'an(X: T) = %’UFL(%)U Lao;

where L{%) and L, are closed T-invariant subsets of X, the sets L(%) are
topologically transitive, k., (L, T) =0, and the intersection of two different
sets L(%) or of some L(%) and L, is finite,

Cororrary 2.1. Let (X, T, &, m, ¢) be a complete expandmg system.
(i) Suppose that % el and set L:= L{(%). Then HD, (L) =
(ii) Set L:= L,,. Then HD, (L) =t, = 0.

Proof. Since hop(Lg, T) = 0 Lemma 3 gives ¢, =0 if L= L, and (i)
follows from Theorem 1. If L= L(%), where % T, then (i) follows from
Lemma 9 (i) and from Theorem 2. » ‘
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Remarks, I. Using Corollary 2.1, Lemma 6 and the Perron—Frobenius
theorem one can show that HD, (L{%¥))> 0 if ¥ eI’ and L(%) is not a
perlodlc orbit.

. It is well known that L, is uncountable if L, # @ (see eg. [3]). An
example of an expanding system with L, nonempty is given in [7].

We consider the case where ¢| 15 constant equai to —o. By Lemma 1
(i) we have a > 0.

Corovrrary 2.2, Let (X, T, &, m, ) be an expanding system. Suppose
that R is a perfect T-invariant subset of X such that (R, T, Z (R)) is a p.m.s,
and that @lg is constant equal to —o. Then HD, (R} =t = hp (R, T)fe.

Proof. By Theorem 9.7 (i), (vi) of [11] we have p(R, T, tg) = h,,(R, T)
—to. Therefore tg = h,,(R, T)/a. Theorem 2 gives the desired result. m

- Now we give an example. Let X =[0, 1], let m be the Lebesgue
measure on [0, 1], and let neN. Since the case n = 1 is trivial, we assume n
> 2. Suppose 0<a; <b, <a, <b, <...<aq, <b, <1 with 1/p;:=b;—
Define Tl(a sy either by Tk = p;(x—a;) or by Tx = p;(b;—x). Set

o0

A:=0, 1]\,!1 [a;, ], R:= ([0, 17\ T™* 4).
If x e(a;, b)), then set @(x):= —log p;. Clearly we can extend T and ¢ to an
expanding system ([0, 1], T, &, m, ¢), where (a;, b e for every j. lLet
X, T, #, 1, ¢) be the completion of ([0, 17, T %,m, @), let R be the
extension of R to (X, T &), and denote by BJ the element of & which
sat1sﬁes B; —[ » b;’]. Then Risga perfect Trinvariant subset of X, with
T(RnB)=R for every j and RnZ = @ for every Zeﬂ’\1B1, .v.y B,}. By
Thcorern 2 we have HD, (R) = HD, #(R) = tz, where tg is the umque nonne-
gative zero of er(R T tcp)
Set %:={B, NR, mR} Then % is a finite 1rreduc1ble subset of
the Markov diagram of (R T, % (R)) (this Markov diagram is exactly (¥, —)
with C —»Dfor any C, De%) and R = L(%). Since ¢ls; = —log p; Lemma 6

(@ gives p(R T, t¢) = logr (F¢(t®)), where Fy(t@) is the nxn-matrix

(Fy)ix=1 with F, je = exp(—tlogp) = (1/p;¥. Hence by the Perron-Frobenius
theorem

PR, T, 16) = 108(2 (t/p)').

This shows that the Hausdorff dimension of R is the unique number
tef0, 17 with 7., (l/p) = L.

If n "'2, pl % and p2 ——9 (C.g. if a1 :-"--'0, bl =%, az m'g-, bz = 1) in the
above example, we get HD,(R) =3
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Finally, we consider the special case of the above example where p,
=p, =...=p,=:p. Here the above formula gives HD,(R) =t, where
n(1/pf = 1. Therefore HD,,(R) = log nflog p (this also follows from Corollary

22).Ifn=2 p=3,and a,=0,b, =% a, =%, b, =1, then R is the usual

Cantor set, which has Hausdorff dimension log 2/log 3.
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