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The I} problem and degrees of nom-reflexivity IT*
by
W. J. DAVIS and J. LINDENSTRATUSS (Columbus, Ohio)

Absteact. The study of Banach spaces with k-structure (introduced in part Ik
is continued. In particular, it is shown that every space with 2-structure contains nearly
isometric copies of I4. High order conjugate spaces are also studied further. It is.
shown that if X is separable, non-reflexive, X2, is non-separable. Finally, it is shown
that for every s> 0 there is a non-reflexive space of type 2—e.

1. Introduction. This paper is a continuation of [1] but it can be-
read independently of [1]. )

In [1] we introduced for every integer % the notion of (global and
local) %-structure. A Banach space admits a 1-structure if and only if*
it is not superreflexive. A Banach space X admits a 2-structure if and.
only if it ix finitely representable in a space X for which X**/X is not
reflexive (the definitions of superreflexivity and finite-representability-
will be recalled at the end of this introduction.) In general, a necessary
and sufficient condition for the existence (up to finite-representability).
of a k-structure in a space X was given in [1] and it involves the even
duals of X up to order 2k. The notion of k-structure was introduced mainly-
as a tool for studying the problem of existence of almost isometric copies.
of 17 in non-guperreflexive Banach spaces. It was shown in [1] that if
a Banach space X admits a k-structure then X contains almost isometrie-
copies of L. (For |t = 1 this is the, by now classical, result of James [27]
which started the whole subject of superreflexivity and existence of I7.)
We show heve that a little variant of the argument used in [1] can give-
stronger results. In Section 2 below we prove for example that if X admits
a 2-structure then for any integer n and any & > 0 there are vectors {#; 1"y,
in X all of norm 1 so that for any choice of 1 <7, s < % we have

(L.1) |3 X ot (e | = n—e
i
where 07(3) = 1ifLi<r, 0"(%) = —1ifr < ¢ << nandsimilarly »°(j) = 1.

i lsi<s #'() = —11if s<j<n.

* This work 1§ supported by N.8.JX. Grant MPS8-74-07509-A01.
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In [1] we used just the diagonal, i.e. {#;;}7.; of the set {w;;}};.,. This
produced (by taking # = 3) almost isometric copies of I in a space with
2-structure. By using just the diagonal elements we did not get almost
isometric copies of If with #» > 3 in a space with 2-structure. It is a simple
fact (which however surprises us somewhat) that by using also non-diago-
nal elements we can get even almost isometric copies of I in every space with

a 2-structure. In fact, if we use (1.1) for # = 4 and consider the vectors.

By Bogy Fgy, ond @, ; then they span a subspace 1--¢ isometric to 4.

It turns out that this method of proof stops with 4 and (1.1) (for
.arbitrary «) does not imply directly the existence of almost isometric
copies of I3 in a space with 2-structure. We leave the problem of whether
-2-structure implies the existence of I} open. A natural approach to attack
this problem is to try to generalize the counterexample of James [3], [4],
.of a space with 1-structure which does not contain almogt isometric copies
.0f I}. Our efforts to do this failed till now. It seems to be simpler to construct
2 less precise counterexample which will show at least that 2-structure
.does not imply the existence of almost isometric copies of I* for some
_sufficiently large k. While we were not able even to construet such acounter-
.example our approach to this problem led to some information concern-
ing 1-structure which is of some interest. We prove in Section 3 below
that the examples of James (which depend on some parameter) are in
@ sense almost as far as possible from containing ¥ with % large. More
precisely, we prove in the terminology of [5] (cf. Section 8 for the precise
.definition) that for every p < 2 thereis a non-superreflexive space of type p.
The question due to. Rosenthal of whether a non-superreflexive space can

“have the best possible type, i.e. p = 2, remains open (some positive partial

results on this question are given in [67]).

In the fourth and last section of this paper we consider transfinite
.duals. For a Banach space X and an even ordinal « the ath conjugate X
of X is defined inductively by the relations X°* = (X9 and X°

= Completion of (J X? whenever « is & limit ordinal (we always identify

B<a
Aeveon

;& Banach space with its canonical image in its second dual and thus the
-definition of X* for a a limit ordinal makes sense). In [1] it wax proved
that for every non-reflexive Banach space X the space X2/ X® iy infi-
nite-dimensional (where w iy the first infinite ordinal). We show here
-that for every such X the space X°*+*/X*" is non-separable. This result
-gives a simple way to construet for every non-retlexive space X o separable

space Y so that ¥ iy finitely represented in X and ¥** is not separable.

It follows e.g. from this and the result of Section 3 that for every p < 2
there is a separable space of type p whose second dual is non-separable.

Ooncerning notation, let us only recall here the definition of the
;terms finitely represented and superreflexive which appeared 'already
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several times above. A Banach space X is said to be finitely represented in ¥
if for every finite-dimensional subspace B of X and any &> 0 there is
a subspace ¢ of ¥ and an invertible operator 7' from B onto ¢ so that
ITIHT < L+¢ (ie. d(B, 0) <1-+¢). A Banach space X is called super- '
reflemive if every Banach space X which iy finitely represented in Y is
reflexive.

2. Spaces with k-structure. Recall [1] that a Banach space X admits
o local k-structure if there is a constant M such that for all » there are bi-
orthogonal systems {&; . ..} = X, {fy . .4} S X" 1< 4,0, .00y iy <0 80
that

(2.1) Hfil,...,i,ull <M, “ le 22 Zk mv',l,iz,....ik!

1)=1 dg=1 ip=1

<M

for all 1< ry, 7y, ..., 7, <n. A space. has global k-structure if there is
a single infinite biortogonal system {®i,,....500 fiy,...0,} 80 that (2.1) holds.
It was observed in [1] that every space with loeal k-structure has, finitely
represented in ib, & space with global k-structure. In what follows, we
assume therefore that the spaces with k-structure actually admit a global
k-structure.

Besides the notion of finite representability it will be convenient
o use here & weaker notion. A Banach space X is said to be weakly finitely
represented in Y if for every finite-dimensional subspace B of X and every

‘e > 0 there is a finite-dimensional subspace € of ¥ and a quotient space B’

of O so that d(B, B’)<1+e For the question of existence of almost
isometric copies of I the notion of weakly finitely representable is well
suited. Indeed it is a trivial fact that if a quotient space of a space ¢
containg isometric (or almost isometric) copies of 17 for some n; the same
is true for O itself.

Our first theorem produces for every space X which admits a k-struc-
ture a k-dimensional matrix space which is, on the one hand, weakly finitely
represented in X and, on the other hand, has certain nice regularity prop-
erties which facilitate the study of the existence or non existence of
copies of I in such spaces. For the sake of simplicity of notation we rest-
riet ourselves to the case & =2 even in the statement of the theorem.
The reader should however find no difficulty in generalizing the state-
ment of the theorem and its proof to arbitrary k.

TamoreM 1. Let X be o Banach space admitting o 2-structure. Let
WA be the linear space of matrices A = (@, with only finitely many
non-zero entries. Then there is a norm |||l on W so that (A, | |) s weakly
finitely vepresented in X and so that

(a) If A, BeW and A is o submatrin of B, then |A| < |Bll. By “sub-
matria” we understand the following: there are 0 < py < p,<...<p,,

8 — Studla Mathematica LVIIL 2
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0<g1<q2<... < g, Such that a;; :‘:b.’piaﬂj for1<<ign, 1<j<mand
a;,; =0 if i>n or j>m.

(b) If BeUis obtained from AW by repeating o row or a column, then
4l = |IBl. We say, e.g., that A is obtained from B by repeatmg a row if
there is am integer 0 < p so that a;; = by, if i < P, a0y = b, Ly i i>p.

(e) 14l =1, where a;; =1 if ¢ =j =1 and a,; =0 otherwise.

Proof. First, we define a sequence of seminorms on U as follows:

For Acl,m,pi<Pe< e K Pony TS W< one S My, 166

2.2)  8(m, (), (=), 4)
= {BeX] fiy(2) =t Dop1 < < Dagy Topa <f<ay, LKk I<m}
and

(2.3) E(m, (9:), (m), 4) = in{llw]| @8 {m, (p), (), 4)}-

(Tt will be useful later to notice that, if q X->X|Y is the quotient map

with kernel ¥ ={y| fy(¥) =0, Popa < S Pyppiyy Mgy S J S0y, 1T,
1< m}, then
Pog g

K(m, (py), ( m), 4) = HQ( y 2 2 ‘”"’") ”

=1 7ﬂ=10m'—1 Imygen1
Now define
(24) K(m,A) = lim lm... lim lim... lim E(m,(p,), (m), 4).

P10 Dy>0 Dogy—r00 R—>00 Ty 00

Remark. A similar definition occurred in [1] without verification. of
its existence. 'We remedy that situation here.

LinmmA 1. For each m, and each A<, K (m, A) ewists.

Proof. By virtue of the fact that (my;fy) is a 2-structure,

< Sil] 3 3o

Dot W3j—1

(2.5  K{m,(p), () <4MZ|%.|,

so for each m, 4, it is certain that

E(m,4) = lim lm ... lim K(m, (p), (m), A)

1’1""’00 2)2"700 Tygp—ro0

exists. We simply show that these liminf’s are actually limits. Let e > 0.
Pick p; so that

|E(m, 4)—lim... lim lim ... im K(m, (p), (m), 4)| <e.

Dy Dy MH®  Mymco
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Let 7, > p, and then successively pick s,, s,, 50 that 7, < 81 << sy and

|E(m, A)—lim Hm ... lim ... Lim K (m, (s;), (e;), 4)| < e.

S B0 gm0 ogpmeo
Oontinue in this way selecting (1), (,), (s;), (%), (0;), (6;) so that
|E(m, A)—K(m, (p,), (), 4)| <&, |K(m, 4) —E(m, (s;), (a)), 4)| <&
and so that for each 1, j,

[Paim1s Pacl X [y 15 70351 2 [Paimy 72 X (02150051 2 8241y 8231 X [00y, 0]
Since weS{m, (v}, (7)), 4) implies we8(m, (r:), (¢;), 4), it follows that
X (m, (p2), (v), 4) = E{m, (), (e), 4).

Similarly, A
E(m, (r,), (e), 4) < E(m, (s5), (0y), A).
It follows that
K(m, A)+e> K (m, (1), (¢;), 4) > E(m, A)—

This completes the proof.

To see that each K (m, -) is a seminorm, first note that positive homo-
geneity is trivial. In the definition of K (m, -), since limits are used, it
is possible to select p, < ... < Py, then =y < ... < @, inductively (given.
&> 0) so that

| (m,, A)—E (m, (p,), (m;), A)| <&, |E(m,B)—E(m,(p,), (m), B < e
and .
|E(m, A+B)—K(m, (p;), (m), A+B)| <e.
However, it is immediate that
(2.6) E(m, (p), (), A+B) < K(m, (p,), (), )+ K (m, (p,), (x), B)
so0 that
I(m, A+B)< K(m, A)+E(m, B)+3¢,

proving the triangle inequality.
We now define the desired norm on U by |4 = th (m, A). Since
®y; fy) is a 2-structure, we have
@7 ¢ M max|ay) < (A< 43 Y lay).

Next, we note that K(m+1, 4) = K(m, A) (so the limsup in the defini-
tion is actually a limit). To see this, let ¢> 0 and choose p; < p, < ...
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e K Pon K Pomi1 S Pomys SO that both

(2.8) |E(m, 4)— lim ... lm E(m, (p)i%, (w), 4)] <e
ﬂl—H)O HZM—)OO

and

(2.9)  |[E(m+1,4)—lim ... Hm K(m, (p)i%", (7)), 4)) < e.

Ty—>r0 LOTTRE

This is possible since limits are involved. Similarly, choose m; < ... < Ty s
so that both :

210) | K(m, 4)—K(m, (p), (), 4)| <o and
|E(m+1, 4)—K(m-+1, (p), (1), 4)] <e.

It is clear that K(m+1, (), (w), A)>K(m, (p,), (=), A), proving
. the agsertion, since ¢ was arbitrary.

Now let U, < U be the subspace of matrices 4 such that ay; =0
for i or j > n. By the compactness of the hall in 1, || [[>, we have, for
any &> 0, an m such that for all A e, |4]|—K(m, 4) < e[l4d]. In fact,
for such m, e, (p)i™ and (m;)i™ can be chosen so that for A4e1l,,

(2.11) [hAl =K (m, (), (), 4)| < & 4]

" We are now in & position to prove the promised result.

The space has been defined. Let us verify (a). Let B = (by) with by
=0ifi>Morj>N.Let 1 4 <tp<... <l < Mand 1l <j; <fu< ...
o <Jp <N and let g =0by, for k<m, I<n, ay =0 for other &
and I.- Let ¢>0 and pick o so that |4]—K(c, 4)<e Pick z>0+
+max (M —m, N —mn) so that |Bl|— K (7, B) < &. Now successively choose
PiSPo< o S Poipoy =T1K Py =T3S -0 S Py 00d bhenmwy <o Sy,
= 01 Wy, = 02 :.. < 7y, 80 that both

(2.12) |E(z, B)— K|, (1), (m), B)| < &
and
(2.13) | K (v, 4)— K, (r), (o), 4)| < .

As before, these choices are possible since only limits are involved in the
definition of the quantities involved. It is clear that

K(""? (Da) (), B) = IEK(Ty (rs (00, -A)v

since )
S(T’ (p2)s (), B) = S:(‘ﬁ (74)5 (@), —A)~ &
This proves (1).
To see that (b) is valid, observe that by (a) it is enough to show

icm
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(b’) Let A and B be given such that ‘
by for i =1,...,%, and all j,

Oy == . .
for ¢ = k41, ..., n+1, and all §.

bio1g
Then (4] > |IB]. .
To see this, let N be given and select (p,), () and (5;), (#,) so

K(Na A) ~ »K(N: (.'pi)’ (”i)7 A) and

K(N+1, B) ~E(N+1,($), (%), B)

as follows: Let p, = §,fori =1, ..., 2k+1. Then Pick Py < Popss < Porss
for K(N-+1,B), and continue by picking DPoryr = Potya < oo < Popy
= Poprjsa < - < Pogvyyy for both. Now simply Ilet m =@ for j< 2N
and iy, K Fyis be good choices for K (N, A) and K(N +1, B). Once
again, by the conditions on 4 and B, and the choices of (p,), (75), (Ds)
and (i),

S(-N: (Ds), (1), A) = S(-N‘}‘l'y (ﬁi)y (ﬁn)yB)
50 that

(N, (p), (m), 4) < E(N+1, (B), (%), B)

and thus K(N, d)< K(N+1, B). Therefore, [[4A[|< ||B|l. This com-
pletes the verification of (b).

Finally, to see that <1, |-()> is weakly finitely represented in X,
let (p)i™ and (m,)¥™ be given increasing sequences of integers. Let

U = {zeX| fy(e) =fp2,-,n2]-(ﬂ’f') when py; ; <k < py; and

‘ YRR 1<7;’.7.<'”‘"}
and let V be the subspace of U determined by fpzi,,,zj(w) =0forl<i,j<<m.
By the compactness arguments noted earlier, if W is a finite-dimensional

subspace of U, and if &> 0, then there exist m, (p;) and (=;) so that for
all AdeW,

[l — K (m, (p;), (m), 4)] < ll4].

However, I (m, (p,),(m), 4) = llg(w)| where Togingy (@) = @ and ¢ is
the (uotient map of U onto U/V. Thus, W embeds e-isometrically into
UV, ie. W is sisometric to a subspace of a quotient of & subspace of X,
and is, therefore, e-isometrie to a subspace of a quotient of X. This
completes the proof of the theorem.

Before we proceed we single out a special instance of requirement
(b) in the theorem which we shall need soon. Let 4 = U and let 7 and s be
integers; wo denote by T, .4 the element of I obtained by first repeating .
thmes the first row of 4 and then repeating s times the first column. of 4,
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‘We have
{2.14) T, Al = [4ll, TnA(i+r,j+8) =A(,7).

We come now to the result mentioned already in the introduction.

TamorEM 2. Let X admit k-structure, let n be an integer and let & > 0.
Then there exist w* elements {””11 fa0 %}1‘11@ n X all of norm 1 so that
for every choice of LK Py, Fayenny T << 1 we hawe

(2.15) “ Z . ﬁ' 6" (43) 0" (3a) «v . 0 (4 By y,....1

4y=1 12=1 Apg=1

’n'—-B

where 67(5) =1 if ¢ r and 67(1) = —L if i > 1.

Proof. We shall present the proof only in the case & = 2. In view
of Theorem 1 it is easily seen that it is enough tio prove the present theorem
for matrix spaces satisfying (a)—(c) of Theorem 1.

Let & > 0 and an integer n be glven For every integer m consider

the matrix 4™ defined by
(—1)H it i<, j<m

¥ ™, §) =
(2.16) A™, §) 0 otherwise.

By Theorem 1 we have that the 4, = [|A™| satisfy

(2.17) 1=L<h< €<y, Aysmi

Hence there iy an integer m so that

(2.18) Aoy > (2 &) 2.

Congider now the matrix 4™ which is obtained from A™ by repeating
each of ity rows and columns » times

(2.19) LA™ = LA™ = 2y,

(2.20) A™(4,§) = (=1 i (m—LEk<i<nk, (n—1I<j<nl

We claim that the n? veetors {I'yA™"|A,}t.. have the required
properties. By (2.14) and (2.19) these vectors arve all of norm. L. We have
to check that (2.15) holds. Pick any L < 7, § < n and lot 07(¢) = Lif i<,
= —1if ¢ > and similacly 0°(j) == L it j<s, = L il j > 8. By (2.14)
and (2.20) we get that for ISk m—1 and 1 <l Km1

n ki3
@21) D' D0(0) 6 () Ty A™ (ke tr — 1, In s —1) = (— 1)+

p=1 =1
since every term in this double sum is equal to (—1)**% Tlence by The-
orem 1 (see (a) there) it follows that it we divide the left-hand side of
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(2.21) by 4, we get a vector whose norm is > lm_lfnzllm whieh by (2.18)
iy >n2—¢ as required.

CoROLLARY 1. A space with 2-structure contains almost isometric copies
of 1.

Proof. Use (2.15) with k¥ = 2 and » = 4. Consider the vectors 3,

Dy,9y @34 a0d @y, By letting 1 <7< 4, 1 <5< 4; then the 16 triples of
signs

(2.22) & =0(2)6°(2), & =0"(3)0°(4), & = 0'(4)0°(3)
contain among them all the 8 possible different choices of signs ;= +1.

Since 6"(1)6°(1) = 1 for all » and s we get this by (2.15) that for every
choice of signs {e}7_, we have

{(2.23) 9,1+ 3 5 + 3% 4 + 8,8 5l 2 4 — &

and this proves our assertion (observe that in (2.15) every partial sum of
say m terms of the left-hand side must, by the triangle inequality, have
norm = m — g).

This method of proof will not produce almost isometric copies of If
in spaces with 2-structure. In order to see this one has only to verify that
there is no choice of a permutation o of {1, 2, ..., 5} so that if we put

(2.24) & = 07(1)6°(0(d), 1<i<B,

then the 25 possible choices of 1< 7, s< 5 will not produce all the 16
possible- different choices of {g}5., in which & = 1. We have checked
all the permutations o and verified that they do not work.

For general k we get from Theorem 2 the following

COROLLARY 2. Every Banach space X with k-structure contains almost
isometric copies of I3 if the following is true.

There emist T permutations oy, 6y, ..., 05 of {1,2,...,n} (o, can
always be taken as the identity) so that the n® choices of 1 < vy, 1g,y ooy 1< 1
produce, by putting

(2.25) & = 0" (03(0) 6% (0,(4) ... 0™(an(0)); 1< i< m,

all the possible 2" choices of signs {e;}\, in which & = 1.

The question which I are actually insured by our method in spaces
with J-strueture is thus reduced to a purely combinatorial problem. We
have not studied this problem in any detail simply because we have no
evidence which shows that our method of proof is really the most efficient
one for finding 17 subspaces in spaces with k-structure.

‘We make only two trivial comments. It is clear that an upper bound
on the n obtainable by our method is given by the requirement that
n* 2271, Mence n is ab most of the order of magnitude klogk. By taking
0y = 0y == ... = 0y, == identity we get that the condition in Corollary
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2 holds for n
in [1]))

Among the many problems related to this section which remain open,
the ones of major interest to us are those connected with two structure.
Here arve some of them

1. Does there exist a space admitting 2-structure which does not
contain almost isometric copies of 5% In fact does there exist a space
with 2-structure which does not contain almost isometric copies of I
for some %% (this latter question is equivalent to asking the existence
of a space admitting 2-structure but not 3-structure).

A particular case of problem 1 is

2. Does there exist a eross norm o and a non-reflexive space X such
that X®,X does not admit 3-structure (as observed in [1], X ®,X always
admits 2-structure).

3. Let X be a Banach space such that any space isomorphic to X
contains almost isometric copies of I3. Must X admit 2-structure or at
least must X contain almost isometric copies of 147

= k-1 but no larger ;'n, (This {is ‘the situation discussed

3. On the type of non-superreflexive spaces. We begin by recalling
a construction of R. C. James [4], [3]. Consider the linear space of real-
valued finitely supported functions on the positive integers N. By a “bump”
we mean any function which is equal to some non zero congtant on one
interval of integers and is equal to 0 outside this interval. The absolute
value of this constant is called the magnitude of the bump. Two bumps
are said to be disjoint if the intervals on which they are non zero are
disjoint. Let 1 < ¢ < oo and consider the functional ¢ defined by

e(y)=inf(§mj[(}1 12‘ ) (H ih) ])w

foal

(3.1)

where the infimum is taken over all the representations of y as _Z # with
]’ -l

each 2’ a sum of m; disjoint buwaps of magnitude h; and H == 2, Iy, The
|

functional ¢ does not.satisty the triangle inequality and in order to work
with an actual norm we detine further

1
]| = ing Z (1",
Joml

where the infimum is taken over all possible representations o =

(8.2)

i
2

qwal,
The space of finitely supported sequences with the norm given by
(3.2) will be denoted by X (the exponent ¢ will e fixed throughout the
argument and so we do not add it to the notation of X). As observed

icm
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in [3] it is very easy to check that (3.2) actually defines a norm and that.
the completion of X is not reflexive.

For future use we make now an observation on the posmbﬂmy of
writing an element y <X ag 32’ with each #' being a sum of disjoint bumps..

Let y be a finitely supported function on I whose values are integers.
(positive or negative) whose maximal absolute value is n. Then if we put.

1 it y@) =],
—1 it y(i) < —4,

0 otherwise,

(3:3) #(i) = 1<j<mn,

we get that

n

y =D

j=1 :
and each 2’ is a sum of disjoint bumps of magnitude 1. It is clear that:
if y is constant on some interval, the same is true for every #’. Thus if"
there are m intervals of integers so that on any one of them y is constant.
and y vanishes outside these intervalg, then the number of disjoint bumps.
in each 2’ is at most m.

Our aim in this section is to show that the space X is of type-

o1yt

(—— + -q-) —¢ for every & > 0. In other words if.-we put

2

(3.4)

1
(3.5) el S
?

then for every &> 0 there is a constant C(e) so that for any choice of
{2}t in X we have

(8.6) f ka7 (8) + @ara () + o +ore (D)1 dE < 0(a)(2 Y o R

f=]1
where 7,(t) denote the usual Rademacher functions on [0, 1]. The mtegra,];
appearing on the left-hand side is nothing but the average¥of || 20¢w¢]|

taken over all the possible 2* choices of signs 0; (i.e. 6] = +1).
As observed in [B] it iy enough to prove (3.6) in the case where |l

= gl == ..v = [} = 1. In this case (3.6) takes the form
1k

(3.7) J “ L\j @ty H dt < 0(e) Fu@=2
0 4=l

Another simple reduction is obtained by remarking that it is possible
to replace in the assumption | || by . That is, it is enough to show that,
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if fw}e.,eX with o(e;) =1 for all ¢ then (3.7) holds. Indeed, ii {m) e X

with ] =1 for all 4, then for every 8 <0 there are {yi};%, so that

2, = Syl and Yo(y)<1+4. Since ¢ is positively homogeneous, there
7 7

is no logs of generality to assume that n, = ny = ... = 0y, = n, say, and
oyl) = o(y) = ... = o(y}) = ¢, say. Thus if we can show that for
avery j

"
(3.8) ]| >vir “ @t < 0(e) o/ 10—

0 =1

we get that also (3.7) holds by the triangle inequality for |-}, the fact
that Yo' <1+ 6 and since &> 0 was arbitrary.
7

We pass to the proof of (3.7) under the assumption that o(a) =1
for every ¢. In order not to complicate the notations in the proof by
using again an arbitrary é > 0 we begin by observing that the inf in (3.1)
is actually attained (we can restrict all vectors to the suppoﬂ; of y which

is finite). Hence for every ¢ we have a representation @; == > 2/ in which
' K

the infimmum in (3.1) is attained. In view of the telescopic nature of the
right-band side of (3.1) this side does not change if we break up a term 2/
‘which is a sum of m; disjoint bumps of magnitude h; into two sums of m,
disjoint bumps of magnitude, k;and (1 — 1) hy, respectively, where 0 < 1 < 1.
Also if we agree to allow in (3.1) dummy summands (i.e. 2’ for which
am; == 0) then we see that without logs of generality we may assume that
.all the n; are equal and that for a fixed j the magnitude of the bumps
in 2 are all equal to hy, say. Hence we have

(8.9) @; =2n;'z;1, 1= f]midj, 1<i<h,
-where = j_l
. -1 )
(3.10) b = (E— 3 W)~ (H— D mff
. =5 lea]

cand 2f is the sum of m{ disjoint bumps of magnitude Ry
Fix now an integer 1< § < » and consider the & vectors {2}%., . liach ¢!
.determines 2m] integers which are the end points of the bumps appearing
in 2{. The number of all the end points we gel by considering all the %
%
vectors is thus at most 2 3 mi (the actual nmmber may be smaller since
drm] .
-the same integer may serve as an end point of a bumyp in z{l and z,{2 with
4y #1). Thus the set N of integers contains my disjoint intervaly with
I
&
({3.11) | m; < 2 )_4 m]

dwal
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80 that on each of these intervals every one of the vectors 2] takes a constant

value (which is either --k; or —% or 0) and outside these intervals all

the {#{}i_, vanish. Consider now one of those m; intervals and consider
&

the value of 3 lr,(¢) on this interval. By a basic fact concerning the
de=1

Bernoulli distribution we get that for every > 0 there is a function

J(k, &) (depending only on % and &) so that

k
(3.12) mfs; IZzgri(t)’ > Iy k"¢ on the given intervall <f(e, k),
=1

‘where
(3.13) lim f(e, k)%* =0 for every fixed £ > 0 and integer s,
Je->00
and m{ } denotes the Lesbegue measure on [0, 1] (in fact, by the central
limit theorem f(e, k) is of the order of magnitude of e—#*). ’

By using a trivial (i.e. discrete) version of Fubini’s theorem, we get
from (3.12) that if

(3.14) 4; = {t; the number of intervals, among the m; intervals, we singled
B
out, on which | ' #ir;(8)| > b&'*+* is larger than mVf(s, k)}
i=1
then
(3.15) : m(4;) < Vf(e, k).

For each te[0,1] we define now veetors {u,; .., {v %, and
{4351 50 that

(3.16) I = [FH+e],
k 1 k k
(3.17) 231"&(” = 2 us,j,l+2vi,j,t+zwi,j,t
g=1 8=2] ge=l =]

;f:mﬁevery 1<j<n and every te[0, 1].
These vectors are defined as follows. If t4;, we put

Mgy, = Vyge =0 and  wy, = &fry(t).
If t¢.4,, we pub w,;; = 0 and in order to define the other vectors we recall
that by the definition of 4; we may write )

It

(3.18) D ant) = utv

Tms]

where w and » are disjointly supported, at every point the value of «
and o I8 an integer (positive or negative) multiple of I;, the absolute
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value of w s at most th; while that of v iy at most %&-%;. Moreover, the inte-
gers contain at most my (resp. Vi, &)+my) intervals on each of which
(xesp. ») is constant and outside which « (resp. v) vanish. The vectors u,,,
(vesp. v;;,) are now obtained by decomposing % (resp. v) into a sumn of
vectors, each vector being a disjoint union of bumps of magnitude h,,
by the procedure explained in (3.3) and (3.4). Summing up we have that
each one of the vectors 4, ;,, 054 and w;,, Is a disjoint union of bumps
of magnitude %;, and

The number of bumps in %, I8 < my,
< VF(k, &)my,

The number of bumps in w,,, is 1 Aj(t)-w&{

(8.19) The number of bumps in v;,, is

(1, denotes the characteristic function of the set .4).
Put now

. ! W
Wiy = Zwm,r

n n
(3.20) Ug,g = Zus,j,t’ Vig = sz',j,t;
J=1 Jral Jaal
Then by (3.9), (3.17) and (3.20),
I k. n
(8.21) Dagi(t) = 3 Melrt)
g=1 fe=]) feml
n 11 _
=2(2u&j, -I—va’,‘, | w{,j,)
© f=l g=sl
z
= sH‘Z’ULH Zwu
s==1 iml feml
Hence
e i
(3.22) » S’w () H m,) F ) o)+ Y oty
Fean ], JMI

For a fixed integer s we have by (8.1
that

) (8:9), (3.11), (8.19) and (3.20)

)< (ﬁ’m,dj)”“r:\: (2 \’ \.1 ,de)w < (2k)'e,

J=1 lmﬁl jml

(3.23) o(t,
Also for a fixed i we have by the same equations that

(3.24) vy g(z Vi(k, eymyd)"

Je=l

< f(lo, s)H2a (20) Y2,
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Hence by (3.13), (3. 16) (3.23) and (3.24) we have for every tef0, 1]

1
(3.25) D elts) + ZQ’UH (2R LR+ 41 (s,
LR i=1

which is of the order of magnitude required in (3.7) (recall (3.5), the &
in (3.25) is not necessarily the same as the one in (3.7)).

In order to complete the proof of (3.7) we have to show that also
the third term in the right-hand side of (3.22) is small. This term is not
small for every ¢, only ifs integral over [0, 1] is small but this is exactly
what (3.7) requires. We have by (3.1), (3.9), (3.18), (3.19) and (3.20) that

1 & k1 n
321) [ Yo(wyat< Zf(ZlAj(t)-mfdj)”th
0 i=
Z(fZM m’djdt)1/q<2(2mjd)/q Flk, &) K - f(k, &)

1
I L3
i=1 0
and this completes the proof of (3.7). Thus we proved the following
TumorEM 3. For every p <2 there is a non-superreflexive Banach space
of type p.
Remarks. (1) As we mentioned in the introduction it is an open
problem whether there is a non-superreflexive space of type 2 (ef. [6]).
(2) The point where the proof of the theorem fails if one tries to carry
it over to the 2-structure situation is the following. Suppose we have
functions {#,}}., defined on N x N each consisting of M d13301nt rect-

angular bumps of magnitude 1. By considering a sum of the form 2 +a;

and decomposing it into a sum 2 2 by using (3.3) then the number of-
j=1

disjoint rectangular bumps appearing in each 2/ may be of the order
&

of magnitude of (2 m;)* instead of 2 my;. This fact will ruin the estimates

Ic
in the case where Zm > k. In other words, there seems o be no way

1o decompose econmmcally a sum of the form 2 -, into another sum.
i=
of disjoint bumps even in situations where we know that sup |2 L]

is much smaller than % (i.e. if the order of magnitude of k). The possﬂn-
lity of doing just this in the one-dimensional case was the key to our
proof of Theorem 3. Ag a matter of faet, the authors seem to have con-
vinced themselves (however without writing down a detailed proof) that if
wo use the space defined in this section by changing just ¥ to Nx N

and. replacing the word “interval” by “rectangle” then this space will

contain for any ¢ almost isometric copies of ¥ for every k.
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4. Transfinite duals. In this section we show that if X iy separable
but not reflexive then there is an even ordinal a such that X iy separable
but (X4** = X*** is no longer separable. The interest in such a result
stems from the fact that by the principle of local reflexivity X iy finitely
represented in X. Thus, while the results of [1] and the example in [3]
(or Section 8 above) show that in general it is not possible to effect the
reflexivity of X™/X by passing to spaces finitely represented in X, we
can, by simply using transfinite duals, change the density character of
X™X (provided of course that X iy mot reflexive). The definition of
the transfinite duals was given already in the introduction. Let us just.
recall that we always consider a space X ag embedded canonically in X**.
Hence for every pair of even ordinals a < f there is a canonieal embedding:
of X%in X*. The samne is true for a pair of odd ordinals (for an even ordinal ¢
we define Xt = (X%* Limit ordinaly are for omr purposes even butb
not odd ordinals). If weX® with o even and feX” with g odd the evalua-
tion of f at @ is well defined (i.e. in view of our identifications it depends.
just on 2 and f but not on the particular choice of o and f).

. 2.9 .
THEOREM 4. Let X be a non-reflewive Banach space. Then X°+* is
non-separable.

Proof. We shall prove the theorem by assigning to every point
o in the Cantor set 4 a point @, in X*** go that 76, — @, |l 2 12 for
every o, # oy.

The starting point of the construction is the well-known fact that
for a non-reflexive space X there is a sequence {@,}m.; in X and {f,}3,
in X* such that

1, mzmn,
(4.1) leals Ifull <2 for all m,  f (@) = 0, m<n.

Starting with the points {»,} we shall construet inductively for every
pair (¢, #), where o is an end point of the Cantor set (i.e. oe 4 and o = j/3%)
and n an integer, & point &, of norm <2 in & certain even conjugate
of X. In order fo describe the properties of tho points we choose, we
first introduce some notation. If ¢ ==j/8" iy an end point of A and j§
ig prime to 3, we call k the Tewel of ¢ and denote thiy by & = (o). Next:
we introduce a linear order relation < on the sets of pavis (oy M); Wer
congider

(o1 M) < (o9, Mg) I oy <oy and ny, ny arbitrarvy;
it oy = 0y = j/3%, then
if my < my and § even,

18%, ) < (§/3%, m
(8% ma) < G187 M) N oo e and i,
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The points ., will be constructed by induction on the level
of o. All the points @, with (o) <%k will be contained in X®+1e,
The essential property of these points will be that for every (o, n) with
U(0) <k there is an f, ,e(XEHe)x = Flhtlotl 4o thaf Ifomll < 2 and
0 it (z,m) < (o,mn),

1 it (v,m)=(o,n)
for every pair (v, m) with (7)< k.

We start the inductive construction with level 0, i.e. with o = 0
or o = 1.

We put #,, = x, for every integer m. As @(3,). We choose any point
in X* which is a limit point with respect to the w* topology induced
by X*™ 1 of the sequence {m,}n_,. By definition, the pairs (0, n) and
(1, m) are ordered as follows: (0, %) < (1, m) for all n and m, (0, %) < (0, m)
if m < and (1,n) > (1, m) if n < m. It is clear that the points we con-
structed are all of norm < 2. We have to construct the functionals Siomy-
A$ fiony We can simply take the given functionals f,. As Somy We take
any limit point in X**** in the w* topology induced by X of the sequence
{fnbm=1- Tt is easily vervified that with these definitions (4.2) is satistied
for & = 0. Next we define the points By With I{o) = 1, i.e. for ¢ =1/3.
and ¢ = 2/3. We put

(4.2) f(u,n) (@,m) =

By, = & w* limit point in X°**" of {wy ke,

Dojsmy = & w* limit point in X of {my 1%, .

The limit points are with respect to the w* topology induced by X«+n—1,
In general the definition is as follows. Let I(0) = &, i.e. ¢ = §/3" with §
prime to 3 (and as always o belongs to the Cantor set 4). Pus

(4.3) Blamy = & w¥ limit point in X**H of {1

where o* == (§—1)/3% if § is 0dd and o* = (j+-1)/3% if j is even. (Observe
that with choice of o* we have that o*<4 and I(o*) < & so the right-hand
side of (4.3) makes sense.) It is clear that the @,, have all norm < 2. The
functionals fi,, are defined inductively in a similar way. We put

(4.4) Sy = & 20 limit point in XFe+ntt of (f , e

It i trivial to verify Dy induction on & that with the definitions (4.3) and
(4.4) the relation (4.2) holds. ) .

Having constructed the @y, in X for every end point oed and
every integer » we define now points @, in X for every o e A as follows.
For any such o pick » sequence {o;}72., of end points in 4 so that ¢—~o
and let @, be any w* limit point (with respect to the topology induced
by XM of the sequence {#(g,n)5m1 - Similarly let f, X+ be any w*
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‘limit point (with respect to the topology induced by X“’z"‘”) of { f(,,j,l)};gl,
Then .
1 ifr>0,

(4.5) ol Wl <25 folw) =3 0 Lo

In particular, o, — o,/ = 1/2 for every oy 0y, and this concludes the
proof of the theorem. .
COROLLARY L. Hor cvery separable non-reflewive Banach space X there
s an ordinal a (o < w®) so that X* is separable but X is non-separable.
Proof. Let § be the first even ordinal so that X* is non-separable.
Then < w?+2 and # cannot be a limit ordinal. Ifence f = a -2 and
‘this a has the desired property.
' COROLLARY 2. Tor every non-reflevive Banach space X the quotient
.space XX is non-separable. !

Proof. Use Corollary 1, the fact that if ¥ < X then ™V iy ivo-
morphic to a subspace of X**/X and that every non-reflexive space has
2 geparable non-reflexive subspace.

It was observed in [1] that if J is the classical example of James
for a quasireflexive space then J*' is separable. This shows that the
-ordinals appearing in Theorem. 4 and its corollaries ave the best possible
(i.e. cannot be replaced in general by smaller ordinals),

Added in proof: J. Farahat rocently oxtendod the result of Seetion 3 by
proving that, for every integer k and every p<2, there is a space with k-stracture

and type p. Hence, for every k, there is a space with k-structure which does
not have k- 1-structure. ’
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On the best constants in the Khinchin inequality*
by ‘
8. J, SZAREK (Warszawa)

Abstract. Let (r;) denote the sequence of Rademacher functions. It is shown that

1 oo -
of]];: Oi’fj(t)!dt > 7% (jé; ]c{|2)1/2

or every square summable sequence of scalars (¢;). The constant 1 /1/5 is the best
the largest) possible.

1. Introduction. Let 7, denote the nth Rademacher function, i.e.
7, () = signsin2"nt  for 0<<I<1l (n=1,2,...).

The clagsical Khinchin inequality states that, for every pe[l, o), there
exist positive constants a, and b, such that, for every finite sequence
of sealars (¢;) , N

(0) ap(z |oj|2)1/2 < (j‘ ‘2 ij”j(t)lp dt}”ﬁ < bp (12,1 [b‘jlz)l/z.

Let us denote by 4, and B, respectively, the largest a, and the smallest 3,
satisfying (0). B. Tomaszewski has observed that the values of .4, and B,
are independent of the choice of the scalar field, i.e. they are the same for
real sequences as well as for complex sequences (cf. also Remark 3 in
Section 3).

Thercfore in the sequel we shall consider inequality (0) for real se-
quences only.

Ohbviously, 4, =1 for p>2 and B, =1 for 1< p < 2. Stetkin [6]
has shown that ‘

By = ((2m—1)1"™  for m =1,2,3,...

* This is 8 part of the author’s masters thesis written under the supervision of
Professor A. Polezyiski at the Warmsaw University.
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