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STUDIA MATHEMATICA 97 (1) {1990)

An equivalent measure for some
nonsingular transformations and application

by
L ABSANI {Chapel Hill, N.C)) and [ 1. WOS| (Wroctaw)

Abstract. Let (2, a, ») be a finite measure space and ¢ a nonsingular transformation on (€2, a,
H) ic, n(d) = 0= u(p"'(4)) = 0. We characterize those transformations for which the pointwise
ergodic thcorem holds in I, 1 < p < co, by a condition (M,). This extends results of C
Ryll-Nardzewski and 8. Gladysz. The condition (M) also characterizes thase invertible transfor-
mations for which Kingman's subadditive theorem holds. An example is given showing the
importance of the invertibility assumption.

Introduction. Let (2,-¢, 1) be a finite measure space, and ¢ a nonsingular
transformation on (@, a, p), ie., u(d) = 0= pu(p " (4)) = 0. If ¢ is invertible
then we will assume that pu(d) =0<=pu{p~"(4))=0. For 1<p< o we
assume that the operator T defined by Tf = fo @ maps IF (i) into I (). We say
that T satisfies the pointwise ergodic theorem (P.E.T.) in IF (1) if for any f e I7 (1)
there exists f*<I?{u) such that M (T)f conmverges ae. to f* where

M TV = (f+Tf+ ... +T 1 f)n.
We first prove that if ¢ satisfies the condition

(i} 3k > @ such that for any A=a

' A ~l(4
lim sup “4 )+ p (o™  (A)+
n n+1
then there exists a finite invariant measure m absolutely continuous with
respect to p. If ¢ is invertible then m is equivalent to . When ¢ is invertible the
last result also follows from a theorem of Y. N. Dowker [3] (see also

K. Jacobs [7, p. 99]).
We will use our proof to show that (for invertible @) T satisfies the P.ET. in

I# (1) if and only if

+”((P-_n(A)) < k(#(‘A))IIP

(i) as above,
(i) iminf M, (T*}he ! for all helf, (y)

(where 1/p+1/g=1).

(M)
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The condition (M,) is equivalent to the condition (H) of 5. Hartman
discussed in [12] ((i) = (ii) in this case). The example given in [12] can also be
used to prove that (M) does not imply that T is mean bounded in If(u), ie.,
sup, | M, (T}, < co. It is not difficult to see that if T is mean bounded in I (1)
then T satisfies (M ). Hence our characterization extends Theorem 1 in [12]
and generalizes an earlier result obtained in [1], in the invertible case.
Examples 1 and 2 of 8. Gladysz [4] show that conditions (i} or (ii) cannot be
dropped. We also improve part of S. Gladysz’s result in Theorem 4.

Under the condition (M) the system (Q, a, x, ) is not only A.M.S.
(asymptotically mean stationary in the termincleogy of [5]), i.e.,

m(A)=lim”(A)+“(ff’“1(A))+ . +uf{pT"(A)

n PT""l"‘].

exists for all A 4, but also the Radon-Nikodym derivative dm/du = v} belongs
to 17 (w).

We give an application of this. It deals with the subadditive ergodic
theorem of I. F. C. Kingman [8], [9]. We show that (M) characterizes also
those invertible nonsingular transformations for which for any subadditive
sequence (f), 1.6 f4m < fi4-f,00" for all positive integers n, m, we have the
pointwise convergence of f,/m in IP (w).

At the end of this paper we give an example of a continuous function ¢ on
[0, 1] which induces a noninvertible transformation such that the operator T,
Tf = fop, satisfies sup,so |7, < 2. This transformation does not have
a finite invariant measure v equivalent to g, and the operator T satisfies (M}
for all 1 <p < co. This example is also used to show that there exists a
subadditive sequence f, such that sup, | f,/n]| < co and f,/n does not converge a.e.

Remarks. W. Rechard [11, p. 486] and Y. Ito [6, p. 178] had also
examples showing the importance of the invertibility assumption in Theorem
1 for the existence of 4 {inite invariant equivalent measure,

We would like to thank F. J. Martin-Reyes for helping wvs simplify our
original example for which we had the same conclusions but the power
boundedness of T" was more delicate to prove.

The results

THEOREM 1. Let (@, a, ) be a finite measure space and ¢ a nonsingular
trangformation for which the operator Tf = foe maps I(0) into I?(u),
I <p< oo If o satisfies the condition

() 3k =0 such that for any Aeca

A+ ple  (A)+ ... e
(A)+u(e (31):1 +u(e ™" ))sk(,u(/l))‘”’

lima sup -

then there exists a finite invariant measure m absolutely continuous with respect

ey

. - @
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to w. If @ is invertible then m is given by

m(A)_Hm#(A)ﬂt(w"l(A))Jr < uleT(A)
l N n n+1

Proof Let LIM be a Banach limit, i.e., a functional on a set of bounded
sequences such that if {g,} and {b,} are bounded sequences we have

(N limkinfak < LIM({a}h) < 1imksup a.,
@ i {5} = {@ce1} then LIM ({n}) = LIM({ay}),
(3) LIM ({2} + B {b,}) = « LIM ({a,})+ S LIM ({b,}).

We then define for each set Aea

plA)+ ... M(qo‘"(A})'

m(A) = LIM —

By (1)-(3} and (i} we can see that m is a finite invariant countably additive
measure absolutely continuous with respeet to g

Let vf = dm/du and C = supp v, D = Q\ C. As in [1] we have a priori the
foliowing property:

(a) for almost all weC, @(w)eC,
(b) for almost all weD, In(w) such that ¢"*’ (w)eC.

This is because if on a set A = C with u(4) > 0 (and so m(4) > 0) we have
®(4) = D, then we would have A< ¢~ (D) and 0 <m(4d) <m(p '(D)=0.
Next, if (b) were false there would be a set 4 < ¢~ ! (D) with p(4) > 0 such that
©"(A) = D for all positive integers n. Then p{d) < u{p™"(D)) and

D)+ ... +ule (DY)

ol
<
0 < p(d) € liminf e

< m(D)=0.

So (a) and (b) are proved. ‘

By using Hopf's decomposition (see [10], p. 17), @ can be decomposed in
two disjoint parts C, and D, : on C,, @ is conservative and D, = { J7= _.. ¢’ (w}
where w is a wandering set. A measure preserving transformation being
conservative, we must have C, = C (u-a.e)) and so D, = D. But by (b) after
some iterates all points of D should return to €. This is a contradiction as all
points of D, stay in D,. So we have proved that u(D) = 0 and m is equivalent
to u. It remains to show that

. (A)+ ... +plp"(4)
7 n+41

I

exists and equals m(4). We observe that T* is an I’-positive contraction, ie.,
T*f=0if f >0 and | T*||, < 1. As T*(w§) = o}, v > 0, m being invariant,
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T* satisfies the mean ergodic theorem in ! (). (The set of functions /& I! (1)
such that f < Mv}, M > 0, MeR, is dense in I! (1) and the sequence M, (T*)f

is then uniformly integrable.) Hence lim M, (T*) 1 = h¥ exists in I! norm. So for
all Acsa we have -

i 1
hmIIAMn(T*)ldﬂnlimf At +]Aocp"d.“=j‘l,1h3‘d,u,
i " n+1
In particular,
liminfﬂ(A)-I_ - tule (A))=limsup'u(A)+ - Fulp T (4)
n+1 —
=m{4) by (1)
= [v§du
A

&
Hence v§ = h#. »

Remark. The assumption T: I? — I? is not necessary in the proof: we can
use the fact that T* can be extended to all nonnegative functions.

TurOREM 2. Let (Q, a, p) be u finite measure space and © an invertible
nonsingular transformation for which the operator Tf = fow maps I7(w) into
(), 1< p<co. The following are equivalent:

{A) T satisfies the pointwise ergodic theorem in IP (y).
(B) ¢ satisfies the following condition (M,):

M) () as in Theorem 1,
(M, () UminfM, (T*) () (w) for all ge L4, (1)
(where 1/p+1/g = 1)
Proof. We can assume that u(Q) = 1.
(A)==(B). If f* =a.e.lim M,(T) f then the operator R: f = f* is linear,

positive and maps I7 () into IP(z). So there exists a constant K such that
17*1, < K| fl, for all fel?(u). (i) of (B) follows by taking f = 1,; we have

! 1,4+ ... +1 "
hmsupj‘i‘—ﬁf—"&w—du < [limsup Lat ...:-1140(;)"
n
1,4+ +1,00"
becauge -2 4
( se P =1 ae)
< (f (lim sup.. ) du)'’"  (because u(Q) = 1)
<K([1,dg),

Equivalent measures for nonsinguiar transformations 3

To get (i), take feI¥X. We have for ge 5, ()
[f iminf M, (T*){g) dp < lim infij,,(T*)gdy (by Fatouw’s lemma)
= liminf { gM, (T)f dp < limsup [ gM(T) f du
< [limsupgM,(T) fdu  (because |M,(T)f |, < If1.)

S K| fh g,

So if we set g& = liminfM,(T*)g we have [fg5du<K|f|,lgll,.- By ap-
proximating fe&lf (u) by functions in I* we deduce that |g§|, < K g},

(B)=>(A). We know by Theorem 1 that because of (i) there exists an
equivalent finite invariant measure m given by

_ 1imy(A)+ o+ ufeT(A)
" n+l

Let v§ =dm/dp. We already observed in the proof of Theorem 1 that
v¥ =HmM,_ (T*)1 in I! norm. By [2], T* satislying the mean ergodic
theorem in [}, also satisfies the pointwise ergodic theorem. We have
vf = Hminf M {(T*)1 = lim M, (T*)1e ¥ (u} by (ii).

Hence for fel?(y) we have fel! (m) and by Birkhoff's classical ergodic
theorem M, (T)f converges ae. to f*elIl(m). It remains to' show that
frelf{u)

Let geli. (1), felfy (u). We set Ay = {w: limsup M, (T*}¢g < N} and
fi=/1 ~ k. We have

§ gliminf M, (T) (1, fi) du

m(A)

< liminf [ gM,, (T) (14 fi) dut

< limsup [ M, (T*)g- 14, frdu
< [limsup M, (T*)g- 14, g.dn
< g8 Lay il

We noticed that M, (T*)g converges ae. for all ge ! (y). By (i) we have
lim M, (T*)ge I4(u). So we have, as in the proof of (A)=(B), lg&il, < M |gll,
for all ge (). Thus the fast inequality gives us

[gliminf M, (T) (1, fddu < Mgl [1ay £,

We denote by (14, f)* the pointwise limit of M, (T)(1,, f)- The map
fel?{y)— f*eI! (m) being continuous, there exists K such that for all N and &

J o (lag f* du < K [ 1ay fill -
We deduce that ‘ :
(Lay S (Lay N 0%

the convergence being achieved by increasing sequences of functions. So
far*du< Mgl | fl, and I/, <MIf], =



icm

6 L Assani and J. Wos$

CoroLLARY 3. (I) If T satisfles the stochastic ergodic theorem in If (n) then
(i) holds and T* satisfies the pointwise ergodic theorem in IZ(f1).

(ITy Conversely, if (i) holds and if T* satisfies the stochastic ergodic theorem
in I%(p), then T satisfies the pointwise ergodic theorem in I ().

Proof. (I) We can easily see from the proof of Theorem 2 that in (1)
“pointwise” can be replaced by “stochastic”.

(II) It is known that for all f e I (), M, (T*)f converges stochastically and
the limit is equal to liminf M (T*)f for f = 0 (see U. Krengel [10]).

Remark. S. Gladysz gave two examples (I and 2 in [3]) from which we
can conclude that in Theorem 2 part (ii) cannot be dropped in condition (M )
(for p = 2). Moreover, in his Example 1, dm/dp = v 1¥(u) so that vie ¥ ()
does not imply the P.ET. in I¥(u). Furthermore, Example 2 shows that
condition (i) itself does not even imply that pel? for p=2

A part of Gladysz’s result can be improved as follows. We do not assume
that T maps [ into I¥.

TueoREM 4. Ler 1< p < oo and let ¢ be a nonsingular transformation on
(@, a, ). Then the following are equivalent:

() The operator Tf = foo satisfies the pointwise ergodic theorem in IT ().

(i) The system (@, a, u, @) is A.M.S. (asymptotically mean stationary), le.,

].IITIPU-(A)—(_ T _{_!u'((p—n(A))
-t n+.1

= m(A)

exists for all Aca, and m is absolutely continuous with respect to u and
dmfdu = v§e 4{y).
(iil) There exists a constant K such that

r—1

“(a) limsupn™! Y ule™8(A) < K(u(A)'F  for all Aca,
n k=0
(b) liminfM, (T*)1e I (u).
(iv) There exists K such that lim sup n’“lz‘:;;u(m”"(A)) < K (u{AN? for
all Aea and T* satisfies the stochastic (pointwise) ergodic theorem in L¥ ().

Proof (i)=(u). Iff* = lim M, (T)f a.e. then there exists a constant k such
that [|/*[|, < k[ f], for all fel?{y)
As |7, =1 it follows that

i) — tim AT - H (e (A)
n=on )’L+1

exists for all Aea and m(4) = j(lA)*d,u < k{u(A)M®. This shows that m is
a finite measure absolutely continuous with respect to. g As m{A)

Equivalent measures for nossingular transformations 7

=m(¢ ™ (A)). m is invariant and equals y on @-invariant sets (i.e, 1z = 1,-1p)-
We are going to prove that M, (T*)1 converges a.e. First, if C = supp v we can
see as in Theorem | that

{) if weC then @{w)eC,
(B if weQ\C =D then there exists n(w) such that " (w)eC.

This implies that @~ ' {D) < D and so for all ge L' (u), 1, M, {T*)g converges
a.e. (On the set B, = {w: 1,—T*1, >0} we have

Y Up=THINT* Ndue < + ¢,

pe=0
see for instance [5]). Now, v} being a fixed point of T%, the convergence on
C also follows (see [10]). Hence M,(T*)1 converges a.e. and as in Theorem
1 we conclude that o = lim M, (T*)}1 ae.

It remains to prove that v§cI?(u), This follows by using analogous

arguments to those used to establish (A) = (B) in Theorem 2. Starting with
fel® (i) we have

[ £ lim M, (T*) 1 dyu < liminf { f M (T#) 1 du
< [limsup M, (T) fdie < KIif 1.

Approximating f e If () by functions in L (u) we deduce that vfe ¥ (u).
(il) = (iii). (a) is clear because we have m (A) = j vl dp < ol (e (A)H?

( ( A))lfn
(b) For C = suppu¥ we have () and (f) as in the proof of (i) =-(ii), and
hence the a.e. convergence of M, (T*)g for all ge ! (u). Therefore M, (T*)1
converges a.e. to h§. We have for all Aea
{1, h5dp=(1,liminfM (T*)1du

< liminf [ 1, M, (T*) 1dy = m(4) = (1, v8dp.

-So

(H hE < vg.
If A4, = {w: limsup M, (T*)1 < N} we have Ay—Q and
[ 14 BE dp = j”lAthsupM,j(T*)lc,u llmqupflANM (T*) Ldu

= lim [ M, (T) 14, dp = [ 14y vl du.

So
(2 fhgdu = j'lAh ¥y for all N
and (2) imply that h§ = v§.
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(iii) = (ii). (a) implies by Theorem ! that
m(d) = Liv AT - +u(p™"(4)
n+1

is a finite invariant measure such that m < g and m = g on Pop, the @-invariant
sets. Again we have a decomposition of the space 2 with the properties (o} and

(B). This implies that M,(T*)y converges ae. for all gel(p. If
vf =lim M, (T*)1 ae, h§ = dm/du, Ay = {@: limsup M, (T*) 1< N} we have
A, ~ 8. First, for all 4 we have
{1 v8du < liminf [ M, (T)1,du < Loy AT :t&o (4))
n
< (1 hEdu
and ¥ < h¥ ae.
Then as in the proof of (ii) = (iii) we have
J1,, vkdu= le,,hmM (T*)1du = llmsupj'lAN M, (T*)1du
= m(AN) = j Ly B8 dy
and so v} = h¥eli{u). ‘
It remains to show that (Q,a,p, ¢) is AMS. We have
m(4) = [1 vk du < liminf [ M, (T)1,du < m(4) because
. Ay+ .o +p(eT" (A4 ‘
fim inf ! )_ nH“(“" ( ))sm(A)gumsup...

Also for all Adea and s> 0 there exist 4, < A with u(A\A) < e and
limsup M, (T*)1 < K, on A4,. Then

mA)+ - +pulp™(4 J)
n+1

by analogous arguments to those used previously. So

m(d,) =

[im sup

m(4) = limsuptUd o T@TA)
n+1l
-=liminf..., A4 being fixed.
As m(A—~A)+0 and
limsupﬂ(A}—}_ +#(¢_H(A))
n+1
=1imsup(“(A\A“)+ : +u(<0'"(A\Az))+#(Ae)+ o tuleT"(4,)
n+1 n+1
k(u(A\ AP +m(A4,)

icm
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we have
plAy+ .. +pulp™"(A)

n+1

m(A) = limsup
and hence (Q, a, &, @) is AM.S,

(iii) = (i). (ili) implies (implicitly) that T* satisfies the pointwise ergodic
theorem and v% = lim M, (T*}1 e 1 (). Hence if f e I7 (1) then fo} e L' (m) and
Birkhoff’s ergodic theorem impkies that M, (T)f converges on C = supp#j.
Then we use the decomposition of the space (see {z) and (ff)) to deduce that

M, (T)f converges ae on D.

{i) = (iv} is clear from the proof of (i) =
a.e in I(w).

{iv) = (iii) is also clear. =

We now give one application of Theorem 2.

(i1) because M, (T*)g converges

TaeoreM 5. Let (Q, a, i) be a finite meusure space and @ an invertible
nonsingular transformation such that the operator defined by Tf = foo maps
IP(w) into I2(w), 1 < p < oo, The following are equivalent:

(C) For any subadditive sequence {f,) (i.e., fy4+m < J+Fa00" for all posmue
integers n, m) with fi* eﬂ’(u rhere exists a measurable function f*: Q
< RuU{—o} such that (f*)" eIE (), Tf* = f* ae. and f,/n converges a.e. tof*.
(D) ¢ satisfies (M ).

Proof. (C) = (D). We just have to take an additive sequence. Then
fo=fi+fice+ ... +fi0¢" (fy el (1) and f,/n converges ae. in I(u).
(D) = (C). Let f be a subadditive sequence with (f;)™ € I (). By Theorem
1 there exists an equivalent measure m, m(A} = j vf dp with vl e If ().
As fi" e B (u) we have fi" e} (m} and by J. F. c! Kingman's theorem ([8],
[9]) there exists f* such that f*"eL'(m) and f,/n converges ae. to f* It
remains to show that f**eI?(u). This follows from the fact that

< fiT o+ . +HfiT 00"
and so [** < lim M, (T)(f;") which belongs to I?(u} by Theorem 2.
An example. Let .¢ be the continuous map on [0, 1] defined by

{2 ifosx<3,
@ lx) = 32— x

ifigx<l.
We then consider the transformation T, Tf = fop. We claim that T is power
bounded in I? (), i.e. supyzo |77, < co). In fact, for any Ae®[0,11n[0, %
we have u(p ™' (4)) = 4u(4) and so

1
wle " (A) = 5n4)

for all positive integers n M A< [}, 1] then ¢~ '(d)=ByuC, where
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B, < [0,5], C, <[4, 1] and u(B) = $u(4), u(C ) = u(A). Then in this case
plo ™ (A) = du(A)+ u(4).

We have ¢ *(d)=¢@ " (B)ue '(C,) and ¢ ' (C,)=B,vC, with
{By) =4u(C)) and u(C,) = pu(C,). Hence

1 1
plp 2 (A) = »2—2#(,4)+

E;L(A)ﬂL(A).

By recurrence on 1 we see that
1 1 l
wlo M (A) = (A4 = A+ g (A)+ i (A) < 2p(4).

We conclude that T is power bounded by 2 in I! (u). The mean ergodic theorem
{easy to obtain in this case) implies now that

(A)+ ... +ple™"(4)
n+1

exists for all 4 in #[0, 1]. The measure m is not equivalent to u (Lebesgue
measure). Actually, if we take a set 4 with p(4)>0, 4 =[0,1], then
plp™"(A)) = 27" u(A) - 0. Thus m(A) = 0.

In fact, ¢ does not have a finite invariant measure v equivalent to g

This is because the set E=(3, 1) is a wandering set: we have ¢ *(E)
— (1/2k+2’ 1/2k+1)’

m(d) = [ v} dy = lim 2
A

U o™ E)=(0,D), . ¢ (E)no {(E)=0 for i #].
k=0 .

The operator T satisfies (M) because of the Riesz interpolation theorem.
T being also an L°-contraction is power bounded in all I# (), 1 < p< oo,

Remark. This example shows alse that there exist nonconservative
endomorphisms @ on Lebesgue measure spaces even if the induced operator
T is power bounded in L', The conservative part here is [, 1], the remaining
part is (0, ), 2 union of wandering sets. We will use this remark to get our next
result which shows the importance of the invertibility assumption in Theorem 5.

THEOREM 6. For every ¢ > ( there exists a continuous function @ on [0, 1]
such that the operator T defined by Tf = fop satisfies

() sup | T"l, < 1+¢ (hence T satisfies (M,) for all p),

(0) there exists a subadditive sequence (f,) such that sup, || f,/nll, < co and
fu/n does not converge a.e.

Proof. The transformation is a slight modification of the previous
example. We take 1 < g < oo and

o) = {ax if 0<
. a

< 1a,
I+lja)—x  if lJa<x

x
£x €1

Equivalent measures for ponsingular trangformations 11

i ali : at s ", < af(a—1). Hence it is always
Simple computations show that sup, [T, < Ivay
poseﬁble to select a such that sup [T"||, < I-+e The set V = (1/a, 1/d?) is
wandering and {0, 1/a) = o0 (V). _

Now we proceed similarly to [5, p. 240]. We take
3 if xeVand 3" < n< 3t

S (x) =3 L (@ ()~ 3"
0 otherwise.

if xep™(V),

We have
(#) Soen(¥) € 1, )+ le" ()
for all strictly posilive integers #, m and all x=(0, 1). To see that we distinguish

three cases. y ‘ )
nir xéU;“:Ocp"f(V) then ¢" (x)eéU?t;_gqo HV) for all n since otherwise

xe U e "W = oY),
i=0 i=0

a contradiction. So f,(x) = 0 = 4 (x} = fi(e" {x)).
2) If xeV then

Ll = =3 flx) = =3

i . the —i{ Wy =@ if j#I we deduce that
Using the fact that @ /(V)ne (V) . '

@" (;c;gé Utoo “!(V} for all positive n. Hence fi(@"(x)) = O and () is satisfied.

i=

3) If xeq@ (V) for some j, then
frol = =3I () = S )= 3 =3
e If 1> j, then f,(¢"(x)) =0 and it is clear that
— 3k FNTR g B3
o If n<j, then fi(p"(x)) = —13px_3% and the inequality (x) means
Atk 30tk 3P 3T 30— 3¢ > 0,
But 343743043k g 2(3%* +3") where n* = max (n, k), and
2(3P* 37" < 20 +23n% € 303 g AL < 3R,

/ull, < oo and f,/n does not con-

Now it remains to show that sup, I f.

verge a.e.
The divergence is clear from t

lim fén (}C)/3n — hin ,_,_3?7/317 —- 1=

he following limits: if xe ¥ then

lim fy (0)f(3 = 1) = lim =313 = 1) = —1/3.

The fact that sup, | fy/nl, < o for all p follows from {f,/nl, <3. =



12 I. Assani and J. Wos

QuesTIONS. 1) Can we drop (i) in the condition (M,)? .
2) What condition on the Radon-Nikodym derivative v} is equivalent
to (M, )?

Janusz Wos is unfortunately no longer among us. This is one of the last
papers on which he worked.
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Cross-sections of solution funnels
in Banach spaces

by
BARNABAS M. GARAY (Budapest)

Abstract. The present paper applies negligibility theory (a part of infinite-dimensional
topology) to study the geometry of the failure of Kneser's theorem in inﬁnite-c}imef}smx?al Ba_nach
spaces. In particular, it turns out that arbitrary compact subsets of. the infinite-dimepsional
separable Hilbert space can be represented as cross-sections of solution funnejls. For peneral
infinite-dimensional Banach spaces, the existence of initial valve problems with exactly two
solutions is proved.

1. Introduction. Let X and Y be Banach spaces. If U < X is open and
V< ¥ then CP(U, V) denotes the set of all mappings f1 U -V (with
domain U) having continuous pth Fréchet derivative, p=10,1, 2, ... (C*(U, V)
is simply the set of all continuous mappings) We also _lfet Ce (U, V)
== ﬂ {C?(U, V)| peN}. The derivative of fe CP(U, V) at ueU is denoted by
D.f (u). The origin of X is denoted by 0. _ ‘

For FeC°(R x X, X), consider the ordinary differential equation (ODE)

(1) D,x = F(t, x}.

For (t, Xo)eRx X, a function xeC*(I,, X) is called a solution of (1)
through (t,, x,) if I, is an open interval in R contam{ng tys X{tg) = xo and
D, x(u) = F(u, x(u) for all uel,. Solutions with domain R are cal}ed_global.

Let # (X) denote the class of functions Fe C'(Rx X, X) satisfying the
following conditions:

(2) for each (t,, x;)eR x X, the ODE (1) has at least one solution through
{tas xo)i

(3) all solutions of (1} extend to global solutions.

The well-known Peano theorem states that all F e CO°(R xR", R") satisfy (2).
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