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On the uniqueness of equilibrimm states
for piecewise monotone mappings

by

MANFRED DENKER (Gittingen), GERHARD KELLER (Erlangen)
and MARIUSZ URBANSKI (Torun)

Abstract. Our main result is: Given a piecewise monotone interval map T and a continuous
function ¢ with P{T, ) > sup ¢ satislying an additiopal regularity condition, there is at most one
p-equilibrium state for T on each topologically transitive component L, of T, and only the finitely
many L, with h(Tl,) = P(T, ¢)—sup ¢ can support such an equilibrium state. The additional
regalarity assumption is: @ is of bounded variation or ¢ has bounded distortion under T

1. Introduction. For a continuous transformation T of a compact metric
space X and a continuous function ¢: X — R, the pressure is defined as

P(T, @) = lim lim n”~'logsup ¥ exp(p(x)+ ... +¢(T"""x))
g0 n— E xeE
where the supremum extends over all (n, &)-separated subsets (_)f X (recall that
E is (n,¢)-separated if for all x, ye E with x # y we have d(1"x, T'y) > ¢ for
some ie{0, ..., n—1}). Walters [W1] proved the variational principle -

P(T, ¢) = sup {h, (1) +[ o du}

where the supremum extends over all ergodic T-invariant measures p. If the
supremum is attained for some g, then p is called an equilibrium state for o.
For some classes of transformations such as expansive maps or piecewise
monotone interval maps [MS] it is known that equilibrium states exist for all
continuous .

The uniqueness problem is more difficult. Bowen proved uniqueness for
irreducible subshifts of finite type and Hélder-continuous ¢ [B1] and also for
general expansive systems with specification property if ¢ satisfies a condition
similar to our (2.3) below [B2]. Walters [W2] proved uniqueness for
B-transformations and Lipschitz-continuous ¢, and Hofbauer [HI1, H2]
showed that for general piecewise monotone interval maps of positive entropy
and ¢ =0 there is a unique equilibrium state (ie. a measure of maximal
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entropy) on each topologically transitive subset L= X for which
P(T|., ¢) = P(T, ¢), which reduces for ¢ = 0 to hy, (T],)} = fep (T). He also
showed that there is only a finite number of such sets L.

Under the assumption sup ¢ < P(T, ¢) we extend Hofbauer’s result in our
Theorem 2 to functions ¢ which are of bounded variation and have oniy
a finite number of discontinuities or which have bounded distortion under
T (see (2.3) for a definition).

A general definition of Gibbs’ measures has been given in [D]. Uniqueness
holds in this case, too.

At this point one technical remark is in order: strictly speaking, piecewise
monotone interval maps such as f-transformations are not continuous.
However, by doubling all preimages of the finitely many discontinuities, one
can modify the space X and its topology in such a way that 7' becomes
continuous [W2], [H1]. Since the new space is an extension of X by at most
countably many points, all properties of T involving only nonatomic measures
are unchanged. The resulting space can be described as a lLinearly ordered,
order-complete space, endowed with its order topology, on which T' acts
continuously.

Our proof of the above result uses conformal measures. Following [DU]
we say that a Borel measure m on X is f~conformal il for every measurable set
A< X such that T|, is injective and T'A is measurable one has

(1.1)  m(T4) = { fdm.

Denker and Urbanski [DUT] deal with the problem of constructing conformal
measures for a given function f (For a precursor of their results see also
[HKZ2]) In some situations, however, the measure m is given and f is defined
as the m-derivative of T, so e.g. if T: [0, 1] - [0, 1] is piecewise C*, m is
Lebesgue measure and f = |T"|. In many such cases, in particular in smooth
dynamics (e.g. [L], [LY]), it is known that a T-invariant measure p is
absolutely continuous with respect to the given f-conformal measure m if and
only if it satisfies the Rokhlin formula

12y h,(T) = [log f dy.

In Theorem 1 we prove this equivalence in-a purely measure-theoretic setting.
The main assumption is that ¢ = —log f has bounded distortion under T This
result is used in the proof of Theorem 2 under the bounded distortion
assumption. In the case of the bounded variation assumption we use instead
the spectral decomposmon of the Perron—Frobenius operator and an estimate
from [X].

2. Absolute continuity and the.RokhIin formula. Let (X, #, m) be a finite or
o-finite measure space, ¢ a finite or countable #-measurable partition of X and
T: XX ﬁ-measurable with TBe# for all Be#F and \/[_ T "¢ =#.
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We use the notation &£, = \/::01 T, and Z,(x) is that element of &, which
contains x.
We always assume that m{d4) > 0 for all A=, n =1, and

(2.1) sup {m(d): Aeé} < oo for some n > 1.
We say m is jconformal if f: X -+ R, is # -measurable and
(2.2) m(TB)={fdm for all Be#, B< Aet,
B

and ¢: X — R has bounded distortion under T if there is a constant C > 0 such
that for all n= 1, for all A€, and for all x, ye 4

{2.3) iSaex)=S,e(Mi< C

where S, = Z

Teeorem 1. Let (X, #,m), T and £ be as above and assume that m is
f-conformal for some f for which log f has bounded distortion under T. Suppose
u is an ergodic Tinvariant probability measure, H,(£) < co and

(2.4) sup |[logm(T" Z,(x)) du (x)|

nz1

Then p < m if and only if u satisfies the Rokhlin formula (1.2}

Proof. If y satisfies the Rokhlin formula, then for all n > O and writing
= —log f one has

po T

=:I < oo

0 =n(h, (T +[pdy) < H (L) +[S,0du
= — S,od
= Aénu {logﬂ (A)J o #}
< — ¥ pA)y{logu(d)—S,@(x,); for a suitable x,6A4
Aeéy .
=-Y ﬂ,(A)lOg{}:L(A)eXp(—SﬂQD(XA))}
Aeln

|

by (2.3) and (2.1}

< - Y, u[A)log{#(A)exp(—

Aen

—Cc-7

ey

p(A)log {-—(—Ajm(T" A)}

=C-3 ,LL(A)log#( i~ [logm(T" Z,(x)

Asly
;———‘—v—-——’

“‘<~ C,.... Z" + F1
and it suffices to show that £, — oo as n— oo if p is not m-continuous.
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But in this case u Lm by ergodicity of u, in particular

(2.5 pix: p(Z,m(Z,(x) < S —-0  as n— o0
for all §>0. Let X,;={x: e/ < p(Z,(x))m(Z,(x) < e "'}, jeZ. Then
(2.6) X = [ Z,(0)m(Z,(x)dm < e 71,
Xu‘j
and we have for each k= —1, =2, =3, ...

le :“(Zn( ))

-5 = e (X)) Z Ju(X,))

" I’I(Z () b
kT uE )+ ¥ je it by @26)
i<k iz1
=:Kn

w(Z, () .
= kp<x: sz ek
k {" TEAE R R
- k+K,as n—>ow by (2.5.
Hence —Z — —oo a8 n— o0,
Suppose now that y < m. By the Shannon-MacMillan~Breiman theorem
and the martingale theorem

@20 h(D= —l£n1 n”togu(Z,(x)) = —lim n~tlogm(Z, (x))  u-ae. x.

[ ade v}

On the other hand,

(2.8) llogm(T" Z, (x))—log m(Z, (x))+5, )| < C

for all x and n> 1 in view of (2.1)42.3). In particular,
8, ¢ (x) < C+ logm(T" Z, (x))| + const

so that (S, )" L, (observe (2.4) and (2.1) for the constant), Hence, by the
ergodic theorem,

limn™'S, o(x) =[pdu <o pae x,

N oo

and in view of (2.8) and (2.4)

nh_}l;‘ n~YS, @ (x)—logm(Z,(x))| =0 in probability u.

Together with (2.7) this yields the Rokhlin formula h (D) +[pdu=0. u

We discuss an application of this result to piecewise monotone transfor-
mations:

Let X be a linearly ordered, order-complete space. Endowed with its order
topology, X is compact. Suppose T X — X is continuous, and there is a finite
partition ¢ of X into closed intervals I,,..., Iysuch that T'| 1; is monotone and
contmuous and has the Darboux property for all j. (The Darboux property
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means that if J © I is an interval, then also TJ is an interval.) We assume that
¢ generates under T ie. U > T7" & generates the Borel g-algebra on X. Such
a map will be called piecewise monotone.

In a series of papers [HI1, H2, H3J, Hofbauer constructed Markov
extensions (X, T) for piecewise monotone transformations (X, T} Let

M ={T"Z: Zet, nzt}, X={x D) xeDe.#}.
¥ is an at most countable family of compact intervals. Observe that for Zeé,,
Z'ef, wehave ZnT ™ "Z'el,y,and TZnT "Z)=T"Z N Z" Hence, if

D=T"Ze# and if DnZ'@, Z'cé,, then T"(DNZYV= T (T"ZZ')
= T""(Z T " Z)e.#, and we can define T: X - X by

T(x,D)=(Tx, T(D " Z; (x)).
A simple induction argument shows that
(2.9) T'x, D)= (T"x, T"(DNZ,(x))) (n=1).

With n(x, D):= x we have noT = Tox, and if for (x, C), (x, D)e X there is
nz0 such that Z,x)nC=2 (x)r\D then T(x, C) = T"(x, D). For
(x, ) X set D(X):=C and C:={%eX: D(%) = C}. Let # ={C: Ce.#}
and £ =4 v n“lé Then TAed for Aef in particular, £ is a Markov
partmon for (X, T).

X is endowed with the Borel structure & =z ' v.#, and if m is
a measure on #, then m on % can be defined by m(A) = m(nd) if AeF,
AcCed.

Hofbauer proved in Theorem 3 of [HI1]:

THEOREM A. If u is an ergodic T-invariant Berel probability measure on
X with positive entropy, then there is a unique ergodic T-invgriant probability
measure fi on X such that y = fon~'. Also hy ()= h, (T).

Observe that u < m if and only if 4 <€
A first application of this construction is

LeMMa 1. If T in Thecrem 1 is piecewise monotone, if m is finite, and if
h,(T) > 0, then condition (24) follows from

[ logm (D (&) di (%) < oo
where fi is the lift of u to X.
Proof. —[logm(T"Z,(x))du(x) = —[logm(T" Z,,(n%))dfi (%)
—flogm{D(T"%)di(%) by (2.9)
—Nogm{D(R)di(%). m

As a matter of fact,.assumption (2.4) of Theorem 1 can be avoided
completely if A, (T) > 0:

N

I
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_ Fixany De.# with 2(D) > 0 and denote by T, the first-return map of T to
D. It is well known that 1, the first-return time, has finite expectation under fi,
namely

[fpdp=a() T"D)=1
D nzl
by ergodicity of 4. Let { be the partition of I which coincides with £, on
D {fy=n}. {is a countable & ~ D-measurable partition, and it is not hard
to show that H;({) < oo (see e.g. [B]). Remember ¢ = —log f and let
ip—-1 R . R i
$p:= Z womo T, pi=exp{—ep), fipr= A(D)"'-ilp.
k=0
Obviously Ty, £, mip. ¢, and f, satisfy (2.1)-(2.3).
By Abramov’s formula and Theorem A

ADYhay (Tp) = by (T) = h, (1),
and by definition
AD)[dpdfiy = [ Gpdi = [pondi= [ @dpu.
D X X

Hence p satisfies the Rokhlin formula for T and ¢ if and only if iy, satisfies this
formula for T}, and ¢,. Now the Markov property of T implies T}, (4) = D for
each A& &. Hence Theorem 1 shows that the Rokhlin formula is equivalent to
. fip € fp which in turn is equivalent to i< So we proved

Prorosition 1. For piecewise monotone T with h,(T) > 0 Theorem 1 holds
without assumption (2.4).

So the really crucial assumption turns out to be the distortion bound for
@ under T

We would like to mention that Markov extensions can be constructed for
more general piecewise invertible systerns (see [H3], [K]) and in many cases an
analogous result to Theorem A can be proved (work in progress). Hence also
Proposition 1 can be extended to such systems.

3. A bound on the nomber of equilibrium states for piccewise monotone
mappings. For our further investigations we need a closer look at Hofbauer's
construction: Define a relation “—~” on £ by 4 - B if and only if 5 = T(A).
(€, —») is a directed graph, and we denote its at most countably many
irreducible subsets by .7, J,. ..., X,:= |z, 4.

We remark that @eﬁ\UH F, is equivalent to A " T" A = ¢ for all n > 0.
Hencg each ergodic, T-invariant finite measure on X is concentrated on one of
the X,. '

Let L:= iz T7' X, and 7, := {Bef: there is a path in (&, —) starting at
some Ae.#, and ending in B). Hofbauer proved L
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TueorEM B ([H3], T heorgm 7, Cor. on p. 382 with remark thereafter, and
Cor. 1, p. 377). lim, . hop (T|g,) = 0.

Prorosrrion C {({H3], Cor. on p. 382), For all n > 1 there is a finite set
#,=F, such that

Yi=1{) A= 1) A
AcF, Aed

ProrosiTion D ([H33, Theorem 6). L,:==(L,) S ¥,

It is easy to check that TY, < ¥, and TL, < L,.

Let E:= {acX: a is an endpoint of some De.#}.

Lemma 2. THLAE)nY, <L,

Proof. Letze ¥, with Tze L,\ E. There are Ae.7, and 2 4 with () = z.
As T = Tzen(L,)\ E, there is e L, with zT# = mi¢ E. Hence thereis k > 0
such that T%*!7 = T* e, (observe the remark after (29)). As Ae.f,, the
irreducibility of (#,, —) implies Ae.# ,ie. 7€ X, and hence feL,. SozeL,. m

is compact.

Let #" be the coarsest partition of ¥, into compact intervals that refines &
Because of Propesition C, 2™ is finite. Hence T: ¥, — ¥, has the Darboux
property with respect to #™

Lemwma 3. T: L,— L, has the Darboux property with respect to ", if
(F,. —) does not consist of a single loop only.
Proof For J=£ZeZ™ Lemma 2 implies
TUNL)2TIUnT " L\NE)= T/ ~nL\E.
If J is a compact interval, then T (S L, is compact and hence T(Jn L))
2 (TSN L\ E). But if xe TJ ~ L, is not an endpoint of the interval TJ, then
Z,{x) & TJ for some n, and since (#,, —) does not consist of just one loop,

Z,(x) is uncountable. Hence ¢l(TJ n L \E)=TJn L,, except perhaps for
endpoints of TJ. In any case this shows that T{J ~ L,) is an interval in L,. =

Before we state our main result, notice that d (x, ¥):= exp(—sup {n: x, y
eZet,}) is a metric for the order topolegy on X, since £ generates.

THEOREM 2. Suppose T: X — X is a piecewise monotone transformation as
described above and ¢: X — R is continuous and satisfies '

8,:= P(T, ¢)—supg > 0.
If -

(a) @ has bounded distortion under T (see (2.3)), or if
(b) ¢ is of bounded variation,

then there is a unigue eguilibrium state for ¢ on each set L, for which
(31) P(T|Ln> (P) = P(T: (p)'

(3.1) is possible only on the finitely many L, with I, (T|z,) = 3, > 0, and there
are no other ergodic equilibrium states for o. :

3 — Siudia Mathematica 97.1
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Proof. Adding, if necessary, a constant to ¢ we may assume P (T, ¢) =0,
We have already observed that all invariant ergodic measures of positive
entropy are concentrated on some L,. So suppose y is an ergodic equilibrium
state for ¢. Then

h(T)=P(T. ¢)—[@duzd,>0
and hence u is concentrated on some L,. In particular,
(32) h{T)+ [ pdu = P(T, g) = 0
for each ergodic equilibrium state u and

P(T, ¢) = h(T)+[@du=h,(T|)+ [ odu < P(T|,,. p) < P(T, o).
Lp

So we must prove existence and uniqueness of equilibrium states for ¢ on those
L, where P(T|.; ¢) = P(T, ). Since T is piecewise monotone with Dar-
boux property (Lemma 3), the existence follows e.g. from [MS], and Theorem
3.7 of [DU] implies the existence of an atomless exp (— p)-conformal measure
m, on L,. How to check the assumptions of this theorem is explained at the end
of the proof. '

Now consider Ze¢, with Zn L, # @, k> 1 arbitrary. As there is £,
with n(£)eZ N L,, the monotonicity interval Z,(£) of T* containing % is
mapped into Z under m. Hence, by irreducibility of (.#,, —),

=al)en{l) MZ®)= | T2,
=0 izo
Since m, is conformal, this shows m(Z) > 0, i.e. (2.1). In particular, if there is
a Borel set S =L, with m,(§)> 0 and T™'§ = S modm,, then also m,|g is
exp(—@)-conformal, and hence S is dense in L,.

Suppose now that ¢ has bounded distortion under T Then each ergodic
T-invariant probability measure g on L, satisfying the Rokhlin formula is
absolutely continuous with respect to m, by Theorem 1 and Proposition 1. If
there were two such measures 4, and p,, g, L i, then there were a decom-
position of L, into Borel sets S; and S, of positive m,-measure such that
#:(8;) = 8;;and T~ §; = §; mod m,, and the above reasoning applied to m,[s,
would yield the contradiction yu, < m,|s,. Together with (3.2) this implies the
uniqueness of u in case (a).

In case (b) when ¢ is of bounded variation, the Perron-Frobenius operator
Lo f HEZE§ (f-expp)o (T,)™" acts as a positive operator on the space BV, of
m,-equivalence classes of functions of bounded variation on L, {see [HK1],
[R]). In particular, for 0 < feBV,, n~1¥"_ é.&f”,; S converges uniformly to
some %, -invariant limit f>0 with [fdm,=[fdm, and p=fm, is
T-invariant. Suppose there are two such linearly independent densities fi and
/2. Then there exist two T~ -invariant (modm,) sets S, and S, which are not
dense in L, (see [R], Theorem 3), a contradiction to the observation made
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above. Hence there are a functiori he BV, and a bounded linear functional
¥ >0 such that lim,.,n" 'Y, ZLf=hy(f) in supremum’ norm for
feBV,. This is sufficient to proceed further as in the proof of Theorem 8.3 in
[K] and to show that u = k-m, is the only equilibrium state for @ on L,.

We still must check the assumptions of Theorem 3.7 of [DU]: For ¢ > 0 we
shall construct a sequence F,(g) of maximal (k, £}-separated sets such that
Fii1() 2 T7F (e) and card (Fyyq (e)\ T Fi(e)) < 2card (Z"|; ) forall k = 1.
We start with a maximal (1, g}-separated set F, (g). Obviously T~ F, (g} is
(2, e)-separated, and in order to enlarge it to a maximal (2, &)-separated set, we
have to add at most one point at each end of each interval I € 2”|. . Here we
use the Darboux property of T: L, — L, with respect to 27|, In the same way
we obtain Fypyq(¢) from F,(s) for k> 1. m

Finally, we would like to remark that the assumption that £ generates is not
essential, for each nontrivial atom of \/:;DT “"E is either wandering or
periodic. Hence these atoms neither contribute to P(T, ¢), nor can they
suppert ergodic measures of positive entropy. However, Propositions C and
D cited from Hofbauer are no longer true, and they are important for our
proof. So one has to lock in great detail at Hofbauer’s proofs in order to figure
out what is true in the non-generating case and to substitute C and D by
slightly weaker assertions which still suffice for the proof of cur Theorem 2.
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On transition muitimeasures with
values in a Banach space

by
NIKOLAOS S. PAPAGEORGIOU (Davis, Calif)

Abstract. In this paper we examine transition muliimeasures, i.e., set-valued vector measures
parametrized by a parameter in & measurable space. First we establish the existence of transition
selectors. Then we define a set-valued integral with respect to a multimeasure and we show that it
generates a new transition multimeasure, for which we obtain a-characterization of its measure
selectors. Then we allow the parameter of the transition multimeasure to vary over a Polish space
and we obiain a set-valued version of Felier's property. Finally, we look at the action of the
transition multimeasure on measures defined on the parameter space.

1. Introduction. The theory of multimeasures (set-valued measures) has its
origins in mathematical economics and in particular in equilibrium theory for
exchange economies with production, in which the coalitions and not the
individual agents are the basic economic units (see Vind [25] and Hildenbrand
[15]). Since then the subject of multimeasures has been developed extensively.
Important contributions were made, among others, by Artstein [1], Costé [8],
[9]. Costé—Pallu de la Barriére {107, Drewnowski [12], Godet-Thobie [13],
Hiai [14] and Pallu de la Barriére [17]. Further applications in mathematical
economics can be found in Klein-Thompson [16] and Papageorgiou [197].

In this paper we study multimeasures parametrized by the elements of
a measurable space (transition multimeasures). Such muitimeasures turn out to
be the appropriate tool to establish the existence of Markov temporary
equilibrium processes in dynamic economies (see Blume [6]). '

2. Preliminaries. In this section we establish our notation and terminology
and we recall some basic facts from the theories .of multifunctions and
multimeasures that we will need in the sequel.

Let (2, %) be a measurable space and X a separable Banach space.
Throughont this paper we will be using the following notations:

Pro(X) = {4 = X: nonempty, closed, (convex)},
P (X) = {‘A & X: nonempty, (w)-compact, (convex)}.
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