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The Dunford—Pettis property in C*-algebras
by

CHO-HO CHU (Irvine, Calif,, and London) and
BRUNQ TOCHUM (Marseille)

Abstract, We give necessary and sufficient conditions for a C*-algebra 4 to have the
Dunford--Pettis property. We show that 4* has the Dunford-Pettis property if and only if A%* is
a finite type I von Neumann algebra. We also show that a von Neumann algebra M has the
Dunford-Pettis property if and only if M = @, R, where each R, is a type I, von Neumann

algebra and sup,m, < 0.

A Banach space E is said to have the Dunford—Pertis property if every
weakly compact operator defined on E is completely continuous, or equivalent-
ly, if whenever (x,} and (f,) are weakly null sequences in E and E* respectively,
then lim, .., £, (x,) = 0. ‘

The above definition was due to Grothendieck [9] and originated from
a classical result of Dunford and Pettis [8] which says that all L-spaces have
this property. In [9], Grothendieck began a study of the Dunford-Pettis
property in Banach spaces and showed that C(K) spaces have this property.
Naturally, one asks whether these two classical results have “noncommutative”
generalization, that is, whether C*-algebras and preduals of von Neumann
algebras possess the Dunford-Pettis property. The answer is easily seen to be
negative. This note is intended to characterize operator algebras (or their duals)
having the Dunford-Pettis property. We give necessary and sufficient con-
ditions for a C*-algebra to have the Dunford-Pettis property and deduce that
the Dunford-Pettis property is inherited by C*-subalgebras although it is not
inherited by subspaces in gencral. We show that a von Neumann algebra
M has the Dunford -Pettis property if and only M = (@, Ry),,, where each R,
is a type I,, von Neumann algebra with.sup, n, < co. As for the Banach dual
A* of a C*-algebra A, we show that A* has the Dunford-Pettis property if and
only if A** is a finite type 1 von Neumann algebra. We also obtain conditions
for the predual of a von Neumann algebra to have the Dunford-Pettis
property. We refer to [6] for an excellent account of the Dunford-Pettis
property.

We recall that a compietely continuous operator sends weakly convergent
sequences intdo norm convergent sequences.
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TueOREM 1. Let A be a C*-algebra. The following conditions are equivalent:

(1) A has the Dunford-Pettis property.

(i) If (x,) is a weakly null sequence in A, then so is the sequence (x¥x,).
(i) If (x,) is a weakly null sequence in A, then so is (x,x¥).

(iv) If (x,) is a weakly null sequence in A, then so is (x¥* x4 x,x}).

Prool (i1} and (ii)) are clearly equivalent since (x ) is weakly null if and only
il (x7) is weakly nuvll. Hence we also have (iii) = (iv).

(1) = (i). Let (x,} be weakly null and let /e A*. We show that f (x¥ x,)— 0.
Define an operator T A —A4* by

(Ta)(x) = f(a*x)

As A* 1s weakly sequentially complete [12; p. 148], T is weakly compact [17.
But 4 has the Dunford-Pettis property, so 7 is completely continuous.
Therefore || Tx, =0, that is, sup{|f(x¥x)}: |x]| <1}—0, which gives
F(x¥x,)—0 since (||x,}) is bounded.

(iv)=(1). Let (x,) be a weakly null sequence in 4 and let (f,) be a weakly
null sequence in 4*. We need to show that f,(x,)—»0. As x¥x +x,x}—0
weakly, by [12; p. 151], we have lim,_, f; (x,) = O uniformly for k=1, 2, ...
In particular, lim,.,, f (x,) = 0.

(a, xeA4).

COROLLARY 2. Let A be a C*-algebra with the Dunford—Pettis property. Then
every C*-subalgebra B of A has the property.

Proof. Let {5,) be a ¢(B, B*)-null sequence in B. Then it is o(4, A*)-null.
By the above theorem, (b}b,) is a(A, 4*}-null and hence ¢(B, B*)-null.

Let us now consider some examples. We first note that if the dual E* of
a Banach space E has the Dunford-Pettis property, then so does E. If H is an
infinite-dimensional Hilbert space, then the C*-algebra K(H) of compact
operators does not have the Dunford-Pettis property. So K (H)* and the type
I, factor B (H) do not have this property. We give in the following an example
of a C*-algebra having the Dunford-Pettis property but whose enveloping von
Neumann algebra does not.

We first remark that the /-sum' E = (@E,), of a sequence of finite-
dimensional Banach spaces has the Dunford-Pettis property (cf. [4; p. 197},
in fact, it has-the Schur property which means that weakly convergent
sequences are norm convergent. We include here a short proof and we thank
Dr. C. Samuel for the following arguments. Let (X,) be a weakly null sequence
in E If ||X,|-+0, by considering a subsequence, we may assume
a=inf [|[X,]| >0. Let P E-E be the projection defined by
Po(X)=(x;5.0, %, 0,..) for X =(x),€E. Then lim,. I X-P,(X)| =0
and also lim,. |P,(X,)| =0 because the sequence (P"(Xm))m converges
weakly to 0 in a finite-dimensional space. Define two increasing sequences {n,),
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and (my), of integers as follows:

npe=1 and [P, (X)X ,| < a/2

and for k = 2,
”Pmk—t (Xllk)H < a/2k+ ! Ellld HXNI;_PFM}( (Xnk)” < a/2k+l'

Let Z, = Pu (Xy) and Zy = (P, — Py, )(X,) for k= 2. Then |Z,—X, |
< af2* for all k. Also there exist o, § > 0 such that for any scalars A,, ..., 4,,
we have

k i k
DNTES DI IVA B DI
j=1 =1 J=1

in other words, (Z,) is equivalent te the canonical basis in I, and (Z,) does not
converge to 0 weakly. It follows that (X, ) does not converge to 0 weakly,
which is a contradiction.

Exampre. For k=1,2,..., let M, be the algebra of n, xn, complex
matrices. Let n, T co. Then the C*-algebra (@)% M, ), has the Dunford-Pettis
property as the previous arguments show that (DL, M%), is a Schur space.
But the von Neumann envelope (B7%;M,,)., does not have the Dun-
ford-Pettis property since it contains (@7~ | %), as a complemented subspace
and the latter does not have the Dunford-Pettis property [6; p. 22].

TuEOREM 3. Let M be a von Neumann algebra. The following conditions are
equivafent:

(i} M has the Dunford-Pettis property;
(i) M = @R, where each R, is a type 1, von Neumann algebra with
SUP, My, < 0.

Proof. (i) = (il). We first show that M is finite. If M is infinite, then there is
a properly infinite projection e [12; p. 327] which is the sum of an infinite
sequence {e,} of mutually orthogonal equivalent projections. Hence, by [12; p.
297], M contains an algebra isomorphic to ¢, Me, ® B(H) with dim H = co.
But the latter clearly cannot have the Dunford-Pettis property, contradicting
Carollary 2. So M is finite. ‘

We now show that M does not contain a type I1, summand. Indeed, if NV is
a type I, summand of M, then (B%, M,.),,, embeds as a subalgebra of N (cf.
[13: 1.4.4]), but does not have the Dunford--Pettis property by the Example,
again contradicting Corollary 2. It follows that M is type I finite and has
a unique decomposition M = R éBR,@ ... where each R, is either 0 or of type
I, with n < co. If infinitely many R,’s are nonzero, then M contains a subalge-
bra (@~ M,,),, which does not have the Dunford—Pettis property by the
Example, contradicting Corollary 2. So all but a finite number of R,’s are 0.

(i) = (i). This follows from the fact that a type I, algebra has the form
C(K)®M, which has the Dunford-Pettis property [7].
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We now consider the predual M, of a von Neumann algebra M. The
w*-topology on M is the topology o{M, M,).

PROPOSITION 4. Let M be o von Neumann algebra with predual M. The
Jfollowing conditions are equivalent:

i) M, has the Dunford-Pettis property;

(i) If (x,) is a weakly null sequence in M, then (x}¥x,) is w*-null;

(i) If (x,) is a weakly mill sequence in M, then (x,x}) is w*-null;

(iv) If (x,) is a weakly null sequence in M, then (xF x,+ x, x}¥) is w*-null, i.e.,
(x,) s g-strong™-null.

Proof. (i) = (ii). Let (x,) be weakly null in M. We show that f (x} x,}— 0 for
each fe M . Define g, (') = f(x¥') on M. Then g, M, and also, g, —0 in the
weak topology o (M, M) since for fixed me M, xfm—0 in the w*-topology
o(M, M,). Now by the Dunford-Pettis property of M,, we have g,(x,)—0
which is just f{x} x,)—0.

Clearly (ii) and (iii) are equivalent and they imply (iv).

(iv)=>(). Let (f,) be a o(M,, M)-null sequence and let {x,) be a
o (M, M*)-null sequence in M. We need to show f, (x,)— 0. By condition (iv),
(x,) is a o-strong®null sequence in M, so by [12; Lemma 5.5], we have
lim, ., f, (c,) = 0.

COROLLARY 5. Let M be a von Neumann algebra whose predual M, has the
Dunford—Pettis property. Let N be a von Neumann subalgebra of M. Then N,
has the Dunford-Pettis property.

Proof Let (x,) be a weakly null sequence in N. Then (x,) is weakly null in
M. So xj x,-0 in the topology (M, M,). Hence x*x,—0 in the topology
o(N, N,) since every fe N, extends to an feM, [11; 1.24.5].

PROPOSITION 6. Let M be a von Neumann algebra with predual M,
() If M, has the Dunford—Pettis property, then M is finite.
(i) If M is type 1 finite, then M, has the Dunford-Pettis property.

Proof (i) As in the proof of Theorem 3, if M is infinite, then M contains
B(H) for some infinite-dimensional Hilbert space H. Corollary 5 implies that
B(H), has the Dunford-Pettis property, which is impossible.

(i) Consider the unique decomposition

M=R®...8RS..,
where R, is of type 1, with n, < co. Write R, = C(2)®M,,. Then
M, =Il-sum @, L, (2, (M,,),}.
Now each (M,,), is complemented in E = (@, (M,,),)e> 50 L, (Z,, (M,),)

is complemented in L, (Z,, E). Hence the I-sum @,L,(Z,.(M,),) is
complemented in the {;-sum @, L, (5, E), and therefore, complemented in
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L, (Uk 2. E) where the union is taken to be the disjoint union with the natural
choice of measure. As E* = (@, M,,);, has the Schur property by the previous
argument, L, ({ ), Z\, E) has the Dunford-Pettis property by [2]. It follows that
M, has the Dunford-Pettis property.

Remark. The hyperfinite 1T -factor R embeds into any 11, -factor [5] and if
one can show that R, does not have the Dunford-Pettis property, then
Corollary 5 and the above result would imply that M has the Dunford-Pettis
property if and only if M is of type I finite. We do not know if R, has the
Dunford--Pettis property. However, we have the following result for the duals
of C*-algebras.

TuroreM 7. Let 4 be a C*-algebra. The following conditions are equivalent:

(i) A has the Dunford-Pettis property;
(ii) A** is type 1 finite.

Proof. (i) = (ii). By Proposition 6, we only need to prove that A** is a type
I von Neumann algebra. For this, we show that 4 is a type I C*-algebra. If A is
not a type 1 C*-algebra, by [10; 6.7.4], A contains a C*-subalgebra B and
a closed two-sided ideal I in B such that B/I is isomorphic to the Fermion
algebra ® M ,. By [3], ® M, contains a complemented copy of the compact
operators K (1,). So ® M, does not have the Dunford—Pettis property nor does
B/I. On thé other hand, {4/I)* is complemented in A%, hence it has the
Dunford—Pettis property and so does 4/I. But B/I is a subalgebra of 4/I and
by Corollary 2, B/I has the Dunford—-Pettis property, which is impossible. This
proves that A is a type I C*-algebra.

(ii) == (i). By Proposition 6.
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LeMMA. Any quotient B of a separable C*-algebra A with the Dunford—Pettis
property also has the property.
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This is because weakly null sequences in B lift to weakly null sequences in
A. Indeed, let g: A— B be the quotient map and (b,) weakly null in B with
g(a) = b, and (a,) bounded in 4. Let (1) be a countable approximate unit for
kerg and put ¢, = (1 —u,)a,. Then g(c,) = b, and (c,) is weakly null in 4. For
the latter, let p be the support projection in A** for kerg, so that p(1 —u)—0
strongly in A**, which implies p (1 —u,)a, —0 strongly. Hence, for fe 4%, we
have f(c,) = f(pe)+f(1—ple) = fp(t—u)a,)+f (1—p)a,)—0. Now we
have:

THEOREM. A separable C*-algebra A has the Dunford-Pettis property if and
only if A* has this property.

If A has the property, then using the lemma and the proof of Theorem 7,
A is type 1. Moreover, A has only finite-dimensional irreducible representations
for otherwise K (I,) shows up in a quotient of A. Hence A** is type I finite (cf.
Theorem 1 in Hamana's paper).
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Interpolation of compact operators by Goulaouic procedure
by
FERNANDO COBOS (Madrid)

Abstract. We show that the classical Lions-Peetre compactness theorems for Banach spaces
{which are the main tools for proving all known compactness results in interpolaticn theory) fail in
the locally convex case. We also prove a positive result assuming compactness of the operator in
both gides.

1. Setting of the problem. Motivated by certain problems in the theory of
partial differential equations, Goulaouic studied in [6] and [7] a procedure for
extending any interpolation functor for Banach couples to more general
couples of locally convex spaces. Let us briefly review this procedure.

A (Hausdorff) locally convex space E is said to be the strict projective limit
of the family of Banach spaces () if the following conditions are satisfied:

1) E == ﬂie! E,.

2) E is equipped with the projective limit topology.

3) For each iel, E is dense in E,.

4) The family (E,),; is directed, i.e. given any finite subset J < I, there exists
kel such that for all jeJ the embedding E, < E; is continuous.

We then write E = L1§n =E,.

Let now (4,, 4;) be a (compatible) couple of locally convex spaces
(meaning that they are continuously embedded in a Hausdorfl topological
vector space). We say that (d,, 4,) is the strict projective limit of the family
(Ao A1 Japerxs Of Banach couples provided that the following conditions
hold:

1) Ag=Lim Aqy, 4y = Lim A, ;.
iel i Jet
2) All spaces Ao, 4,,; are continuously embedded in a common Hausdorff
topological vector space .o,

3) For each (i,j)elxJ, Ay Ay is dense in Ag;n Ay, (the norm in
AO,iﬁAl,J being max {”aHA().i" “““41,1})'
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