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The rotation number of some transformation related
to billiards in an ellipse

by
RAFAL KOLODZIEJ (Warszawa)

Abstract. For an elliptic billiard table the rotation number of a standard section of a
billiard flow related to the caustics has been found.

Introduction. Consider a plane, convex, smooth, closed curve % and a
motion of a billiard ball (infinitely small) inside a billiard table bounded by
%. The billiard ball moves inside % along straight lines and rebounds
according to the law stating that “the angle of incidence is equal to the angle
of reflection”.

We reduce this dynamical flow system to the transformation T of an
annulus [1]. The annulus .« is the set of unit vectors at points of % directed
inside %. Provide % with an orientation in the counterclockwise direction.
We consider on .o/ the coordinates ¢, 6 for a vector v at P. ¢ is the length of

the positively oriented curve joining P with a fixed point O in % (Fig. 1). § is
the angle between the positive direction of the tangent to % at P and v.

Fig. 1

Consider T! of - o defined as follows. For ve of consider a trajectory
which starts from v, T(v) is the unit vector to which this trajectory is tangent
after the first reflection from %.

A curve @ lying inside % is called a caustic of % if all segments of any
trajectory are tangent to & or have two or no common points with & and
there is no curve which contains 2 and satisfies this property. If a set of
straight lines which contain the segments of the trajectory is considered and
2 does not lie inside ¥, the curve 9 is called a generalized caustic (Fig. 2).
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Fig. 2

Consider an orientation-preserving homeomorphism f of a circle. The
rotation number of f is the limit of the arithmetic means of growth of the
angular coordinate. It is known that this limit exists and is an invariant of
topological conjugacy [2].

Remark. If there exists a measure u invariant for f; absolutely
continuous with respect to the Lebesgue measure of the circle which assumes
a positive value on every nonempty open set, then we can consider the
parametrization of the circle given by the arc length measured by u. f is a
rotation in this parametrization and consequently the rotation number of f
is equal to u[x, f(x)] divided by the measure yu of the circle.

The aim of this paper is to study elliptic billiard tables. G. D. Birkhoff in
[1], p. 249 considered this integrable system and drew the phase portrait (we
quote his picture and discussion in the next section). He proved that there
exist coordinates in which T (T o T) rotates the invariant circles but he did
not give an explicit formula. In the present paper we find an invariant
measure and, due to the Remark find explicit formulae for the rotation
numbers of T(ToT). ‘

1. Billiards in an ellipse.
LemMA 1. Caustics and generalized caustics of an ellipse & are ellipses
confocal with & lying inside it and confocal hyperbolae.
This is a well known fact of elementary geometry (see for example [37).
By &(#) we denote the set of all points (¢, 6) such that the billiard ball
trajectory in & starting from (¢, 6) is tangent to the caustic or the
generalized caustic #. The sets & (%) are invariant for T The set & (F) is the
sum of two components each homeomorphic with a circle (Fig. 3).
If # is an ellipse, then T restricted to each of the components of &(%)
is an orientation-preserving homeomorphism of the circle. But if & is a
hyperbola, we have to consider To T on each component of &(#). Denote
these transformations by 7, and T;. We shall find two transformations U
and W topelogically conjugate to T,. The second one has a simple invariant
_measure. This will be proved in the Proposition. Finally, we shall show a
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conjugacy between T, on %(#) and T2 on &(%) if for an ellipse % and a
hyperbolic caustic # we take a suitable pair of ellipses &, .
IL. Elliptic case. Let & and % be confocal ellipses with foci E and F,

respectively (Fig. 4), and eccentricities e and f (the lengths of the major axes
divided by dist(E, F)).

Fig. 4

Tueorem 1. The rotation number of T, is equal to

1 F(B/2, k)
27 F/2, k)

Wwhere F(a, k) is the elliptic integral

F k)—f——»———-‘”
L /1—kZsin?
2 sim®y
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and

2Jf e 1-f*
k =1—+j7, B = arcsmf g e[0, n/2].
Let C be a point of & and A4, B the points of & such that the segments
AC and BC are tangent to % (Fig. 4).
Let A, B', C' be the points of the straight lines AE, BE, CE, respectively,
.such that A'E = B'E = EF[f, C'E = EF/e and the points 4, B, C lie inside
the respective segments A'E, B'E and C'E (in the sequel, for any two points
X, Y, we denote dist(X, Y) by XY). '
LemMma 2. The points A', B', C' and F .lie on a circle with centre C.
Proof. The length of the segment A'E is equal to the length of the
major axis of the ellipse &# and so it is equal to AE+AF. Thus AF = A4".
Furthermore, we know that the angles between two segments which join a
point of an ellipse with its foci and the tangent to the ellipse at that point are
equal (see [3]). Thus the points A’ and F are symmetric with respect to the
line AC. Consequently we have FC = A’ C and similarly we get CF = B'C
and CF=CC'. u
Let % and X be the circles with centre E and radii EF/f and EFl/e,
respectively (Fig. 5). We define a transformation U: % — % as follows. For
Xe %, U(X) is such a point of .# that the points F, X and U(X) are on a
suitably chosen circle tangent to 2. Lemma 2 implies that the
homeomorphisms T; and U are topologically conjugate.
Consider the inversion with centre F with respect to the circle of radius
1. Denote by 'y and %, the images of & and % under the inversion,
respectively. The inversion restricted to & gives a topological conjugacy
between U and W: &, - &, .W can be described in simple geometric terms:
for Xe #;, XW(X) is a chord of ., tangent to X', (Fig. 5).

Fig. 5

WiX)

XN

For Xe .2, let ¢(X) be the inverse of the length of the segment tangent
to "y with one end at X and the second on ;.

ProrosirioN. The measure gds is a finite invariant measure for W (ds
denotes the element of arc length of £,).

icm
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Prqof. Let 4, Be #, and Ced'; be points such that the segment
AW (4) is tangent to 4", at the point C (Fig. 6). We have -to show that

i A8 _ i (FOWE)
B-d B4 W(4)C

(ABY denotes the length of the arc 4B of the circle 2.

Fig. 6

Let E= AW (4) n BW(B). We have

 ABY . AB_ WMW®E)  (WAWE)
pod AC 3 AE  m WAE BT Wac

‘where the second equality is the Thales Theorem for similar triangles ABE

and W(4)W(B)E. In addition, the measure pds is finite because o is
bounded. w

Proof of Theorem 1. Let G, H, I and J be the points of intersection
of #" and % with the line EF, and K and L the centres of the circles " 3
and %, as in Fig. 7. The radius r, of the circle &, is equal to

11+1_11+1_1'f
2\FI "FH) 2\EI-EF EH+EF) EF 1—-f2°

Fig. 7
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Similarly we calculate the radius r, of the circle #'y:

1_ e
EF 1-¢*’

Py =

We have also

KL—l 1 17 1 1 _1 fi—e*
T2 (ﬁ FJ) (FH FG) EF (I-f)(1-¢)’
Let o be the measure of the angle KLA (Fig. 8). The Pythagorean Theorem

for the triangle ACK and the Carnot formula for the triangle AKL give
C? = AK*~1r3 =r}+KL*—r;—2KLr, cosu.

Fig. 8

Thus we have

AC? = a(lukzsinn;a),
2,2
RN L P/ iy
EF? (1-f3(1—¢% 1+f
The rotation numbers of the transformations T; and W are equal because we

have shown that they are topologically conjugate. Due to the Remark from
the Introduction we obtain the rotation number of the transformation W.

where

a=

8 da W gy S
,{ Ja T=ksin?3(n— ac) j J1-k*sin?a j J1—k*sin’a
da "/ 2 ’

g\ﬁ\/l-kzsinz%(n—a) S By ey kzsm o

B is the angle KLA when the segment AW (A) is parallel to the line KL
(Fig. 9). In this case

T e 1—f?
B = arcsin-2 = arcsin—- 2

ry f 1—e?

Rotation number of some trangformation 299
A
At WiA)
Fig. 9

IIL. Hyperbolic case. Let % and # be an ellipse and a hyperbola with
foci I and J. Denote the eccentricities of 4 and s by g and h.
THEOREM 2. There is a topological conjugacy between Ty: G(#)— G (.A)

and TZ: E(F)— E(F) (for suitable ellipses & and F), and the rotation

number of T, is equal to
1_2F(5/2, k)

F(n/2, kY’

where

h?—

hz 2e[o w2 and K =F\/ﬁh'
Let A and B be points of 4 such that the line AB is tangent to # at C

(Fig. 10). Let D be the point symmetric to the point F with respect to the

line AB.

d = arcsing -

Fig. 10

LemMA 3. The hyperbola with foci E and D and the distance between its
branches equal to EF is tangent to the line AB.

Proof. Let G be the point of intersection of the lines AB and EF. The
point G lies on the hyperbola because EG—DG = EF. Furthermore, for
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every point H of the line AB different from G we have EH—~HD < EF +
+FH—HD =FF. n

LemMa 4. The triangles ECA' and ECB' in Figure 4 are congruent.

Proof. These triangles have one common side. We have also EA’ = EB’
= EF/f. From Lemma 2 we obtain BC =A'C. u

Proof of Theorem 2. Suppose that f = 1/h, e = g/h and EF = LJ/h.
In this case IJ = ED, EG+GD = IJ/g and the distance between the branches
of # is equal to EF. Thus we can define two transformations ¥, V' E(#F)
— &(F). Let a vector ve £(F) at a point Ae & be parallel to 4B. Displace
the quadrilateral EADB to IA, JB, preserving its orientation (Fig. 11). The
points 4, and B, lie on the ellipse 4. From Lemma 3 we know that A, B, is
the segment of the billiard trajectory in % tangent to #. Let V(v) be the
vector at A, belonging to %(#) and parallel to 4, B;. V'(v) is the vector
symmetric to ¥(v) with respect to the line IJ. From Lemma 4 we have
ToV'=VoT and ToV=V'oT Hence ToToV=VoToT Thus the
transformations T, 0 T; and T, are topologically conjugate. The formula of
Theorem 1 for T, o T; gives the formula of Theorem 2. mw

12
A

Fig. 11

IV. An application of the Lorentz transformation for finding a topological
conjugacy between T, and W, A projective transformation of a plane preserves
straight lines. We shall have another proof of Theorem 1 if the following
‘Jemma holds:

LemmA 5. There is a projective transformation which maps the ellipses
& and F into circles.

Proof. To begin with, suppose that & is a circle and & and # have a
common centre. Consider the sphere S with equator &. Let « be a plane not
parallel to the equator and tangent to § (Fig. 12). Let X be the antipode of
the point of tangency of ¢ and §. We project & and # from the point X
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onto a. This projection transforms & as the stereographic projection.
Therefore the image of & is a circle,In addition, it transforms & into an
ellipse. )

Fig. 12

If the point of tangency of a and S varies along the meridian whose
plane contains the major axis of &, the projection converts the major axis
of & into an axis of the image. If X is the pole, the projection of the major
axis is the longest chord of the image, but if it is near to the equator, this
is not so. -

To find an appropriate X we proceed in the following way. Introduce
projective plane coordinates x, y, t; then F = {(x, y, )e R x*+y% =13}
A real 3x3 matrix 4 is called a Lorentz transformation if AAAT = A

where
10 0
A=[O 1 O:I.
00 -1

Remark. Any Lorentz transformation preserves the light cone (sqppc?sc
that the light velocity is 1), and, conversely, for every projective
transformation B which preserves the light cone there exists a Ae R such that

(AB) A(ABY = A.

The ellipse F in projective coordinates has a physical interpretation.
Consider a two-dimensional anisotropic crystal. For the inertial observer the
front of the light impulse propagating in it is an ellipse. According to the
special theory of relativity the distances parallel to the motion of t'he
observer get shorter. Thus we seek an observer moving along the major
axis of the ellipse 4. This is a simple exercise in aqalytic geometry,
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Commuting C, groups and the Fuglede-Putnam theorem
by
KHRISTO N. BOYADZHIEV (Sofia)

Abstract. The following generalization of the Fuglede~Putnam theorem is known (see [5]):
If 4, B are commuting Hermitian operators on a Banach space X and if (4 +iB)? x = 0 for some
xeX, then Ax=Bx=0. We generalize this result further, proving that if 4, (k=1,..
..., m,n 2 2) are commuting Hermitian operators on X and if P(ty,...,t,) is a complex
polynomial with at most one real zero at the origin, then P(4, ..., 4,)x =0 for some xe X
implies 4, x =0 (k =1, ..., n). This result holds also when i4, are (unbounded) generators of
certain one-parameter groups of operators on X. Our considerations are based on a
generalization of the classical Liouville theorem for harmonic functions.

Preliminaries. Let H be a complex Hilbert space and B(H) the Banach
space of bounded linear operators on H. Let a4, b, ¢, de B(H) be self-adjoint
operators such that [a, b] =0, [c, d] =0. The Fuglede-Putnam theorem
says that if xe B(H) and x(a+ib) = (c+id)x, then x(a—ib) = (c—id)x (see
[11], § 1.6; [12], Theorem 12.16). One way to generalize this theorem is to
relax the conditions [a, b] =0, [¢, d] =0 (see [2], [10] and the references
there). Another — to relax the condition x(a+ib) = (c+id)x (see [1], [9]
and the references there). We give here a generalization relaxing this
condition and passing to a larger class of operators.

The above theorem can be reformulated as follows: Let 4, B be the
bounded linear cperators on B(H) defined by Ax = xa—cx, Bx = xb—dx,
xe B(H). Then [4, B] =0 and A, B are Hermitian operators in the sense of
Vidav (see [3]), because the one-parameter groups €4, ¢'®(te R) are groups
of isometries on B(H) (as e x = e~ xe', P x = e~ " xe" xeB(H), teR
— see for instance [9], p. 186). The Fuglede-Putnam theorem states that if
xeB(H) and (A+iB)x =0, then Ax=Bx=0. In this form it can be
generalized to arbitrary Banach spaces, as has been done by a number of
authors ([7], [8]):

(1) Let A, B be commuting Hermitian operators on a complex Banach
space X. If xe X and (A+iB)x =0, then Ax = Bx =0,

Another theorem about commutation properties of Hilbert space
operators is the following: If ¢, d are normal operators on a Hilbert space H
and T, ;x = xc—dx, xeB(H) is the generalized commutator operator on
B(H), then T2 x = 0 for some xe B(H) implies T, ;x = 0 (see [7], Corollary
6, and [17). This result can be generalized for operators on a Banach space X


GUEST




