116 I. D. McPhail

On the other hand, from Corollary 1 and (5.7) we have

inf |k—gllp < lim mfsup{ Ik(z)f(z)-—

gaH (v) n—co

= sup{
T

d
jk(z)f(z)ﬁ‘: JeH?w™ ), [f lpwp-s = 1}
Cv ae. implies H®@p, Y= H*@™ ) (n=1,2,...).

RGNS, = 1}

since v, <

Now (5.5) in the case p = | follows from Corollary 2 with @, replacing k.
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A multiplier characterization of analytic UMD spaces
by
G. BLOWER (Oxford)

Abstract. We prove that the Banach spaces X for which analytic martingales converge
unconditionally are precisely those for which certain multipliers are bounded on the Hardy space
HL(T).

x

1. Introduction. The purpose of this paper is to characterize the complex
Banach spaces X for which analytic martingales converge unconditionally in
terms of boundedness of certain transiation-invariant operators on the
vector-valued Hardy spaces H(T).

Bourgain [2] and Burkholder {3] have shown that the so-called UMD
Banach spaces X, defined to be those in which Walsh-Paley martingales
converge unconditionally, are precisely those for which the conjugate function
operator is bounded from I%(T) to itself Their methods are based on
transference and we use a refinement of such arguments here.

We remark that the class of Banach spaces for which analytic martingales
converge unconditionally is strictly larger than the class UMD and includes such
spaces as L} {T), which do not even enjoy the Radon-Nikodym property [6].

The rest of this paper is arranged as follows. In the second section we
introduce some basic definitions and provide a formal statement of the result
given in the abstract. We also sketch the proof of the easy half of the theorem.

In the next section we reformulate the problem in probabilistic terms,
following where possible an argument of McConnell [8]. In the penultimate
section we establish the multiplier theorem. Qur argument uses a result of
Edgar [5] which allows us to approximate certain Brownian martingales by
discrete-parameter analytic martingales. In the final section of this papcr we
mention some other properties of analytic UMD spaces.

Garling has introduced a more general class of martingales, termed Hardy
martingales, which may be used to prove renorming theorems {6], It is known
that the Banach spaces for which analytic martingales converge unconditional-
Iy are those for which Hardy martingales converge unconditionally. Indeed,
this follows from the techniques of this paper.

The author acknowledges the financial assistance of the Science and
Engineering Research Council while this work was being undertaken. He also
expresses his thanks to Dr, R. G. Haydon of Brasenose College, Oxford for
encouragement.
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118 G, Blower

2. The main result. We introduce several basic definitions.
Let X be a complex Banach space, T™ the infinite polydisc endowed with
Haar measure P.

DermiTion 1. (i} ’An I'-bounded analytic martingale f is a sequence (f) of
functions in the Bochner-Lebesgue space I'y(T™) having the form

M £0O) = T Bl .y Oyl
k=1

with [ ]l = sup, [/l < .

(i} We say that X is an analytic unconditional martingale difference
(AUMD) space if there is a constant C, depending only on the space X, such
that if f = (f,), where

"

(2) f,(@) = z Skﬁk(gls .

k=1

ces Qk_l)eiek

is the transform of £ = (f,) by a sequence of constants £, bounded in modulus
by 1, then '

(3) 171, < Clflls-

To state the theorem we need the following:

DEFINTTION 2. We say that the multfiplier operator T, associated with the
distribution m = ) m, e™ satisfies strong Hérmander—Mikhlin conditions if there
is a constant C such that

(i) Im,f < C, Qi) nidm,| = nim, ~m,_,| < C,
(i) 72 4%m,| = nm, s, —2m,+m,— | < C.

We remark that condition (ii) is a consequence of (i) and (iii), but we
include it since it is needed in the proof of Lemma 4.
Our main result is the following:

THEOREM 3. The complex Banach space X belongs to AUMD if and only if
T gives a bounded operator on Hy(T) whenever T is a multiplier satisfying strong
Hérmander—Mikhlin conditions.

Proof The backward implication follows from an application of
a well-known method of transference. By an approximation argument one
reduces to the case of

@ =3 By, ..., 0 et
k=1

where the _ﬁk are trigonometric polynomials. Consider the family of meas-
ure-preserving transformations of T given by (6,)— (6, +n,{), where [ is
a parameter and the n, are positive integers chosen recursively so that four
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times the greatest member of the spectrum of
k—1 ‘
=) BAO, +n L, ., 0 bmy (e
i=0
is less than the least member of the spectrum of
(5 P) = Bl +my l, o, O Ang (e F s,

By considering smooth partitions of unity on [0, 1], one can find
multipliers T given by ) m,e”, satisfying strong Hérmander—Mikhlin con-
ditions, where the m, are constant on long stretches of integers. For a given
sequence of constants g,, bounded in modulus by 1, we can find such a T so

that it multiplies y, by &, (k =1, ..., n). Since T is bounded on H3(T), one can
complete the proof as follows:

0 1S = J[EBOs+nil, oy Bm g+ D™ L AP
= Clf[YeBl0y+ny L, oo Oy +m O™+ dLdP = CII ;.

3. Probabilistic formulation of the problem. In this section it will be
convenient to use the following notation. et f be an analytic trigonometric
polynomial valued in an AUMD space X, and let m = Y m,e™, with T the
convolution operator associated with this distribution. Let u, », w denote the
Poisson integrals of f; m, T respectively. We may suppose without loss that the
first few derivatives of u and of » vanish at the orgin and that v is
a trigonometric polynomial.

By the semigroup property of the Poisson integrais (p)gcp<y, We have

(7 w(ryrye”) = Jolr eMulr e dp2m) =1

We differentiate (7) twice with respect to r;, once with respect to r, and set
F; =5, r, = s°. This gives us, after a little reduction,

&) 5TW (s €7) = [(0,p(5e™)— 257 0, (s PPu (s>~ dop(2m) 7!
+2fs™ %0 (se™Yu(s® M) dp(2m) L.

We now integrate the following expression twice, and change variables. This

- gives us

1 1
&) Tf(e") = [waré®)dr = 27" [ (1 =1)* W s (re)dr
0 0
1
=2 {(1—s"?w,,.(s*¢?) s ds
Q .
= 2[{(1 — " (0 (56" — 25" ' v (5" Y (s> &~ )s™* dop(2m) ™ * ds
1
+4[ (1 —5s*Pv,(se?)u(s*®~ s dop(2m) " ds
0

where we have used {8) at the last step.
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The I%(T) norm of the last term in equation (9) is estimated as follows.
Since s™8(1—s"%v,(se") is bounded we have

10 {] J501-sFo, e asel0)s dpdslay

<H — s v, Lse™)|s ™ B [ lu(s®e =) dO dsdo < Cf | £(0)|d0.

By the smoothness assumptions on f; we can approximate the integral with
respect to s in the other term in (9) by a Riemann sum. The following
approximants converge boundedly to Tf:

N—-1
(1) gule® = 3, JA=rDr; (v nlr;@®)—2r to,(re ) [w0Fe 76?70
=0

—u(r} e "] do/2n

where 0 < d=ry<r <. <ry= 1 and A is chosen sufficiently small. We
need the following elementary lemma, which can be proved using Abel
summation.

Lemma 4. The function
(12) hir, @) = (1—=1*Y (v, (re"®) —2r~ 1o (re"))p; Hp)r 6

is bounded (1/2<r<1,peR) when T is a multiplier of strong Hérman-
der—Mikhlin type.

The basic idea of the following proof is that the image of a Brownian
motion in the unit disc under a vector-valued analytic peolynomial function
behaves like an analytic martingale. The situation is complicated by the fact
that it seems necessary to introduce auxiliary Brownian motions.

We let z, be Brownian motion in D and consider various conditional
probability measures on the Wiener space. Let P? denote the probability
measure given by conditioning z, to begin at the origin and to exit the unit disc
at 6, and let P, denote the measure given by conditioning the motion to begin
at z. The following result may be obtained from Durrett’s book [4].

LEMMA 5. Let z, be Brownian motion conditioned to begin at zy = 0 and to
exit D at 0. Then there is a strong Markov process X(r) (0 <r < 1) valued in
T with sample paths continuous as. such that zg =re™ where
S, =inf{t: |z,| = r}. Further, this process has independent increments.

We introduce a Brownian motion Z, independent of z, and denote its
cxpectat:ons probabilities and associated X-process with a tilde. For con-
venience we denote

(13) dj=ulryeary, X )—X(r)—ulr?, X(rj}—f(rj)).
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LemMmA 6. We have the following representation for gy:
N-1
(14) g€y =E°E* ¥ h(r,, f(rj))dj.
i=0

Proof We recall that the function « is harmonic on D and that the
transition densities of the Markov process X (r) are given by Poisson kernels.
Hence, applying Fubini’s Theorem we have

(15)  ECE°(h(r,, r))dj)
= E'p, (@ hir, @)ulrjsir;. X(rje1)—)—ulr?, X)) do/2n
= Eﬂf(l ”“rj})zrj_ﬁ(”.rr(rjei‘p)“2r,i_1”.r(rjeiq’))[u(rj+17‘_,‘: X(’“j+1)“€0)
. —u(rj, X{r)—¢)] do/2n
= [(1—rPr7 ¢, 0" —2r; Yo, E[u(rin 1y X (r)— )
—u(r?, X(rj)—qo)] do/2n
= j(l wr;})zrjfﬁ(v',.,(rjefq’)——%f13‘,(rjei‘p))[u(rj?’+1rj, 0 )
—~u(r}, 0—@)]dp/2w.
On summing over j we obtain the desired representation.

4. An approximation argument. In the following section we wish to apply
martingale transforms to martingales constructed by applying analytic func-
tions to Brownian motion. In order to justify this, we now show how to
approximate such a martingale by an analytic martingale.

There is no loss in generality in supposing that X is finite-dimensional,
since AUMD is evidently a local property. This serves to simplify the
construction of martingales. We note that under the conditional probability
P, de is a martingale for fixed &. We aim tc approximate this by an
analytic martingale.

At the jth stage of construction we consider the process
(16) ul(z, +r @ X)) (22 0),
where z, is a Brownian motion starting at the origin. By a result of Edgar [5],
we can find an analytic martingale

L

(17)- Z ﬁk(gnﬂ-la" Ox—1, X(r)), @)e

nykl
depending measurably on &, X(r;) and such that

08 B, ey =)
LYY
-2 6k(8n‘,+_1=-- - 1,X(7') @ I0"|<&-‘/N’ Vb,
nj-+1

where 7). =inf{t: |z,+r %" = r; 44}

2 — Stndia Mathematica
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In this way we construct a discrete-parameter analytic martingale Y 8,(0,, ...
-, Byy, @)™ which approximates }d, in the sense of (18).

5. Conclusion of the proof of the theorem. We are now in a position to
apply the previous observations to estimate the Lly(T) norm of gy. Lemma
6 gives

N-1

(19) [on@*)d0 < JE°E| 3 h{r;, Xir))d | d0
=0
= [E%{p (0~ ) Bl 'Zo h(r;, X (r))d;|d0 do
=

N
=S| T W R

By the approximation argument of the previous section and the hypo—
thesis that X is in AUMD, this is bounded by

(20) ClEE jeio| Z d|do+e< (:jEDE"| Z d;| d0+e.

We now let 7121= rj, an'F'l w r-rj+1, 062_,' = 1 azjq,i = 0 f@l‘ i"'—-’ 0 1

,N—L

By the properties of X () mentioned in Lemma 5 of Sectlon 3of thls paper,
the sequence of random variables X(rg)—X(r), X(r))—X(rg), ..., X(ry- 1)
—X(ry_) has the same joint distributions under P*@P° as X (no) X (), -

» X(n2x—1) under P°. Hence we have

- N-1 ZN—12
@ JE°F| _;0 d;\do = [E°| j;o o (aelry, X))~ tils1, X (14.1)))] 40

' 2N=-2
= ”PA(GU _Q)E?ie“f’l 'Zo &; (u(?Tp X(’?j))‘“(’?jn » X(’?j+1)))[ de di.
i=
We are now able to use the fact that this latest expression is the I norm
ojf a martingale which we can approximate by an analytic martingale. This
gIves us

2N—-2
22)  flgn(e)d0 < ClEyue| T (u(ny, X(n))—

u(’?j+ 15 X(_’Tj+_1)))| de -.

_ Since the norm on the Banach space X iz subharmonic and X (r) has
density p,(—¢) under P, we can complete the calculation as follows:
(23)  [lgn(e®Nd < CIE sosal{an -2 X (an-2))| doo

< ClEscelu(l, X ()] do = Cffp,p—01(e")] 8 do = Cf|f (£ b.
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6. Concluding remarks. It is a consequence of Theorem 3 that if X is an
analytic UMD space with cotype 2, then X satisfies Paley’s Theorem, i.e. there
is a positive constant €, depending only on X, such that

Z;x I )1/2

for all analytic trigonometric polynomials Y ¢®%x,.

To see this, note that there exists a sequence (T}) of strong Hor-
mander—Mikhlin multipliers such that T, (e'**®) = ¢2*? and for every sequence
of signs & = (g), T, = 2.6, T, is a strong Hérmander-Mikhlin multiplier with
norm bounded by a constant independent of & Then the stated properties of
X give positive constants C such that

(25 [IS e"x,|d6 >

(24) [[Sex,ld6 >

CE,J|T(Le"x,)] ds

> CIE|S o (X" %) d0

> CHEIT(E e 5 d0 > C(S(|R(ETe ) doF)
C(;|x2,‘|2)”2.

The hypothesis that X has cotype two is necessary, as can be seen from
a transfer argument between the Sidon set (2,5, in Z and the subset of the
Cantor group on which the Rademacher functions “live”.

The validity of the inequality (24) does not imply that X is in AUMD,
however. In [7] the authors show that the space ¢; of trace-class operators
does not belong to AUMD, whereas ¢, satisfies Paley’s Theorem [1].
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Weighted Lorentz norm inequalities for integral operators

by

ELIDA V. FERREYRA* (Cordoba)

Abstract. Conditions depending on the kernel K(x, v) are given for weight functions w and
v so that the integral operator Kf{(x)=[%_ K(x, )f()dy, where K{x, ) >0 is defined on
A = {(x, y}: y < x}, is bounded from a Lorentz space £7((— 00, @), vdx) inte another Lorentz
space L”"‘(( — o0, o), wdx}. In Theorem 1 the kernel K(x, y) is supposed to be nonincreasing in x.
In Theorem 2 the kernel is supposed to be nondecreasing in y. Dual results for the dual operators
are given. Finally, it is shown that the stated conditions on the kernels are not always necessary.

1. Introduction. Our purpose is to find conditions that imply weighted
Lorentz norm inequalities for the integral operators K and K* defined by

1) KFG) = § K, 00y,

(12) K*f(x) = § K(y, x) f(y)dy,

where K (x, y) is defined on 4 = {(x, y) eR?: y < x} and it is nonnegative. Two
kinds of kernels K{x, ), either nonincreasing in x, or nondecreasing in y, are
considered separately. In the last section we deal with the necessity of our
conditions. :

The Hardy operator Tf(x) =[5/, x > 0, and the modified Hardy opera-
tors T, f (x) = x " [3 f. with real 5, are examples of the above operators. Several
authors have obtained inequalities for weighted Lebesgue norms for these
operators (cf. [2]-[4], [7], [9] and [10}). Our results compare with others in
the literature as follows. 1f we restrict ourselves to the Hardy operator, the
sufficient condition (1.3} of Theorem 1 is known to be also a necessary
condition ([8]). The same is true for condition (1.5) of Theorem 2 when
restricted to the modified Hardy operators. If we consider only Lebesgue
norms our results are related to those of Andersen and Heinig [1] as follows.
Our monotonicity conditions on K(x, y) are more general than those in [1],
while the weights considered by Andersen and Heinig are in a class larger than
ours. :
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