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On the rank of a class of bijective substitutions
by
G. R GOODSON (Towson, Md) and M. LEMANCZYK (Toruf)

Abstract. We consider the problem raised by M. K. Mentzen of whether it is possible, for any
pair {k, n), k < n, to find an ergodic automorphism T with rank equal to n and maximal spectral
muitiplicity k. We show that a general class of bijective substitutions over r symbols have rank r.
This result is used to solve Mentzen's problem for the case (2, n) (previcusly solved by Mentzen in
the case (1, m)). The maximal spectral type of the main examples is explicitly constructed.

§ 1. Introduction. For each natural number r = 2, Mentzen [10] construct-
ed an ergodic automorphism with rank r and simple spectrum. It appears to be
quite difficult to give examples of ergodic automotphisms with rank r, r > 2,
and few such examples are known. Requiring these cxamples to- have
nonsimple spectrum adds to the difficulty. Mentzen suggested that it shouid be
possible to construct, for any pair of natural numbers (k, n), k < n, an ergodic
automorphism with rank n and maximal spectral multiplicity k. (It was shown
by Chacon that the rank is an upper bound for the maszimal spectral
multiplicity.)

Our main theorem is a general result concerning the rank of a class of
bijective substitutions of length r over r symbols. This result is applied to some
examples first studied in Goodson [3], where the Morse sequence
x=010x010x ... over Z, was shown to have maximal spectral multiplicity
equal to two. We generalize this transformation by constructing for each r = 3,
a bijective substitution over r symbols with maximal spectral multiplicity equal
to two. The case r = 2 turns out to be the well known Thue-Morse sequence,
shown by del Junco [4] to have rank 2 and simple spectrum. These examples
are particularly interesting because it is possible to give an explicit formula for
their maximal spectral type, again the case r =2 being well known. An
application of our main theorem now shows that these transformations have
rank r. ' :

The proof of our main theorem depends on a general result and methods
of M. K. Mentzen for estimating the rank of a substifution. We use results of
Coquet, Kamae and Mendés France [2] and Quefféiec [11] to determine the
maximal spectral multiplicity of our examples. See also the recent book by M.
Queffélec [121. : ‘
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§ 2. Definitions. Let T be an ergodic automorphism of the Lebesgue space
(X, 8, ). A sequence of partitions £, n 2= 1, is said to converge to B if for every
& > D there exists n, such that for each n 2 ng there is a set B,, a union of atoms
of &, for which u(BAB,) < s

DeriNiTioN 1. (i) We say that T has rank at most r if there exist sets Ff,
1<j<r,k=1,2,...,and integers n{, 1 <j<r, k=1,2,..., such that for

el
fixed k the sets {T"F{}{x3*, I €j < r, are pairwise digjoint and the partitions
E={G, T'H: 0<ignl, 1€j<r}

converge to &, where ,
r n'{—l
G,=X—-1J |) T"FL
j=1 i=0
(i} We say T has rank rif it has rank at most r, but not rank at most #—1.
i Tis of rank r for no = 1, we say T has infinite rank.

We now outline the definitions and properties of substitutions of constant
length (see [8] or [12] for more details).

Let r > 2 be an integer and write N, = {0, 1, ..., r—1}, N} = | J,», N%.
The members of NF¥ are called blocks. If BeN¥, B=(b,, by, ..., b,_y) then
B[s,t] =(b,, ..., b) and B[s] = B[s, 5] for 0 < s < ¢. nis called the length of
B and is denoted by |BL

DEFINITION 2. Let A = 2 be an integer and #: N, — N} a function. For any
n >0 there is a natural extension of #, 8: N7— N, and also to a map from
NZ to itself, given by

B(B) = 0(by)O(hy) ... B(b,_;) if B=1(by, by, ..., buv)

and
0(x) = ...0(b-)0(by)0(b)... if x=..b_ byb,...ecNZ,

where in the latter case, by convention the Oth symbol of 6(x) coincides with the
initial symbol of 0{by). 6 is assumed to be a one-one map; the n-fold
composition of 8§ is denoted by #"
If there exists n 2> 1 such that for any i,je N, 6"{i)[k] = j for some k,
0 € k< A"—1, then 0 is called a substitution of constant length A on r symbols.
For a substitution of constant length there is a fixed point x,eNZ such
that if T, is the shift on NZ then the restriction of 7T, to

X(8) = {Tf(xo): neZy,
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the orbit closure of x,, is a uniquely ergodic dynamical system with unique
Tinvariant measure g, satisfying

. fr(B, 850
po(B) = :}lm "*(7‘(—))

for any block B, where we may assume x,{0] =0, and
fr(B, C) = card{t: C[t, t+|B|—1] = B}.
A metric d can be defined on N, n=1,2,..., by
d(B, C) = card{r: B[1] # C[t]}/n
for B, Ce N7},

DEFINITION 3. With a substitution 0 of constant length 4 we associate
a A-automaton {@; j=0,...,A—1} whose jth instruction ¢; is the map
9;; N,— N, defined by @;() = 0() [j]. the jth letter in the word 8i).

(i) If the instructions ¢, are bijections then 0§ is said to be & bijective

substitution. ‘
(i} If the instructions ¢; commute then the substitution is said to be

commutative.

Substitutions which are both bijective and commutative arise as abelian
Morse sequences. '

We now state the result of Mentzen [10] which gives an estimate of the
rank of a substitution. This result applies to substitutions which satisfy for
some constant ¢ > 0
()} a(0"@), () = c>0
for each i 5 j, n > 1. Note that it is well known that a substitution on r symbols
has rank at most r.

Turorem 1 ([10]). ) If 6 is'a substitution of constant length there is
a constant M, such that for every block BeN;

|Bl pa(B) < My

(iiy If the substitution of constant length 6 satisfles condition (%) and if
M, < 1/m then rank T, = m+ L
Remark. Note that bijective substitutions necessarily satisfy ().

§ 3. Bijective substitutions of length r. We now state our main result
concerning the rank of bijective substitutions over r symbols of length r.

TuEOREM 2. Let O be a bijective substitution on r symbols of length r.

(1) If 0 [k, k+1] = O()[K, i +t] implies i =1 and k=K, then T, has
rank r. . : _ :
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Proof. Let B be any finite block and write M, = 1/r. We show that

1
1Bl g (B) < My < 1

and hence by Theorem 1, rank T, = r, and since rank 7, < » = number of
symbols, we have rank T =r.
We split the proof into a number of lemmas.

LemMma 1. If 8 is a bijective substitution On r symbols of length A then
up(i) = 1/r, ieN.,.

Proof. Clearly Yy, fr(i, 6"(k}} = A". Dividing by A%, letting n— oo and
using the unique ergodicity of T, we obtain ry,(i) = 1,

For the rest of the proof we assume that @ is a substitution of length
r satisfying (1). _

Lemma 2. (i) < 1/r(r—1)).

Proof If &, is the set of blocks of length 2 occurring in x,
(Le. B, = {ij: ue(if) > 0}) we define a partial function @: #,— %, by

@) =i it 8F)[r—1]1=i, 8()[0] =}.

Since 0 is bijective, ¢ is a partial function, for suppose #§* = @(ij) = i"j”; then

OO -1 =i=000—11, 6()[0]=j=206([0]
and since & is bijective, i’ =i” and j = j".

We split the proof of the lemma into a number of cases.

Case A: ¢ is not defined on #j. This means that u,(ij) > 0 but Up(I7) = 0. Tt
follows from (1) that there is a unique k;;e N, such that ij appears in 0(k;) in
a unique position. Therefore fr(ij, 0°(0)) = fr(ky, #"71(0)) and hence
Ha (i) = (1/r) plky) = 1/r2.

Case B: ij appears in 8(k;)) and o(ij), 92(ij), ..., ¢*(ij) are well defined with
@*(#) = 7. Then

fr (i, 0°(0)) = fr (ky, 6"~ 1(0)) +1r{(if), 0"~ (0))
= r (kij, 6”71 (0)) +fr (kpyyy, 6" %(0))
+r{@* (@), 0" 2(0)

= fr(k;j, 9n~l(o))+ e +fr(k¢x~1(m, Q"hs(O))

+E (i, 7*(0).
Hence

Falif) = (UM UM+ AN+ o+ (A + (1) (i)
and it follows that u,(j) = 1/(r(r—1)).
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Remark. If k,; were not defined for some | < I < s it would mean that
o) < 1/fr(r—1).

Case C: ij appears in 8 (k) with (), ..., ¢*~ (i) well defined, but ¢ is not
defined on ¢@*'(ij). Then

fr(ij, 0"{0)) = fr (kijb OH_I(O)) + ... +fr (kws—l(u), 0"“5{0)),
so that (i) = (r*~1)/(F**(r=1) < 1/(r(*—1)), with the same remark ap-
plying as in Case B. :

Case D: ij appears in 0(k;) with @), ..., @*(j) well defined and
¢l(if) = @**e(ij) where I+¢ =s. By Case B, py(e'(y)) = 1/{r(r—1)) (or the
inequality by the remark after Case B) and

fr (i, 0"(0)) = fr (kiz, 0"~ 1 (O)) +r (Kpgp, 07 2(0)) + ...
+fr (- 157, 077 (0))+ (' (5), 0771 (0)).
Hence
1,00 = (P (/R + DA+ o AW AR+ A/ —1)
< 1/rir—1)).

Case E: i does not appear in any 0(k), ke N,. Then thgre faxist:S a uni-
que (7, j) such that 0@ [r—11=i and 0(j)[0] =/ This implies that
uaif) < (01 [0, 13) < 1/(r(r—1))-

LEmMMA 3. y(ik) < 1/r* for any 3-block ijk.

Proof. Case A: There is a unique s;u € N, such that ijk appears in 0(s;);

then u,(ik) = (1/r) y(sip) = 1/r%.
Case B: There exist ¥, f, i’, j” such that

ifk = (i) [r--2, ¥—1]0(j)[0] and/or
ijk = 0G") [r—110(;}[0, 1].
Then fr (ijk, 0°(0) < fr (¢, 0"~ ON+fr (i7", €"~ 1 (0)) ‘and so
(kY < (11} oG )+ (/) e 1)
<2YPFr—-1) < rr forrz3.
LEMMA 4. There is a constant M < 1/(r—1} such tha for each black B with
1Bl <r and py(B) > 0 we have
IB| 114(B) < M.
Lemma 5. If ¢"(3) = 0™(j) 0" () [u; u+_r”‘v~1] then either u =0 or u=r".

Proof. For m=1 the result follows from {1). The general result now
follows by induction in a straightforward maner.
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. LElthA 6. For any block Bwith |Bl = nand 7" +1 <n <", m2 1, there
I8 a unique representation of B in the form

B =B, #"(i,)8"(i,) ... 0™(i)B,,

(_) \<.‘t g r—2, 0<|B]<r" B, =60"(j)[u, 1], B, = 0"(j,)[0, v], where
Jis Jas bs oo, B, are unique.

Proof. Bis a block appearing in x, which is a concatenation of §™-blocks,
so by Lemma 5 we can write B in the form

B = B, 0"(i,) 0™(i;) ... 0"(1) B,

for unique i,k 0t <r—2, where 0 < |B| < r™ It follows that it suffices
:1(1). c?nmder the case when B = B, B,, 0 < |B] < r". In this case B must be of
e form

B= ... k" (o™il ...

The result now follows from Lemma 5 and (1).

r=3.

Lemma 7. For any biock B with He(B) >0
IB| 11g(BY < M, where M, = 1/r.

Proof. We have shown this if |B| < r so suppose|B| = r+1, IB| = n say.
Choose meN satisfying r"+1< n<r™"!; then by Lemma 6, B can be

uniquely represented in the form
B = B, 0™(i,) ... 0"™(i)B,

where 0 <t <r— . ~ gmis o
- r—20<|B|<r"and By = 6™(j;)[u, 11, B, = 6"(j,) [0, v],
B =0"(j) 0™} ... () 6"(j,) [u, v].
It follows that : :

Bity(B) = nig(fy 3y .. 1,j5) _ n(t+2) pe(Jy 1y ... dja)
. r (t+2)rm
nM, <M
S
since n = tr"+|B |+ |B,| < tr"+ 2"

§ 4. The rank and maximal spectral multiplicity of examples. Let

G={e, gy, ..., go-1} be a finite (possibl i i i
s G1s ooer Gy ¥y nonabelian) gro i
elements and identity e. Define f; on G by ) grow W'lth 7 dtioet

Be) =e g0 ..., gi_ s
0@)=4a.99:,+.... 99, _,
wi—1€{0,...,r~1} and g, =e.-

geG,
where i,, ..
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Subject to suitable resirictions, 0, satisfies the conditions of Definition
2 and is thus a substitution on G of constant length ». Under these conditions
we have:

THEOREM 3. () ¢ is a bijective substitution.
(i) If G is an abelian group, 0 is commutative.
(iii) The uniquely ergodic transformation arising from O has rank r if

@i, 91,..) # 995, 995, )
for each ge G whenever j# s.

Proof (i) and (ii). The instructions ¢,(g) = 0s{g) [K] = gg;, are clearly
bijective and commute if G is abelian. .
(iti) Suppose 0(g}[j,j+1] = 0(h)[s, s+1]. Then

(99:,» 90;,. ) = (hg,,» Ry, ) oF
(glj’ gij-H) = (g_l hgig’ g_l hgi,+l)s

hence by the hypothesis we must have g = h and j =, s0 the conditions of
Theorem 2 hold.

The following example shows that the above construction is nonvacuous.

ExaMPLE 1, Let G = {e, g, ..., g,—1} be 2 finite group. The substitution
¢ defined by

Ble) =e, g1, G201, G3b291) -+ s Gr—1Gr-2 -+~ 92815 B(g) = gfle),
satisfies the conditions of Theorem 3(iii).

Proof. Suppose that ge G and j, s satisfy (g;,, 9; 1) = 995, 9G5,..)- Then
0;G)-1 - G291 = 0G5 Gs-1 -~ 9291 80d Gj10; - 9201 = 9fs+14s - 6291 5O
Jis1 = Gse1s J =8 and g =-e. _ ‘

It remains to prove that 6 is a substitution. It is enough to show that there
exists ne N such that all g’s appear in 6"(e). First of all we see that if & appears
in 6*(e) then h appears in 0**™(e), m> 1,35 8(g) = g... for each ge G. Now,
we observe that g, appears in (). Since g, g, appears in #(e), the element
(9,91), = 4, g% appears in 6%(e), the element (g; 91) g1 = g, 93 appears in £°(e)
and in general g,g% appears in 0%(e). Hence there must exist s, such that g,
appears in ("*{¢). The element ¢, 9,9, appears in 6(e). Therefore as before
d1(g, g,)* appears in 6% (e} and in general g5(g, g,) appears in 6*(e). Thus there
exists n, such that g, appears in 8”2(¢). The same arguments show that for each
g; there exists n, i=1,..., r—1, such that g, appears in 6"(e).

Remarks. 1. The transformation T} arising from the substitution 8, can
be represented as a (possibly nonabelian) Morse sequence of the form
xo=hxbx ... and hence as a G-extension of a discrete spectrum transfor-
mation (see Robinson [[147). It follows from Robinson [13] (and also Queffélec
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[12]) that the maximal spectral multiplicity of such a transformation is
bounded from below by the maximal dimension of the irreducible represen-
tations of G. It follows that for the transformation T, of Example 1, rank T, = »
and %, < m(Ty) <r where m(T) = maximal spectral multiplicity of T and
9D = maximal dimension of the irreducible representations of G.

2. Suppose ris prime. Then G = Z, and g is an abelian Morse sequence of
the form xg == bxbx ... over Z,. In this situation, Kwiatkowski and Sikorski
[7] have shown that m(T;_) = 1 or 2 and is 2 precisely when the block b = 0(0)
is symmetric,

ExAMPLE 2. We specialize Example 1 to the case G = Z,, 2= 2, to obtain
for each r 2 3 a substitution 6, with rank T, = r and m(T}) = 2, thus solving
Mentzen's problem for the case (2, n).

We have

kk—1) =1
T T
6.() = 6,{0)+i (mod 7).
For example, when r =2 we get
8,000=01, 6,1)=10,

the Thue-Morse sequence, shown by del Junco [4] to have rank 2 and simple
spectrum. For r=3

0,000=010, 0,(1)=121, 6,(2)=202

gives rise to the Morse sequence x, = 010x010x ... over Z;, shown in
Goodson {3] to have maximal spectral multiplicity equal to two. We generalize
this to prove

6,00)=0136...

(mod #),

TueorReM 4. If 8, is the bijective substitution
000)=0136 ... r(r—1)72 (mod #),

_ 8.0 = 6,(0)+1 (mod r),
then tank T, =r and, for v 23 m(ly)=2. _

Proof. Dencte by U, the unitary operator Up: I2{X(0,). 1)
— I (X(0,), tp} induced by T, Upf(x)=f(T"'x), where fig is the unique
invariant measure. For each pe{0, 1,..., r— 1} and for w = e*™, we define
subspaces H, of I (X(0,)) by

H, = {fe2{X(0)): foo(x) = w?f(x)}.

Then IF(X(0,)) = B}=4H, and each H p 18 invariant under U, (where
o X(#)—X{(6) is the homeomorphism defined by adding 1 to each com-
ponent of X (0,3). It follows from Goodson [3] that UyH,, p # 0, has simple
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continuous spectrum and Up|H, has discrete spectrum, (This result is true
more generally, see Kwiatkowski and Sikorski [67] and Queffélec [12] for the
simplicity of spectrum and Martin [97 for the continuity of spectrum.)

Denote by A, the maximal spectral type of U restricted to the invariant
subspace H » corresponding to peZ,. If /Tp is the Fourier transform of 4, then
/fp (0)= 1 and E,,(—wz) = )fp (n), furthermore the recurrence formula of Coquet
Kamae and Mendés France [2; Theorem 37 implies that

/fp (ra-+a) = A],(ajx'fp(n)-l-B,,(a) /fp(n;}- 1)

T

for n=0,1,...;a=0,1,...,r—1 and peZ, where
]"_"_“1 R 1 *2t .
Apla) = Y, Llat+k k), B, = Y Glatk—n, ),

k=0 k=r—a
and {,(k) = w*™ where w = ¢** and b[k] is the kth member of the block
b = 0,(0). Furthermore, it is known that the measures 1, pe Z,, are either equal

or mutually singular (see Keane [6], Queffélec [12] or Kwiatkowski and
Sikorski [7]).

Lemma 8. For the substitution 0, and for p=1, ..., r—1; n=0,1, ...;

a=0,1,...,r—1, we have the recurrence relation
. ma?
S111 —}—B
A(rnt-a) = — {(=1F* e 2 (n+ D~} if ap+ 0 (mod r)
F8in ——
p
{_ 1)kta+ 1)

= (= )" A+ D+ D)0 f ap = k.

Proof. Ap(ﬂ') =r! z;‘;%—l Pl k]~ hlk]) where

bla+K]—b[k] = (a—i—k)(c;—l—k-l— 1)_k(k2~|~1) _ a(az—l— 1)+ak.

Therefore

vl

Z Wapk

1
F1y/z
An(“.) = - WA

' E=0
o yylr—akap
= i.lnwtip(u*-l)fz L_._w_m_w ——  if W #1
r 1—w
. Tm.z »
] S e
r .
o if ap # (¢ (mod r).
ro . map
518 ———
P

F - Studin Mathematica 96,3
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In the case that ap = 0 (mod 1)

A (a} 1 ap(a+ 1)/2 (]‘ ) uzap(a+ 1yr

"__“( 1ja+D
r

where ap = kr.

Similarly

if ap # 0 (mod 1)
sin—
r

=$(w1)k(a+1)(_1)(r+1)p lf ap = kr

and the result follows.

Remark. The lemma heolds even when r =2, giving the recurrence
relation for the Fourier coefficients of the Thue-Morse sequence
x =01x01x ... over Z,, given by Kakutani in [5].

LeMMA 9. For v =z 3, T, has maximal spectral multiplicity equal to two.

Proof. Let p, geZ,—{0}. Then since 1, and i, are either equal or
mutually singular it suffices to show that 1=, if and only if p=¢ or
P=r—q.

Suppose ap # 0 (mod r). Then a(r—p} £ 0 (mod r) and

[

2 2
. mat(r— . na
S ( p) s P
r r

. malr—p} . map’
sm—(——El sin

it easily follows that i Srnta)= 4, (rn+a) for all n=20,1,

{f ap =0 (mgd r), say ap = kr, we have a(r—p) = (aﬁ k)r and we again see
that 4 (rn+a) = A, {rm+a) for n =0, 1, ... Note that 4,(0) = 1 for all p, thus
Ap=dpe p=0,1,...,r—1. :

Conversely, suppose A, =24, where p,qeZ —{0}. Then ip(rn-ka)
=1 Jdrnta)for all n=0,1,...; a=0,1,...,r—~1. We split the proof into
a number of cases.

Case 1. Suppose r is odd. If a=2 then pa+#0 (modr) and
ga # 0 (mod #) so

sm(41cp/r)

Al +2) = rsin(2np/r)

i A 1) =4, (n)}
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and similarly for 7, thus
sin{4np/r) sin(dng/r)
sin(2np/r)  sin(2mg/r) or cos(2np/r) = cos(2ng/r).

S0 p=g Or p=r—g.
Case 2: Suppose r is even and 1, = 4, where p is odd and g is even. Then if
we take a =1,

SlIl(’Jt p/r)
r sm(n:p/r)

=1 {n+1)—2 (n),

and 7 (rn+1)_ J(n+1)—2 (n), so we must have i Ln+t1)=0foral nz=0,
which is 1mp0531ble

Case 3: If r is even with 2p # 0 (mod r) and 2g # 0 (mod r) with p and
¢ both even or both odd we can argue as in Case 1 to see that p=gq or
p =r—gq. On the other hand, if 2p = 0 (mod r) and 2g =0 (mod r) we must
have p=¢qg =r/2.

Case 4: If r is even with 2p # 0 (mod r) and 2g = 0 (mod #) with p and
g both odd or both even, then

Lt 1) = {(~1P 7,00+ )1, ()}

A rn+2) = —cos—{( 1P 2, (n+1)—2,(n)},

Trn+2) = —%{(—1)9214(n+1)—(r~»2)1q(f1)}.

Put n=0 and equate the above using 12 A1) = 2 (1) = —fr—(—1)7),
7,(0) = 2,(0) = 1; we see that Case 4 cannot arise.

We arc now able to give an explicit formula for the maximal spectral type

of T,.
COROLLARY. For r 22 prime, A, is the Riesz product measure

. wna’p

5 r-1SIN—
A‘F=H{1_;Z - na

=0 a=1 Sin

cos(2rar” x)}.

A similar formula holds when r is not prime.
Proof Use Lemma 8 and the method of Queffélec [117.

Remarks. 1. Theorem 4 gives a new proof of the result due to
K wiatkowski and Sikorski [7] that for each r > 2 there are continuous Morse
sequences over Z, which have nonsimple spectra.
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2. The proof of Theorem 4 implies that the spectrum of T, restricted to
@52y H , is homogeneous for r odd and nonhomogeneous if » is even (r>2).
3 It is still an open question whether a generalized Morse sequence over
a finite abelian group can have maximal spectral multiplicity greater than two.
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A smooth subadditive homogeneous norm
*  on a homogeneous group
by
WALDEMAR HEBISCH and ADAM SIKORA (Wroclaw)

Abstract. We prove that on every homogeneous group there exists a smooth, subadditive and
homogeneous norm.

Introduction. Around 1970 E. M. Stein introduced the notion of a homo-
geneous group. Such a group G admits a homogeneous norm |- |, which for
a v 1 satisfies

Ixyll < v(Ix|+lyl) for all x, yeG.

The group equipped with ||| and the Haar (Lebesgue} measure is a space of
homogeneous type in the sense of [17. A number of estimates become easier if
y =1, ie. if the homogeneous norm is subadditive, so that it gives rise to
a left-invariant metric. It is known that for some homogeneous groups such
a norm exists, e.g for Heisenberg groups and the like [2]. Also for stratified
groups the optimal contrel metric is homogeneous.

- The aim of this note is to show that a homogeneous and subadd1t1ve norm
exists for every homogeneous group and in fact the construction is quite
simple. More information about such norms is supplied by Theorem 2.

The authors are grateful to Andrzej Hulanicki and Tadeusz Pytlik for
their helpful suggestions.

A smooth subadditive homogeneous norm on a2 homogeneous group.
A family of dilations on a nilpotent Lie algebra (7 is a one-parameter group
{8,}:50 (6,08,=8,} of automorphisms of G determined by
5: (?J = Id‘j ej’
where e, ..., e, is a linear basis for G, the d; are real numbers and
d,z...x=d =1 If we put (x,,..., %)= %€, then

B(Xqs -y X)) = (11 %, ..o, 19,
1985 Mathematics Subject Clmszf cation: 22E25 43A85.

Key words and phrases: homogeneous group, homogeneous norm, subadditive and homo-
EENeous norm.



