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Some properties of endomorphisms
of Lipschitz algebras
by
HERBERT KAMOWITZ (Dorchester, Mass.) and
STEPHEN SCHEINBERG (frvine, Calif)

Abstract. Tn this note we consider endomorphisms of Lipschitz algebras Lip,{(K, d) and

_lip(K, d) where (K, d) is a compact metric space. We determine necessary and sufficient conditions

for such endomorphisms to be compact and further show that the spectrum of a nonzero compact
endomorphism consists only of the points v and 1.

Let (K, d) be a compact metric space with metric d. Following [5] we
denote by Lip(K, d) the Banach algebra of complex-valued functions / on
K for which

1 Tegockas = 11 oo+ ii;;'_f-%f—%y—)' < .

These are classical algebras when K = [0, 1] or T, the unit circle, with the usual
metrics [4]. General Lipschitz algebras Lip (K, d) have been studied by, among
others, Sherbert [51, [6] and Bade, Curtis and Dales [1]. It was shown in [5]
that Lip(K, d) is a regular commutative semisimple Banach algebra with
maximal ideal space K. It also follows from [5] that a linear map T from
Lip(K, d) to Lip (K, d) is a nonzero endomorphism if and only if there exists
a map @: KK such that Tf = foe for all feLip(K, d) and d(e(x), 0(y)
< Md(x, y) for some M > 0, all x, ye K. Although the thrust of (1] related to
Lipschitz algebras concerns the question of amenability and weak amenability
of these algebras, that paper contains other mice properties of Lipschitz
algebras Lip(K, d} and related algebras Lip,(K,d) and lip,(K,d). The
objective of this note is to study compact endomorphisms of Lip (K, d). We will
show that an endomorphism T¢ f—fog of Lip (K, d) is compact if and only if

lim  d(p(x), p(y)/dx, y) = 0.

d(x,p)—+Q

Further we will determine the spectra of these operators,
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Dermamion. If (K, d) is 2 metric space, a map ¢: K—K will be called
a supercontraction if
lim d{e(x), p)/d(x, y) = 0.

dix,5)—~0

We observe that constant functions are clearly the only supercontractions
of K=[0, 1] with the usual metric. This seemed to confirm an earlier
conjecture that every nonzero compact endomorphisra T of a regular com-
mutative semisimple Banach algebra with connected maximal ideal space
X has the form Tf = f(x,)1 for some x,€X. However, in [3] we constructed
an example of a nontrivial compact endomorphism of a regular commutative
semisimple Banach algebra with connected maximal ideal space. Since, as we
now show, there exists a compact connected metric space (K, 4) and a noncon-
stant supercontraction ¢: K-+ K the resulting Banach algebra Lip(K, d) is
then another example of a regular commutative semisimple Banach algebra
with a nonirivial compact endomorphism.

Exampri (of a connected metric space with a nonconstant supercontrac-
tion). Let K =[%, 1] and define d: KxK-R, by

d(x, y) = \/Ix—yl|
d{x, v)=d(y, x) = /3—x+(y—3)

dx,y)=|x—y fi<x,y<l.

ifi<x, y<d,

fig<xgigy<gy,

It is easily checked that (K, d) is a compact connected metric space and
that the function ¢: KK defined by o{x) =2x if 1< x <% and ¢(x) =1
for + <x <1 is a supercontraction.

As Theorem 1 will show, this ¢ induces a nontrivial compaét endomor-
phism of Lip (K, d).

Turorem 1. Let (K., d)y be a compact metric space and let T be an
endomorphism of Lip (K, d) induced by a map @: K — K. Then T is compact if
and only if @ is a supercontraction.

Proof. First assume that 7' 0 is a compact endomorphism of Lip(K, d)
with Tf == fop. Suppose ¢ is not a supercontraction, ie,

lim d(e(x), @())/d(x, y) # 0.
d(x,y)—0
It then follows that there exist ¢ > 0 and x,, y,e K satisfying d(x,, y,) < 1/n*
and d((P('xn)’ (P(yu))/d(xn: yn) —2 &> 0 Let
1 — g ~nd(x.0(m})

Fx) = "
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Then |F,|l, < 1/n and for each x, yeK, x # y,

|F(X) = F,(y)] _ |e”nCetml—gmnieabll  ¢7" ld(y, p(y,))—d(x, ¢ ()
d(x, y) nd(x, y) d(x, y)
where & > 0 is between d(x,¢(y,) and d(y, ¢(y,)). (Mean Value Theorem for
g{t) = e~™ on the interval between d(x, ¢(y,) and d(y, ¢(y,).) Since e < 1
and |d(}7: [P(yn))—d(xa (P(yn))| < d(xa y) we have

Sllpan(X)—F,,(y)l/d(x, <l
x#p

hence || F,lLipx.s < 1/n+1. As we are assuming that the map T is compact,
there exist F,_and G in Lip(K, d) with F, op - G in Lip (K, d). However, since
F, —0 uniformly, G = 0 and so F, 0¢—0 in Lip(K, d) norm. Thus

sup |F, (@() = F, (e 0)/d(x, y}—0.

xFEy

With ¢ > 0 as before, it follows that |F, (¢(x))—F, (e()l/d(x, ¥) < &2 for all

" x, yeK, x #y, k large. Therefore

|e = mea(ip (3o} _ —nkd(m(x).w(ynk))| £
.< o
nd(x, ¥) 2
for all x, ye K, x # y, k large. In particular, the last inequality holds if x = x,,
and y = y,.. Thus

o L—emmiotweon) o Rd(p(x,), 0,)
2 nk d(xnw ynn) ' d(xmcﬁ ynk)

for some &, depending on k, where 0 < & < d{p(x,), @(y,) [d(@(x,), ¢(,) s
positive since d{¢p(x,,), @y, ))/d(x,,. ¥,) = &> 0) Also since ¢ induces an
endomorphism, d(¢(x), ¢(y)) < Md(x, y} for some M >0, all x, ye K. This
implies that d(@(x, ), @(v,)) < M/ni. Thus 0 < & < M/n? and so for large k we
have

ﬂmﬁ&l < Ee"k‘: < EeMl‘ﬂk
d(xnk’ yuk) 2 2

Letiing k— co gives the contradiction 0 < ¢ < ¢/2. Thus if p induces a compact
endomorphism, then '

D<=

lim  d{p(x), e(y))/d(x. y) = 0.
dix,p)~ 0
Conversely, assume that Tis an endomorphism of Lip(K, d) induced by
a supercontraction ¢. Let {f,} be a sequence in Lip(K, d) with ||| < 1. Then
{f.} is uniformly bounded, and since there exists M >0 such that
V&)= € Md(x, y), the sequence {f,} is equicontinucus on K. By the
Ascoli~Arzeld Theorem there exists a subsequence {f, } and geC(K) with
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f,—g uniformly. We claim that {f, 0@} is a Cauchy sequence in Lip(K, d).
Indeed, fix £ >0 and let & >0 be such that 0 <d(x, y) < J implies that

d{o(x), e)d(x, y) <=

When 0 < d(x, v} < 3§ and ¢(x) # ¢(y), we have

L (0 —fr (00D = [ {0 0) ~F (0 O))]]
d(x, y)
< Lot~ (oW d(@(d: ¢G)
d(e(x), @()) d(x, y)
Ifnk @ (X)) —fr (0 )| A (), ()
d(o(x), ¢() dix, y)
< Dol + 1o ||Ji—(—)(—y)l <2

for all k, &’ where x, ye K and 0 < d(x, y) < 4. (The inequality is certainly true

if @(x) = @(y)) On the other hand, for d(x, y) = 4,
([ (209) A (0] — [hudeO) =Alo Ol _ 205 =Fellee S oSl
d(x, y) STdmy) 3

Since {f, } is a Cauchy sequence in the uniform norm on C(K), we have
CV foo— ol o < & for large k, K.
Thus for all x, ye K, x#y,

(o =S (@) ~ U = £ ) (2 D))]

< 2
d(x, y)

for large k, k. Since & > 0 is arbitrary we conclude that {f, o¢} is a Cauchy
sequence in Lip (K, d). Hence there exists G e Lip(K, d) with S0~ G, showing
that T is a compact endomorphism. Clearly G = goo.

We next show that the spectrum ¢ (T) of a compact endomorphism T'# 0 of
Lip(K, d) consists of two peints, 0 and 1. We recall [2].that if T'# 0 is a compact
endomorphism of a commutative semisimple Banach algebra B and if
(Tf)* =foe, then ()¢,(X) is finite, where X is the maximal ideal space of
B, ¢: X —»X and ¢, denotes the nth iterate of . Moreover, if X is compact and
connected, then 1€B and ()¢, (X) is a singleton.

TueoreM 2. Let (K, d) be a compact metric space. If T+ 0 is a compact
endomorphism of Lip (K, d), then o(T) = {0, 1}.
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Proof Let T be a compact endomorphism of Lip (X, d) with Tf = foe.
Clearly Oeo (T} and also 1ea(T) since T1 = 1. Assume thai X is connected
and {xo} = [¢,(K). Next suppose there exists ieo(TI\{0, 1}. Since T is
compact, 4 is an eigenvalue of T Let Tf = 1. We will show that f'== 0. To this
end, we observe first that since x, is a fixed point of ¢ and 10, 1, then
Tf = 4f implies that f(x,) = f(p(x,)} = Af (%,), whence f(x,) = 0. Since by
Theorem 1,

lim o), o(x0) _

, d(p(x), x,)
d0x, x) lim —~——=2

U=,

d{x, i)~ 0 dxan-o 40X, Xq)

we can choose é > Q such that 0 < d(x, x,) < & implies that
d(p(x), xo)/d(x, x,) < {4)/2.

Assume that m is a positive integer such that ¢, (K) = {t: d(1, x,) < &} and let
x be a given element of ¢,,(K). Then ¢ (x)e @,,+ (K) = ¢, (K) for j = 0 so that
d(p;(x), xo) < & for such x and j. Clearly if ¢,(x) = x, for some k, then
fOx) =275 (xg) = 0. Suppose @ (x)#x, for all k Then f(p,(x)

= T"f(x)= A" f {x) for all positive integers n, so that
'A‘In |f [j (pﬂ f(x(] l
dix, xa) d(x Xo)

= U‘((pn(x)) "j(xo)l d((P((Pn-- 1(x}), xo) CI((P(x)ﬁ xD)
d((p,,(x), xo) d((an(x)a xn) Cdx, Xo)

Since d(@,(x), xo) < & for all k> 0 it follows that

d(@( @ (s xo)d{pic~ 1 (x), xo) < |22
1. This implies that

A1 6] [ {@a &)~ Cog)] |2
d(x" 'x()) \ d((Pu( ) ) 2

for all positive integers n. Moreover, |f(¢,(x)—/ (o) € Md(p,(x), xo) for
some M > (. Thus f(x) = 0 for all xe ¢, (K). But for each te K, ¢, (t)e ¢, (K),
50 A1 (1) = f (1)) = 0. Since A 0, £(1) = 0 for all teK. Hence if 10, 1,
then 4 is not an sigenvalue of T'and therefore o(T) = {0, 1} as claimed. Finally,
if X is not connected, then by considering powers of Tand the action of ¢ on
components of K it is not hard to show that again o(T)= {0, 1}.

We also remark that in the case that K is connected, the proof shows that
I'is an eigenvalue of multiplicity 1; that is, if Tf =/, then f is 4 constant
function,

for all k=

Remark 1. Let (K, d) be a compact metric space. Then for each «,
0<asg 1, d% (x, p)—d(x, y)* is a metric on K. Let Lip,(K, d} = Lip(K, d%
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and define lip,(K, d), 0 <a <1, by

UM#MZ%
d(x, yy )

(See [17). Then lip,(X, d) is a closed subalgebra of Lip,(K, d) with maximal
ideal space K. Further, it was shown in [1] that for O0<a<l,
lip, (K, dy** = Lip,(K, d) and that Lip(K, d) is dense in lip,(K, d) for all «,
O<o <1,

We claim that every nonzero compact endomorphism of lip, (K, 4d),
0 <& < 1, is induced by a supercontraction, and conversely, every supercont-
raction induces such an endomorphism. To see this we first assume that T'is
a nonzero compact endomorphism of lip,(K, d). Then Tf= fo¢ for some
¢: K~ K. Since lip, (K, d)** = Lip,(K, d) the map T™* is a compact en-
domorphism of Lip (K, d) = Lip(K, 4%, whence ¢ is a supercontraction. To
show the converse, let ¢ be a supercontraction of K and Tf=jfo@ on
lip,(K, d). Suppose {f,} is a bounded sequence in lip,(K, d). Then {f,} is
bounded in Lip,(K, d) so that there exists {f, } and geLip (K, d} with
fo@—g in Lip,(K,d). But lip,(K,d) is closed in Lip,(K, d). Therefore
gelip (K, d), which shows that T f— fog is compact on lip,(K, d)}, 0 < < 1,
if @ is a supercontraction. Clearly o (T) = {0, 1} as before.

lip, (K, d) = { feLlip, (K, d): lim

a0

Remark TL It was shown in [6] that if (K, d,) and (K, d,) are compact
metric spaces then 0 # T: Lip(K,, d,)— Lip(K,, d,) is a homomorphism if
and only if Tf=fog, ¢: K,—K, with d,(¢(x), ¢{y)) < Md,(x, y) for some
M > 0, With appropriate modifications of the terminology and proofs it can be
shown that T is 2 compact homomorphisim of Lip{K, 4,) into Lip(K,, 4,) if
and only if

lim 4, (p(x}), e()d,(x, y) = 0.

dz{x,y}—0

Specifically, it follows easily that if f> o,
1 Lipy(K, d)—Lip,(K, d) is compact.

then the identity map
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