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Strongly nonnorming subspaces and prequojections
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VINCENZO BRUNO MOSCATELLI* (Lecoe)

Abstract. We give an alternative proof of the fact, already established in [8], that strongly
nonnorming subspaces exist in the dual of every nou-quasi-roflexive Banach space. Via a “lifting
lemma®, the result is obtained from the cxplicit construction of a strongly nonnorming subspace in
the dual of a suitable subspace of the given Banach spacc. The emphasis here is on the constructive
method, which is then applicd to produce a Fréchet space with remarkable properties.

Introduction. Let X be a Banach space. A closed subspace M of the dual X’
is called total if it is w*-dense in X’ and norming if its unit ball is w*-dense in
some multiple of the unit ball of X'. Define the derived set M ' of M as the
collection of all limits of w*-convergent and bounded nets in M and,
inductively, the derived set of order n, M", of M, by M" = M~ 9 for n > 1.
Then M is nonnorming if (and only if) M* s X', while we shall say that M is
strongly nonnorming if it is total and M" # X' (e, M" # M"Y for all n

In his book (cf. [1, p. 213]) Banach had already shown that there are
subspaces of I' = (¢, whose successive derived sets are all different (note that
for separable X w*-convergent sequences suffice and our definition reduces to
Banach’s). These subspaces are not necessarily total, but obviously they are so
in their w*-closures, and are, therefore, examples of strongly NoNNOrming
subspaces in duals of suitable quotients of ¢.

More recently, in [6] S. Dierolf and the author related the existence of
strongly nonnorming subspaces to a certain problem in Fréchet space theory
raised in [3] and this renewed the interest in strongly nonnorming subspaces.
Thus, in [2] a weaker form of Banach’s result was rediscovered via Banach’s
“Théoréme 1™ of [1, Annexe], while in [11, Problem 7] we conjectured that
a strongly nonnorming subspace exists in every non-quasi-reflexive Banach
space. This conjecture was proved in [9] for separable spaces and in [8] for
general Banach spaces, directly,

The fact that strongly nonnorming subspaces give rise to & very interesting
(and unsuspected before) class of Fréchet spaces, which we name prequojec-
tions, is amply discussed in [7], to which we refer for details (but see also § 2).
However, all the proofs in 1], [2], [8] and [9] are “gxistential” and no
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concrete subspace is produced, while for the purpose of applications, especially
to Fréchet space theory, it is necessary to have examples of manageable
subspaces. In this spirit, we present here the following procf, alternative to the
one in [8], whose main thrust is the actual construction of explicit strongly
nonnorming subspaces in the duals of suitable spaces. This is done in § 1. The
power of this constructive method wil then be amply displayed in § 2 where, by
way of application, we use it to exhibit a prequojection with some very
remarkable properties.

1. Strongly nonnorming subspaces... In order to obtain the general result
from a special case, we need the following “lifting lemma”™ whose proof is
a matter of routine checking.

LemMMA. Let X be a Banach space, let Y be a subspace of X and let
0: X' — Y’ be the canonical quotient map. If M is a subspuce of Y' then, for any
n, Q7 HM™ = (Q Y (M))". Therefore, if M is strongly nonnorming in Y', so is
O~ NM) in X | :

TueoreM 1, Let X be a Banach space with dimX"/X = oo, Then X' contains
a strongly nonnorming subspace.

Proof. We shall index all sequences from 0 to oo.
By [4, Theorem 2], X contains a basic sequence (x,) such that

k
(1) sup(|| ¥ %ps, ] 0K j Sk < )= C < e,
i=

with n; = i(i + 1)/2 and, by the lemma, it will suffice to prove the assertion for
X =[x,].

Let (N,) be a partition of the nonnegative integers into disjoint infinite
subsets. For every m 2 0, (x,,.;: JEN,,, | 2 j}is a subsequence of (x,) satisfying
(1) and it may be written as (x™) by relabelling the integers in N,,. In this way
(x,) is partitioned into disjoint infinite subsequences (x}) each of which satisfies
(1). I ( £,) is the sequence of biorthogonal functionals associated to (x,), then (f,)
is also partitioned into corresponding subsequences (f7) and we may assume
that || /2] <1 for all m, n > 0. Next, we observe that (n,+j: i2j=0) is an
enumeration of the nonnegative integers, so that the map s »;+j—j is
a mapping of the nonnegative integers onto themselves for which s™'(j) is
infinite for every j. Finally, we choose a sequence (s,) such that 0 < ¢, 27"
and form the subspace M of X' as

(2) M = [f,? +Es(n)fsl(n) +(;S(,,)ﬁsl(n)f322(n) +..0n ,.>f 0]
2=}
= [ Z (ss(n)- . .Ssm(n))f?'m("): nz 0] .
m=0

We assert that M is strongly nonnorming in X". In fact, M is closed and to
see that it is total we argue as follows.
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Suppose that xe X and that f(x) = 0 for all feM. For s(n) =j put
3) 4= Ti+eplint.

then f2(x)+¢;9,(x) = 0 and, letting n— oo through sT1(j), we have g,(x) = 0.
Since j is arbitrary, £ (x) = 0 for all n. Now, starting with g,(x) = 0, repeat the
argument using (3) to obtain fi(x) =0 for all j and, inductively, /' (x) = 0 for
all m, n. Therefore, x = 0 and M is lotal

Now we show that M" # X' for all n. To start with, by (3) we may write

M =[fa+eg: 20, sth)=]l.

Since /¢ 0, ¢,& M for all j. Supposing M* = X', there must be a & > 0 for
which Bj*" o 20By, where By, and By are the unit balls of M and X'
respectively. Now |ig;]l < 2 by (3) and hence dg,e By** for all j. Thus, since X is
separable, for any fixed m there is a sequence (u;), which we may take of the
form

ki

(4) U, = Z aln(jlﬂ +F‘s(n)gy(n)):

n=0

lud <1,

which w*-converges to dg,,. Given arbitrary j and I, choose a k > j such that
n,+j = k;. Then, remembering that s(n,-+j) =J for all { = j, it follows from (1)
that

ki ki k -
{5) | z aln' = | Oin z fg(xﬁm’)'
FEE

k k
= lu 3 %8 ) < || X xR <€
i=} i=j
and, in particular,

(6) | ¥ a,lsC
s(';t;:)m

Since (5) holds for all | we have, with a suitable j;,

ki 2 ky St k,
” Z “’ln“s(ﬂ)(h{ﬂl' = ” L ( }4 ':lln)uj-(']J‘H € 24 l Z a‘lulEJ HgJH s 2C.
{] LD T j=0 aml

t
" RN sny=J

Thus, a subsequence of {3 ¥ ot ymbai)» Which we denote the same way, is
w*-convergent, hence 80 is also (¥ 4o, f7) and necessarily
kt

2 tl[ﬂ.fg.“'ﬁ‘;’(]"

[TE]

kit
Z a.!rrga(u)g-'r(rl)wagm'
= .
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But by (6) we may also assume that for this subsequence we have

k1

Y a,—da,
n=0
s(n)=m
so that
ki
(7) 2, Gubuin st 57 (6 — 88, ) -
S(’:l) #m

However, recalling (3) we see that
G} = ) = 1,

which, together with (7), implies a = J/g,,, and we get o contradiction with (6)
for m sufficiently large. Thus By contains no muliple of By, and hence
MY # X

Similarly, putting

GemXmd =0 for s(m £ m,

o= [ tespy fimt oo

we see from (3) that g; = £} 4 &4 k), 5O that, as before, h, € M? for all k, while
the same argument as above shows that M? X',

Proceeding this way, we see that M” # X' for all n, i.e. that M is strongly
nonnorming as asserted.

We conclude this section by noting that the above method of proof yields
also the following result, which solves Problem 18 in [11].

THEOREM 2. Let X be a Banach space with diimX"/X = . Then, for any
k21, X" contains a closed subspace M, such that (M # X' and (M )+ = X".

Proof. By the lemma we may assume, as in the proof of Theorem 1, that
X = [x,] with (x,) satisfying (1). Partition (x,) into k+1 disjoint subsequences
(xx) (i = 0, ..., k) satisfying (1) and let { £1) be the corresponding partition of (f,).
Then (notation as in the proof of Theorem 1)

Mk = [fl? +es(n).f‘;(n) +... +(ﬂs|uj - .Sslc(,,))_f.!.f:c(,,): nz 0]

is the required subspace,

2. ... and prequojections. Here we apply the method of § 1 to the case when
X = cy. Thus, we write X' = /' as I' = (@ Z_ L), with I, = * for all m, we let
(f7) be the standard basis for I} and we define M as in (2). The situation now is
simpler and it is enough to take 0 < & < & <1 for all n. Also, s may be any

mapping of the set of nonnegative integers onto itself such that s~* (n) is infinite
for every n. :
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We know from Theorem 1 that M is total and strongly nonnorming in I,
Now let g, be defined as in (3), so that M = [f + & gam]. For all choices of
scalars (g,) we have

k k k
(8) z |“‘n| = Il Z dy ./I;;" || s H Z a’ll(-fff} + F‘s(n)gs(n])”,
n={) me =0

hence (f'S + Gy dse) 18 equivalent Lo the usual basis of [ and M ~1' (actually
M is 1/(1 —g}isomorphic to "),

Now, 4s in the prool of Theorem 1, (g;) = M", hence also (f9) < M? and,
therclore,

Mo [ La] = & [y].
We show that equality holds. Suppose f& M*; then there exists a sequence
() = M such that i)l < C and .3 f We may assume that (»;) is as in (4).
Since the natural projection of [' onto {} is w*-continuous, the sequences
kit ki

(Y a,/9) and

7tz ) n=d)

Ay 35'(!1] g.v(n])

must w¥-converge to some fyel} and ge(@F-, 1Y), respectively. By (8),
Yiiglagl € lull € C and hence we may write

e o Wy
Jo= 2o fd and g= F (3 )y,
1o () Jj=n \{1Tf')j
sty =

for a suitable sequence (a,) with ¥ “yla,| < C. Therefore, f = fi,+gely D [g,]
and
©) M= 1®[g)]
as asserted. Also, as for M we recognize that M* ~=[. 1
Now, let fel' and write /' = ¥ ©.oa, [0 +y, with ge(@=1),. We have

34] [Ed

1 1
IS a0 +egmbson)l] S T Zﬂ I, < T 171
T +

He ()
which shows that the map defined by

g ]

,/I e Z: ay. :: gl }.: “n(.[.;i) "i"{;.ﬂ(u}gN(n))

" ety
is a continwous projoction of all of I' onto M,

Finally, recalling (9), it is clear that the whele argument above may be
applied again to the subspace [g)] of M", since [4,] is of the same form as M,
and by induction we obtain

THEOREM 3, [T == (¢) contains u strongly nonnorming subspace M such that,
Jor all m:

(a) M_"c_f i I
(b) M" is complemented in I' (hence in M"*1),
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Now we define a prequojection as & Fréchet space whose strong bidual is
a quojection or, equivalently, whose strong dual has a representation as a strict
(LB)-space (cf. [6]). A prequojection is proper (or nmontrivial) if it is not
a quojection. By [6, § 4] every strongly nonnorming subspace M in a dual
Banach space X' gives rise to a prequojection F with a continuous norm
(obviously proper). F is just the projective limit of the sequence (F,), where F, is
the completion of X for the norm generated by the polar of the unit ball of M",
so that F,, = M". Hence Theorem 3 enables us to assert

THEOREM 4. There is a pregquojection F such that

{a) F is separable and has a continuous norm (is even countably normed by
(6, § 4%

(b) Fy=~ &,

Therefore:

(c) F and the quojection [],c, have isomorphic duals;

(d) Fp has an unconditional {even absolute} basis,

(e) F has the approximation property but not the bounded approximation
property.

((e) follows from [5, Propositien 4.1(b)] and [10, Remark 4].)
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CUneonditional bases and the Radon-Nikodym property
hy
ROBERT ¢ JAMES iGrass Valley, Calif)

Abstract, It is known that if ¥ hus an unconditlonully busic finite-dimensionul decomposition
(UBFDD), then each of ’NP, KMP, and PCP s cquivalent to X not having a subspace
isomorphic with ¢,. If X is a subspace of t space with an unconditional hagis, then RNP and KMP
are equivalent, 1t is shown that there i o Banach space X which is a subspace of a space with an
cpconditional basis, but X dows not have RNP or KMD, X has PCP, and no subspace of X is
isomorphic with . ‘

A Banach space X has the Radon-Nikodjm property (RNP) if the

- Radop-Nikodjm theorem is valid for Bochner integration and bounded-

variation measures with values in X; X hag the Krein-Milman property (KMP)
il each closed convex subset of X is the closure of the convex span of its
extreme points; and X has the point-of-continuity property (PCP) if, for each
bounded closed nonempty subsel ¢ of X, there is a point x of C such that the
weak and norm topologies (restricted to €) coincide at x.

Rather than using the definition of RNP, we will use the fact that X has
RNP if and only if X does not contain a bush (for an easy proof of this, see [s,
Theorem 7, p. 3547). A bush in a Banach space X is a bounded partially ordered
subset B of X for which each member has at least two (but finitely many)
successors and is a convex combination of its successors, there is a positive
separation constant & such that [lv—u] 2 & if v is a successor of u, and B has
a first member (o which ecach member of B can be joined by a linearly ordered
chain of successive members of B. If the chain that joins a member b of B to the
first member has n members, then b is said to be of order n. An approximate
bush is u sel B® that satisfics all the hypotheses for a bush except that insteag‘l c.)f
requiring that each member is o convex combination of its SUCCESSO1S, it is
assumed that there is & sequence of positive numbers {8,} for which Y, < oo
and each member of B*-of order n differs [rom a convex combination of its
successors by less than 4, .

It has long been known that a Banach space X has RNP if cach‘ separaple
subspace is isomorphic Lo a subspace of a separable dual (8., if X is reflexive
or if X is isomorphic to 4 subspace of a space that has a boundedly complete
basis). The converse is false (see [1] or [8). Also, RNP=>KMP [9, Theorem 2].
If X has PCP, then RNP==KMP [10, Theorem 2.1]. If X is a subspace of
a space with an.unconditional basis, then RNP<KMP and KMP=PCP.



