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Now we define a prequojection as & Fréchet space whose strong bidual is
a quojection or, equivalently, whose strong dual has a representation as a strict
(LB)-space (cf. [6]). A prequojection is proper (or nmontrivial) if it is not
a quojection. By [6, § 4] every strongly nonnorming subspace M in a dual
Banach space X' gives rise to a prequojection F with a continuous norm
(obviously proper). F is just the projective limit of the sequence (F,), where F, is
the completion of X for the norm generated by the polar of the unit ball of M",
so that F,, = M". Hence Theorem 3 enables us to assert

THEOREM 4. There is a pregquojection F such that

{a) F is separable and has a continuous norm (is even countably normed by
(6, § 4%

(b) Fy=~ &,

Therefore:

(c) F and the quojection [],c, have isomorphic duals;

(d) Fp has an unconditional {even absolute} basis,

(e) F has the approximation property but not the bounded approximation
property.

((e) follows from [5, Propositien 4.1(b)] and [10, Remark 4].)
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CUneonditional bases and the Radon-Nikodym property
hy
ROBERT ¢ JAMES iGrass Valley, Calif)

Abstract, It is known that if ¥ hus an unconditlonully busic finite-dimensionul decomposition
(UBFDD), then each of ’NP, KMP, and PCP s cquivalent to X not having a subspace
isomorphic with ¢,. If X is a subspace of t space with an unconditional hagis, then RNP and KMP
are equivalent, 1t is shown that there i o Banach space X which is a subspace of a space with an
cpconditional basis, but X dows not have RNP or KMD, X has PCP, and no subspace of X is
isomorphic with . ‘

A Banach space X has the Radon-Nikodjm property (RNP) if the

- Radop-Nikodjm theorem is valid for Bochner integration and bounded-

variation measures with values in X; X hag the Krein-Milman property (KMP)
il each closed convex subset of X is the closure of the convex span of its
extreme points; and X has the point-of-continuity property (PCP) if, for each
bounded closed nonempty subsel ¢ of X, there is a point x of C such that the
weak and norm topologies (restricted to €) coincide at x.

Rather than using the definition of RNP, we will use the fact that X has
RNP if and only if X does not contain a bush (for an easy proof of this, see [s,
Theorem 7, p. 3547). A bush in a Banach space X is a bounded partially ordered
subset B of X for which each member has at least two (but finitely many)
successors and is a convex combination of its successors, there is a positive
separation constant & such that [lv—u] 2 & if v is a successor of u, and B has
a first member (o which ecach member of B can be joined by a linearly ordered
chain of successive members of B. If the chain that joins a member b of B to the
first member has n members, then b is said to be of order n. An approximate
bush is u sel B® that satisfics all the hypotheses for a bush except that insteag‘l c.)f
requiring that each member is o convex combination of its SUCCESSO1S, it is
assumed that there is & sequence of positive numbers {8,} for which Y, < oo
and each member of B*-of order n differs [rom a convex combination of its
successors by less than 4, .

It has long been known that a Banach space X has RNP if cach‘ separaple
subspace is isomorphic Lo a subspace of a separable dual (8., if X is reflexive
or if X is isomorphic to 4 subspace of a space that has a boundedly complete
basis). The converse is false (see [1] or [8). Also, RNP=>KMP [9, Theorem 2].
If X has PCP, then RNP==KMP [10, Theorem 2.1]. If X is a subspace of
a space with an.unconditional basis, then RNP<KMP and KMP=PCP.
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Also, if the space with an unconditional basis has no subspace isomorphic with

¢, then RNP, KMP, and PCP are equivalent for X [6, Theorem 4.7]. If

X itself has an UBFDD, then each of RNP, KMP, and PCP is equivalent to
X not having a subspace isomorphic with ¢, [6, Theorem 4.8]. The purpose of
this paper is to show that this conclusion is false if it is assumed only that X is
a subspace of a space with an unconditional basis.

The proof of the following theorem, as well as attempts to prove there do
not exist such X and Z that have properties (a), (b), and (c) of this theorem, was
motivated heavily by the fact that, if X < Z, X fails RNP, and Z has a FDD
{(,}, then there is a positive number & such that, for any sequence of positive
numbers {f,), there is a bush B in the unit ball of X with separation constant
é and a sequence {®,: n > 0} of consecutive blocks of {¢,} such that ®(0) is
empty and, if 4 is a difference of order n for B, then

A Eﬁﬂ{(pn_l, q“n}‘{’“N(zﬁ ﬁn)!

where N(Z, B,) is the §,-neighborhood of 0 in the space Z (see Lemma 1.2 of
[61). Actually, there may be some connection between the need for N(Z, f,)
and the apparent need to use an approximate bush in the proof of the theorem.
Note that X having properties (a)-{c) of the thecrem gives a negative
answer to the question raised in [2, Remark 3.4]: Is X a subspace of a space
with a boundedly complete unconditional basis if X is a subspace of a space
with an unconditional basis and X has no subspace isomorphic with ¢,?

THeOREM, There is a Banach space X which is a subspace of a Banach space
Z for which X and Z have the properties;

(a) Z has an UBFDD (and therefore is contained in a space with an
unconditional basis [7, p. 51]).

(b X does not have RNP.

{c) X has no subspace isomorphic with c,.

(d) X has PCP.

(e} X does not have KMP.

(f) X does not have an UBFDD.,

Proof. To define X and Z, we first let {N} be a sequence of sets for which
YINJ™Y? < oo and [N} = 2 for each i. Then we introduce, for each k > 1, the
set of symbols

k+1

K
D= {4z ae[[NJ {8 ae [] N}
i 1

For notational convenience later, we let 6% = (. Let V be the natural vector
space of all formal linear combinations with real coefficients of members of
| )iz 1 Dy.. Alter a norm has been introduced on V; the resulting normed linear
space will be denoted by Z, and the completion of Z, will be denoted by Z. We
let @, denote lin(D,) for each k. It will be seen that {¢,} is an UBFDD for Z.
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Let V" be the subspace of V for which
k
V= Tin{8f. + 4% as[N, k> 1),
1

After the norm has been introduced on V™, the resulting normed linear space
will be denoted by X, and the completion of X, will be denoted by X.

If meN, for each i, we say that the sequence {n;} determines the branch
of V that Is the linear span of

{/]”{‘“: 53{(2)' Aoﬁtz); (5%.(3]» Aq‘(ﬂ); ot 5;@“ Aﬁ“‘); }
where a(k) = (n, n,, ..., n) for each k, Also, {n,} determines the branch of V*
that is the linear span of
A5, SR A5 G5 4SS, A Y
If # and " are the branches of ¥V and V* determined by {n,} and

w(k) =(n,, ny,..., n) for each X, then a segment of f§ is a subset s of Vfor which
there are integers m and n such that

s=1n[ |J {&%, 45™}],
. mMEkEn

»

and a segment of ' is a subset s* of #* for which there are integers m and
n such that

8" = lin{SFW, + A5 m < k< nl.

The empty set is a segment of each branch in V and also a segment of each
branch in V', The vectors §&®, A¥® and 55%, 4 AF® are said to be of order k.
A block of {®,} is the linear combination of a finite set of consecutive members
of {@,}. H s is a segment of a branch f§ in Vand ze V] we let 5(z) denote the
truncation of z to s. If f is determined by {m;}, then s(z) has a unique
representation as

4

A e
(1 s@) = 3, @G+ AW+ 3 o (A5,
Ko ket

where w«(k) = (n,, ny,..., n) for cach k. We let
. .
@ ’[s(zfﬂ = 3 lay=tyy [ +supilel: 1<k < g},
e k=

where a,,, = 0. Note that (') is a linear map of V onto s and ﬂ:s(z}]] is

a semi-norm on ¥ and a norm on s, Let {I'(4)} and {¥{3)} be sequences of

- positive numbers for which (1} = 1, each ¥(4) is an integer,

(3) i r{y=1 and lim FEAPH] = oo,

Al Ar oo
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For members z of ¥, we let
k¥ )

)
) liz] = sup{Er W[ ¥, [st@* 1"}

=1

where the sup is for sums over sets of A's such that each 4 has an associated set
S*={st 1< i< P()} of segments of branches in V for which no two
segments in S* contain nonzero vectors in the same branch and any two sets
and S* have the property that there are at least two ¥,’s that separate these sets
in the sense that all segments of one set precede these ®/'s and all segments of
the other set follow all these @®’s.

(2) Z has an UBFDD. Suppose z and z* in Z, are identical except that all
vectors in some &, have been delsted from z to obtain z*. Let

s(2) = 3 a; (55D + AFP) + Y e (A7 + 830 1)
be the representation of s(z) as in (1). Then
s(z*) = 5(2) — (@, A5Y + ayq 1 FFF 1) — ¢, (45W - FETH)
= {2+ (@ By O D= @ (AF9 -+ O D)y (5 + 67 ),

Therefore, if z* is obtained from z by removing terms in some finite collection
of sets {®,: ke K}, then

[stz)] < [s(2)]+ [[s[ kz (a,— a4 ) B 1)]]]
ek
8] 4_[3[ Z ak(A;(k)+5;(k+1))]:H
kek

+ ”:S[ Z ck(Aﬁ”‘) + 5;(:&1))]]].
keK
Since
5§(k+ 1} {(Acf(il +5a1=(2))+ (AZ(Z’ +5§(3))_|_ . +(Aié"‘}+5§”‘+ 1))]
— [T+ (01 + A5+ + (0% + 459)],

we have [[s(65%* )] equai to 0 or 2 (0 if 53+ V' ¢ 5). Similarly, [s(4§¥)] is G, 1, or
2{0if Af®¢s and 1 if k=1 and 4%V es). Thus in (5),

[[S[ Z(ak“alw 1)5%(k+1)]iﬁ <2 Z =yl < 2[[s(z)ﬂ
keX ke

The sum Y jexa (A8 + 621y in (5) may consist only of terms of type
(455 + 85%+ 1)) that are in s, but it may also contain one or two terms of type
a, 857+ or a,439. Thus

|[s[ )y ak(dﬁ”"+5;‘{"‘+“)]] < sup{lay]: ke K}+4sup{lal: ke K}

ksK

< Ssup{lal: iz 1} €5Y lg—ai .| < 5]s(z)].
iz1
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Similarly.
[sT % etdi® a5 1) | € supile: keK)+asup{le: keK} < 5[s(=)).
ek

Now it follows from (5) that [s(z%)]] < 13[s(z)]. For an arbitrary positive &,
choose [st} as in (4) for suvitable values of A so that

)
el < YT Y [she)P]H2.
1
Then

. 4 ,
%= < B3ETQ[ Y 542
i

2’]1/2 = 13”2”‘

Thus {#,} is an UBFDD wih unconditional constant not greater than 13,

(b) X does not have RNP. We will show first that X contains an
approximate bush B* Let 0 be the first member of B*. The other members are
to be sums of type

W ATD (ST ATy 4 (FFE + AFR),

for which there is a set {n;} with n;e N, for each i and =(j) = (n,, n5,..., nj} for
gach j. The successors of this w are the |N,, ;| members of the set

WA (BF+AF e ) m= (g, Ay, mn) with neNy, .

The difference 4* between w and the nth successor of w is 67+ di.. 1. It follows
from (2), (4), and ¥(1) = 1 that |47 22l (k= 1, and |47 =T ()il k=0
(so A% = AP, neN,). Thus B* has separation constant I'(1). Also, B" is
bounded, since it follows from (2), (4). and ¥ 7. I'(2)=1 that |w] <1
Similarly, | 47| < 2. Since all A" have the same order, only one $* can be used
in (4) to determine the norm of the average of the differences between w and
successors of w, Also, each s? for this §* can contain at most one A%[Ny..,| ™%
Therefore, the average bas norm not greater than

v !

PALY I TG0 S Nyl 2] € 20N |

{1 Pl
Since SN, '* w0, B* is an approximate bush. It follows that X contains
a bush [3] and therefore fails RNP,

(©) X has no subspace isomorphic with ¢y. It is important to keep in mind
that when xe X" and x is in a branch, then each ¢; = 0 for any representation
of s(x) as in (1). Suppose X has a subspace isomorphic with ¢,. Then X has
a subspace that is almost isometric with ¢, [4, p. 548]. Therefore there are
members {¢,} of X, for which ¢, is in a block £, of {®,} for each k, the biock 2,

3 - Studin Muthematicn 95,
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precedes and is separated from (2., by at least two &’s, |l > 1 for
each k, and [[Zie Aeiﬂp< 3/2 for each finite set A. For each ¢, choose a set A(k)
such that, for each AeA(k), there is a set Sf={sf: 1<i< P} as
in (4) so that ‘
Fi{d)
Y rml Y [she)]*]'? > 1.

Aed(k) i=1
There is no loss of generality if we assume that, for any k and 1 with k< x,
there exist at least two @' which separate lin{Si: AeA(k)} from
lin{S}: A€ A(x)}. Suppose there is an & > 0 for which there are infinitely many
es for each of which there is an sk with [sfi(e)] > ¢, where X and i are
functions of k. Associate with each such e, exactly one such sfy = §,. Then one
of the following is frue.

(i) There is a branch f that contains infinitely many of these s,’s.
(ii) Each branch contains only finitely many of these s,'s.

Suppose (i) is true. Choose {g,: keAd} so that sI'(1){4] > 3/2 and the s,
corresponding to e, is in B for each ke A. Let s be a segment that contains each
of these ¢,s. Then

| Y el = r([s( %ek)] > el (1)]4] > 3/2.
ked ke

Therefore, (i) is false.

Suppose (ii) is true. Then there is a set S of infinitely many s;’s for which no
two members of § contain nonzero vectors in the same branch. To see this,
observe first that there is some n, for which more than one vector
v=20%_,44% in V" of order n, has the property that there is an s,, spanned
by vectors of order greater than ,, that is in a branch that contains v.
Moreover, some v = v* has infinitely many such s,’s. Choose one such s, for
each of the other such #'s. Now apply this procedure again, using an #n, fo1
which more than one vector of ¥ of order n, on a branch containing v* has
the property ..., etc., etc. Now choose A for which eI (A)[¥(4)]*/* > 3/2 and let
{ew: 1 < i< P(A)} be aset of ¥(4) vectors whose corresponding s,y’s are in §
Then it follows from (4) that, if w =Y ey, then

‘ ¥(3)
Iwl = F()[ ):1 [ska)]?]'7* > 3/2.

Since both (i) and (ii) are false, we know that, for any positive ¢, there is ar
N such that, if k > N, then [sf:(e,)] < & for all 4 and i. For e, the set A(1) anc
{st:;} for ieA(l) satisfy

WA

Y @[ ,;1 [shile)]?]+2 > 1.

Agd(1)
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Choose ¢ >0 so that Y4 W[ (A)e*]* < 4. For this ¢ choose N as
above. Let k be any integer greater than N. Recall that

)
Y ra)f 'Z’] [oke)]?]"* > 1.

AeA(k)

We have

W Y}
les+edz 2 TAH[ Z1 [stded]? T2+ Y P Y [edde)]?]7.
{= i=1

AcA(l) Aefd(k)— A(L)]

Since

P(A)
3 TAL Y bkl <4,

Aed(l)

this implies ||e, +e,] > 1+% = 3/2 and completes the proof that X has no
subspace isomorphic with c,.

(d) X has PCP. 1t is known that if X fails PCP and is contained in a space
with an unconditional basis, then X has a subspace isomorphic with
¢o [6, Theorem 4.5]. Since X has no subspace isomorphic with ¢,, X must have
PCP. ¥

(€) X does not have KMP. This follows from the fact that RNP<KMP in
any space with PCP [10].

() X does not have an UBFDD. If X had an UBFDD, then RNP, KMP,
and PCP would have been equivalent [6, Theorem 4.8].
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Extending holomorphic maps from compact sets in infinite dimensions
by
N. V. KHUE and B, . TAC (Hanoi)

Abstract, The aim of thiy paper Is to study the exiension ol holomoerphic maps from compact
sels in metric vector spaces with values in some Jocally convex spuces and in complete C-manilolds,
Moreover, the theorem of Siciak -Zakbaryuta for continuous separately holomorphic functions
with values in Banach-Lic groups is established.

Introduction, The extension of separately holomorphic functions defined on
special subsets of C* has been investigated by many authors, for example Siciak
[8], Zakharyuta [11]. In [97 and {10] Siciak and Waclbroeck have considered
this problem for compact sets in C”. Moreover, Waelbroeck has also
considered this problem for unique compact sets in a Banach space. Here
a compact set K in a topological vector space is called unique if for every
holomorphic function f on a neighbourhood of K such that f|K = 0 there
exists a neighourhood U of K such that /{U = 0. This paper is devoted to the
study of the extension of continuous functions on compact sets K in
topological vector spaces with values in locally convex complex manifolds to
holomorphic functions on a neighbourhood of K.

in Section 1 we investigate the interrelation between the holomorphic
extendability and weakly holomorphic extendability of continuous functions
on a compact set K in a metric vector space E with values in a locally convex
space F such that F* is a Baire space. We prove that if either E or F is nuclear,
then holomorphic extendability and weakly holomorphic extendability are
equivalent. This has been established by Siciak in [9] and Waelbroeck in [10]
in the case where dim E < . Our method in the case where E is a nuclear
metric vector space is based on an idea of Wacelbroeck [10]. We first prove the
nuclearity of the DF-space injlim{H” (U} A,: U = K} where H*(U) denotes
the Banach space of bounded holomorphic functions on U equipped with the
sup norm and Agi= {feH(U): f|K =0} {In the case where K o C" this
proof is not difficult) Next following Waelbroeck, using the closed graph
theorem for maps of barrelled locally convex spaces into B-complete spaces, we
obtain the above result. _

In the case where K and F are Banach spaces we prove that there exists
a Banach space F containing F as a closed subspace such that every continuous
function on a compact set in E with values in F having the weakly holomorphic
extension property can be extended to a holomorphic function on a neighbour-
hood of K but with values in F.



