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Metric characterization of first Baire class
linear forms and octahedral norms

by

GILLES GODEFROY. (Pazis and Columbia, Mo.)

Abstract. We characterize those clements z of the bidual X** of a Banach space X which are
of the first Baire class by means of the set (2) of points of X at which the norm of X™** is smooth
in the direction z. New characterizations of Banach spaces not containing I (N) are given. When
X contains '(N), we construct an octahedral norm on X; this norm enjoys optimal properties of
roughness.

0. Introduction. Since H. P. Rosenthal proved his fundamental result
{[26]). the first Baire class functions, their topological properties, and the
pointwise compact spaces they generate have attracted a renewed attention (see
e.g. [4], (103, [18]). Indeed, these functions—leaving apart their intrinsic
interest — turn out to be a basic tool for studying the Banach spaces not
containing an isomorphic copy of I*(N).

This class of Banach spaces strictly contains (by {19]) the class of Asplund
spaces, and it is well known (see [5]) that this latter class can be characterized
by differentiability properties of norms; it is therefore natural to try to
characterize the spaces not containing I'(N) in terms of “smoothness” of norms;
several results along these lines can be found in [24] and [14]

Our goal in the present work is to tighten the link between these two
aspects of the theory, by characterizing the elements z of the bidual which are
of the first Baire class by the smoothness properties of the bidual norm in the
direction z; this will allow us to obtain some infoermation about the geometry of
the Banach spaces containing or not I*(N).

Let me briefly describe the content of this article. The main result of the
first section (Theorem 1.2) is a characterization of the elements ze X** which
are of the first Baire class by means of the set Q(z) of points of X at which the
bidual norm is differentiable in the direction z; this permits us to show that the
set of points of continuity of a first Baire class function on a metrizable
compact convex set K meets the set »-Exp(K) of exposed points of X in a dense
set (Corollary 1.5) and to give a new characterization of spaces not containing
I*{N) by a smoothness property of their norms (Corollary 1.7).

The results of Section I suggest that “X  [*(N)” is the natural pointwise
analogue of the property “X Asplund”; the first two results of Section II show
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indeed that one switches from one property to another by interchanging the
order of the quantifiers in the expressions of the smoothness of the norms
(Proposition II.1 and Theorem H.2). We construct (Theorem I1.4) an “octa-
hedral” norm on every Banach space containing !'(N); such a norm
turns out to be optimal for several conditions of roughness (see Remarks I1.5);
it also allows us to characterize {Theorem I1.6) the spaces not containing I* (N)
by the behavior of the norming subspaces of the dual space.

Acknowledgements. I am glad to thank B. Maurey for his interest in this
matter. The present work relies heavily on a previous unpublished joint work
[15] of B. Maurey and the author. My gratitude also to N. J. Kalton who
suggested condition (4) of Theorem 1.2; and to Michéle Godefroy who was kind
enough to type this article.

Notation. The weak-star topclogy on the dual X* of a Banach space X is
denoted by w*. The points of X —resp. of X*, X** X***_are denoted by
X, X,...—188p. ¥, ¥, .00r Z, 2, ..., &, £, ... The same notation is used for
a norm on X and its dual norm on X*; the initial norm is denoted by || ||.
When there is no ambiguity on the norm, the closed unit ball of a Banach space
Y is denoted by Y,, and the unit sphere by S, (Y). If K is a w*-compact convex
subset of a dual X*, the set of extreme points is Ext(K) and »-Exp(K) is the set
of points which are exposed in K by an element of X. If ze X**, 4,(z; K) is
the set of points of continuity of z on (K, w*). Osc(z; §) = supg z—inf; 7 is the
oscillation of a function z on a set S, while Osc{z)(:) denotes the pointwise
oscillation.

The subspaces we consider are always assumed to be closed in the norm
topology, and the different norms we censtruct are always equivalent, hence
these words will often be omitted.

All the Banach spaces we consider are real

1. Metric characterizations of first Baire class functions. Let us start this
section by defining the set of smoothness Q(]] ||; z) of an element z of X**; this
notion will play a crucial role in our study.

DeriNTION L1. Let X be a Banach space with the norm || ||, and let z be

in X**. The set of smoothness Q(]| ||; z) of z is the set of x’s in X\{0} such that
lim A7 [flx +2z| + [|x—Az| - 2] x||] = 0.
i~

In other words, Q(|| ||; ) consists of the points of X at which the bidual
norrm is differentiable in the direction z.

It turns out that the elements z of X** which are of the first Baire class can
be characterized in terms of Q(z), as follows:

TueorReMm L2, Let X be a Banach space, and ze X**. The following are
equivalent. ' ' :
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(1) For every w*-compact subset K of X*, the restriction of z to K has
a point of w*-continuity.

(2) For every equivalent norm | | on X, the set Q{| |; z) is a.dense
G; of X.
(3) For every equivalent norm || || on X, the set Q{}} |; ) is nonempty.

If X is separable, then (13} are equivalent to:

(4) There exists an
2l lil; 2 = X\{0}.

Proof. The following technical lemma will be useful.

equivalent norm || |l on X such that

Lemma 1.3. With the above notation, xe Q(| |; 2} if and only if
inf Osc(z; S(x, a)) = 0

z>0
where S(x, @) = {ye X¥|y(x) > || x| —a}.
Proof Consider the following subset of X}¥**:
G = {te XT**|t(x) = |x|}.
It is easily checked that x e 2([| ]; 2)if and only if Osc(z; G) = 0. On the other
hand, we have
G= [ 5k, "

x>0

where ~ denotes the closure in (X***, w¥). By w*-compactness, this implies
that

Osc(z; G) = inf Ose(z; S(x, @)

a>0

and this shows the lemma. m
Let us now proceed to the proof of the theorem.

(1)=-(2). If x and x' in X are.such that |x—x'ff < ¢, one has S(x', x—¢)
& $(x, a). This clearly implies that for every n > 0, the set

0, = {xe X\{0}| inf Osc(z; S{x. &) < n}
a>0

is open in X. We have to show that O, is dense. Pick x,e X and ¢ > 0. By

a lemma of Bishop—Phelps [2] if xeX is such that
(%) V yeKerx,, vyl <27  Ix() <1,

then |x—x,ll <&lxpl or [x+x,l < el xoll-
We let now

K, = conv({|ly| < 1} v {yeKerx,| [y| < (2e)~'}).
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The set K, is the dual wvnit ball of an equivalent norm || |||, on X. By
assumption (1) and a standard Baire category argument, the set €, (z; K} of
points of continuity of z: {K,, w*)—+R is dense in K,. Hence by ([27],
Proposition 8) the set €, (z; K,) meets Ext(X,) in a w*-dense subset of Ext(K,).
Since we have Ext(K,) = {|ly] <1}uwKerx,, there exists y,e%,(z; K,)
M Ext(K,) with |y,| =1.

Since y, belongs to this intersection, there exists xe X with |[ix]], = 1 and
a < 1 such that x(y,) > « and

Osc(z; {ye K, |x(y) > a}) < 4.

Since |||x{||, = 1, the condition (x) is satisfied and thus we may assume that
lx—~xgll < &]%ll; on the other hand, the oscillation of z on the nonempty set
{reX*|lyl <1, x(y) > a} is less than » and thus xe O,; this shows that 0, is
dense. Since by Lemma 1.3 we have

Q(Z) = ﬁ Ok-—l
k=1

Baire’s theorem concludes the proof.

(2)=-(3) is obvious.

(3)=-(1). Assume (1} is not satisfied, and let K be a w*-compact subset of
X such that %, (z; K,) = £J; by Baire’s theorem, this implies that there exists
&, > 0 such that

= {yeK|Osc(z|)(y) = g5}

has a nonempty intenor in (K, w¥); we let K, ‘be the w*-closure of the
w*-interior of K’ in K; we clearly have

V yeKe,  Osc(zlg )y} = .

Let C = cv*(K, w(—K,)). The function Ose(z|) is easily seen to be concave
and w*-us.c; since K, is w*-compact and K, u{— Ky} = Ext(C), there exists
for every yeC a probability measure p on K,u(—Kg) such that y = r(u).
Since Osc(zly) is the infimum of the w*-continuous affine functions which
maximize it, Fatou’s lemma shows that

Osc(z|d(y) = fOSC z|c)(e)dule)

and since Osc(z].) = Osc(z k) on K, this shows that Osc(z|)
We now define the set C' by

=8 on C,

C =i+ =Dy, l5,eC, Iyl <1, d<i<1),
C' is clearly the dual unit ball of an equivalent norm ||| ||| on X . The relation
VyeC, Osczlp)(y) = Oselzl)(y) = &,
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together with the concavity of Osc(z|.) and the definition of C', shows that
VyeC, Osclz|o)y) = /2

and thus the oscillation of z is at least 50/2 on every w*-apen slice of C’; by
Lemma 1.3, this shows that Q(|| |il; z) = &, and thus (3)=(1).

We will now connect the property (4) with (1)-(3); hence we are now
assuming that X is separable. ‘

{I)==(4). Since X is separable, (X%, w*) is a metrizable compact space.
Then (1) is equivalent to the existence of a sequence (x,),», in X such that

z=w*lim x, in (X**, w¥).

=
Let (xi)i>1 be a norm-dense sequence in the unit ball of X. The norm
Iyl = I+ 27 k(A2
k=t

is an equivalent strictly convex dual norm on X*. We now define an equivalent
dual norm ||| ||| on X™* by the formula

iyl = iyl + Z 277 sup P () — %)l

n= klzn
il l is strictly convex since | [, is; by Lemma L3, for the proof of
Q0 |Il; z) = X\{0} it is enough to show that :
(x%) il <1, bl =1, p*>y
implies that lim,z(y, = z(y). Since the functionals which define ||| {|| are
w*-1s.c. the conditions (++) imply that

Virzl, limsup |x(y)—x(p) = sup be()—x,0).

i okizn klzn

Take & > 0, and let N be such that supy ;5 5 %, (¥} —x,() < /4. There exists I
such that
sup |x, () —x, (¥} < &/3.

kizN

Vi,

By letting & tend to infinity, we get
izl |2n)—xy(y)l < &3

Alse |z(y)—x4(¥)| < &/4. Now since x, is w*-continuous, there exists I, = I,

such that
21,  |xxyO)—xyy) <83

and thus _
Vizl,,

fz(y)—z() < &/3+g/3+8/d <.
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(#=(1). Let ||| [l be a norm such that (|l 1; 2) = X\{0} and l_et
Xt = {[llylll < 1}. Condition (1) is equivalent to the fact that for every «, g in

R, X*nz"((x, B)) is w-K, in XT [1], and this is what we will show. Take
a < B and keN such that k™' < (f—«)/2. Let

S, = {yeX*|lIpll =1, a+k™" <z(y) < f-k71}

and let 0, be the union of the w*-slices § of X% such that $ {ll]y”l =1} €85,
Since we restricted ourselves to slices, we have

0,z (a+k™, B—k~) N XL,

On the other hand, Lemma 1.3 shows that O, contains all the points of 5,
which attain their norm on X, = {||lx|ll < 1{}; by the Bishop-Phelps theorem,
this set is norm-dense in S,, and thus we have

S, € 0,2 Hilzlll ™ Xt = F.

Since O, is an open subset of the metrizable compact space (XY, w*), it is
w*-K, and thus F, n Xt is also w*-K,. Observe now that F, < z7Y((z, B)) for
every k; this implies that

U Sis (U F)nXt =Xt oz (@, A)

k21 kz1

But we clearly have

conv(|) 8} = Xt nz" (@, B)

DY
and thus

conv({{ ) Fyn X¥) = Xt nz"!{{, B).
k21
Since {|_Jx>1 Fi)n X% is w*-K,, this shows that the set X ¥z (e, B)is also
w*-K,, and this concludes the proof. =

Remarks L4. 1) It is easy to establish a quantitative version of Lemma
1.3. This permits one to show, by the proof of (3)=(1), that if ze X ** s not of
the first Baire class, there exists an equivalent norm || || on X such that the
bidual norm is “uniformly rough” in the direction z; namely, there exists
g, = £,/2 > 0 such that '

I+ Azl + x— Azl 2 2[x]| +2, 4]

for every xeX and every AcR.

2) Theorem L2 furnishes us with a condition of roughness of the norm
which implies the weak sequential completeness (w.s.c.; namely, if a Banach
space X is such that ()| ||; 2) # X for every ze X**\X, then X is w.s.c. The
only natural examples of this situation seem to be the spaces which are
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I}-complemented in their bidual (see [13]). It is not known if every w.s.c.
Banach space has an equivalent norm such that Q(|| |; z) # X for every
ze X*¥HX,

3) Theorem 1.2 applies of course to the case where ze X; then (1)=(2)
reads: if X is any Banach space and ze X, the norm of X is differentiable in the
direction z at each point of a dense G, Q(z), of X.

4) Let X be separable and let ze X** be of the second affine Baire class,
ie., z = w*-lim z, where the z,’s are of the first Baire class. It is not difficult to
adapt the proof of (1)=(4) to deduce that there is an equivalent norm on X so
that every z, is w*-continuous on the unit sphere $, (X*) of X*; in particular,
the restriction of z to {S,(X*}, w*) is of the first Baire class, and €, (z; XT) is
a w*-dense G, of (X¥, w*). In view of (4)=-(1), this appears to be the optimal
result for such a z.

Let us now mention another consequence of Theorem I.2.

CoROLLARY 1.5. Let X be a separable Banach space, and K a w*-compact
convex subset of X*, Let *-Exp(K) be the set of -exposed points of K. If ze X**
is of the first Baire class, the set €,(z; K) of points of w*-continuity of z on
K meets »-Exp(K) in a w*-dense subset of %-Exp(K).

Proof. Standard techniques show that we can assume without loss of
generality that K = X¥ is a dual unit ball; we will make the proof only in this
case.

By Theorem 1.2 the set Q(z) is a dense G, of X; on the other hand, Mazur’s
theorem shows that the set .

Q={xeX|3 ! yeX¥ st Y0 = x|}

is a dense G, of X; hence Q{z)»Q = is dense in Q.

Let x,e8 and y,e Xt be such that yo(x) = lixol. Since x,e€2, the
family S(x4, 0) = {ye XT1y{xo) > %ol —}, where a >0, 1s a basis of neigh-
borhoods of y, in (X¥, w*); since x,e€(z), Lemma 1.3 shows that
yo€%¥,(z; XT) and thus y, belongs to #,(z; XT) n*-Exp(XT).

If now ye*Exp(X?) is exposed by xe(, consider a sequence (x,) in £
with lim |x—x,] =0. By w*compactness, the corresponding y,’s in
»-Exp(X¥) ~ €, (z; X})are wh-converging to y, and this concludes the proof. =

Remarks 16. 1) One has very little information on the topology of
*+-Exp(K)—in contrast with Ext(K) — and this makes the study of this set quite
delicate. In the case where -Exp(K) is replaced by Ext(K), Corollary L5 is
a special case of ([27], Proposition 8). The present proof of Corollary 1.5 and
that of ([8], Th. 1} are similar. : .

2} If X* has the C*PCP (see [8], [11], [28]) and if €, (w¥; | |I) denotes
the set of points of continuity of Id: (X%, w*) (X%, | ), it is unknown
([16], p. 31) whether €(w*; || [) always meets the  set of norm-attaining
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elements of X*. Corollary L5 gives an affirmative answer for the “pointwise™
analog, namely for the set €, {(z; Xf); however, I tend to believe that the answer
should be negative in general. The main difference here is that the function
Osc(z) is w*-us.c. and concave on X%, but the corresponding function

w(z) = inf{| [-diam(W)| W neigh. of z in (XT, w¥)}
is clearly w*-us.c. but not concave in general

Our next corollary expresses the fact that the class of spaces not
containing I*(N) can be characterized by a weak smoothness property of their
norms.

CoROLLARY 1.7. Let X be a Banach space. The following are equivalent:

(1) X does not contain I'(N).
(2) For every equivalent norm on X and every ze X**, the set Q(z) is
a dense Gy of X, in particular is nonempty.

"Proof This is clear by Theorem 1.2 and the Odell-Rosenthal theorem
[257, or Haydon’s theorem [17] in the nonseparable case. m

Let us observe that the above implication (2)=-{1} relies on (3)=-(1) in
Theorem 1.2, i.e., on rough norms on spaces containing I*(N). A much stronger
result is actually available and will be shown below {Theorem II1.4).

II. Construction of rough and octahedral norms. We start this section with
a couple of results which show that replacing the assumption “X* separable”
by “X does not contain *(N)” leads to an interchange of the order of the
quantifiers in the expression of the smoothness properties of norms.

Let us first show the easy

Proposirion 111, Let X be a separable Banach space. Then:

(a) X* is separable <> there exists an equivalent norm on X such that
VzeX*™, €.(z; X1)=28,(X").

(b) X does not contain I*(N)<>for every ze X**, there exists an equivalent
norm such that € (z; Xt} =2 §,(X*).

Proof (a) If X* is separable, the Kadec—Klee renorming technique (see
[21]) gives a norm an X such that the w*- and norm topologies coincide on
S5,(X*) and thus = holds.

Conversely, if €,(z; X¥) contains S, (X*) for every z in X** then the w*-
and weak topologies coincide on S,(X™*), and thus §,(X*) is separable for the
weak topology; it follows that X™* is separable.

(b} X does not contain I'(N) if and only if every ze X** is of the first Baire
class {[25], [17]) and thus the proof of (1)<=(4) in Theorem 1.2 shows (b). =
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The next result is, up to the terminology, Theorem IL1 of [15]. We
reproduce here for completeness the proof given in [15].

THEOREM IL2. Let X be a Banach space. The following are equivalent:

() X is an Asplund space.
(2) For every equivalent norm || | on X, the intersection over ze X** of the
sets Q| ||; 2) is a dense Gy of X, in particular is nonempty.

Proof. (1)=-(2). X is Asplund if and only if every equivalent norm on-X is
Fréchet smooth at every point of a dense G;. Now if x € X is a point of Fréchet
smoothness of the norm of X then, by Shmul'yan’s lemma (see [91) or by the
local reflexivity principle (see [23], p. 33), x is also a point of Fréchet
smoothness of the bidual norm and thus belongs to Q(f| |I: z) for every
z in X**,

(?)=(1). We denote by € the closure of a subset C of a Banach space Zin
(Z**, w*).

If a2 Banach space Z does not have the Radon—Nikodym property, then by
[30] there exists a closed convex balanced and bounded subset C of Z and

gy > 0 such that
(wkon) dist(z, Z) >, for every zeExt(C).

If X is not an Asplund space, we may apply _‘_@_12 result to Z = X*.

We define K, = (8,/2)X%+C and let K=K, be the closure of K, in
(X*, w¥). The set K is the unit ball of a dual norm ||| |i| on X*. We have
Ry =(eo/2)X3**+C and thus

Ext(R,) € (/2 Ext(XT*%) + Ext(C).

By (xx) this implies Ext(K,)nX* =4.

Let us now show that the predual norm ||| il on X satisfies
O el li;z2y=92.
zeX¥

Take x & X\{0}, and let yeExt(K) be such that y(x) = {||Ix{l]. If m: X***—X*
denotes the canonical projection of kernel X*, let

F = {teKoln(t) = y}.

Since yeExt(K), the set F is a nonempty w*-closed face of K, and thus
F nEBxt(R,) is nonempty. Pick ¢ in this set; we have 1¢ X* and thus t # y; we
choose z&X** such that z{t—y) > 0. If now

S(x, @) = {y e K|y (x) > llixllj—a}



10 G. Godelroy

we have yeS(x, o) and te S(x, o)~ for every 2 > 0 and thus

inf Osc(z; S(x, o)) = z(t—y) > 0

a>0

and Lemma 13 shows that x¢G(fi] ||; 2). =

Remarks IL3. 1) The above proof can be adapted to give a “uniform”
version of the result—like in Remark 1.4.1 —which is, at least formally, an
improvement of [22] and ([20], Prop. 3). This is actually done in ([15],
Theorem 11.3). For recent improvements (in particular from the quantitative
point of view) of this resuit, the reader is referred to [29] and [31].

2) It is interesting to compare these statements with some results of [28]
and [11], If X* does not have the Radon-Nikodym property, there exists by
the above proof an equivalent norm on X and &, > 0 such that every w*-open
slice of X* has a diameter at least &,, although this cannot be done in general
for w*-open sets (example: X = JT [11]). Also, the norm constructed in
Theorem IL2 is such that no point of X** which is exposed by an element of
X belongs to X*; this cannot be done in general for the %-exposed points of
X1**; the example is again X =JT (by [28]).

3) If X* has the Radon-Nikodym property, then clearly

3 Q w*-dense G, of X¥ st. Q< ¥, (X¥; 2)

for every ze X**,
On the other hand, if X 3 I*(N), then _
VzeX**, €,X%t 2)=Q(z) is a whdense G, in X¥.

There is no example, up to now, where this weaker statement is optimal; in
other words, the following question is open: does there exist X ® I'(N) such
that the map Id: (X¥, w*)—(X¥, w) has no point of continuity?

We will now show that one can construct on any space which contains
I'(N) an equivalent norm which enjoys optimal properties of roughness.
Theorem I1.4 is proven in ([15], Theorem TIL1) in the case where X is
separable. The proof given in [15] is very different, and much more difficult.

This theorem also gives an independent proof and an improvement of

(2)=(1) in Corollary 1.7.
THeorEM 114. Let X be a Banach space. The following are equivalent:
(1) X contains I'(N). '
(2) There exists an equivalent norm ||| |l| on X and ze X**\{0} such that
VxeX, |lx+zlll = [llxll+lz(l.

Proof. (2)=(1). We have Q(j|| li; ) = @ and thus Corollary 1.7 applies.

Let us mention that the local reflexivity principle and an easy induction
argument allow one to deduce from (2) the existence of a (1 +¢)-copy of I*(IV)
in X (see [15]), thus providing s with an alternative proof.

icm
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(1)==(2). It is standard to deduge from the Hahn—Banach theorem that if
a Banach space X contains a subspace Y isomorphic to a Bangch space Z,
there exists an equivalent norm | || on X such that Y equipped with the norm
induced by | || is isometric to Z. o o

We may therefore assume that X contains a subspace Y wh!ch is isometric
to [I(N). Let r,t X*—-X*/Y'=Y* be the canonical quotient map. Let |
P ' 5 Y be a surjective isometry; the set K = Ext(Y7¥) is w*-homeomorp'hlc
to {—1,1}¥ and thus it is w*-compact. By Zorn’s lemma, there exists
a minimal w*-compact subset of X¥, say K, such that r,(Ko) = K.

We pick a nontrivial ultrafilter %, on N, and let z, = P**(%,) be
the corresponding element of Y**. Clearly, |zl = lzo(y)| for every ye K.
Moreover, the sets

AT ={yeKlz,(0=1}, A~ = {yeK|zyy) = ~1}

are both w*-dense in K; by minimaiity, the sets ry'(4T)nK, and
7 HATY N K, are also w*-dense in K,. '

) We let r?ow K, =K, u(—Ky)and z = r¥(z,); clearly H'f'll =1 =|z{y)| for
every ye K, and the sets z7*(£1)n K, are both w*-dense in K. We finally
define

B =conv* (K, +{ye Y*| |yl <2}).

We have ry(B) = Y = conv ' (K); hence for every ye X* with ||lyf < lltherc
exists yoeconv*{K ) such that ry(y)= re(v,), and thus y,—yeY and

—yll €2, which shows that yeB. '
o Ig’ Iflollows that B is the unit ball of an equivalent dual norm on X*; we will

e k

show that the predual norm ||| |il and z =r¥(zy) work

Indeed, since ry(B) =Y we have |||zl|l = 1; moreovet, the set K,
= K, +{ye¥Y*| |yl <2} is w*-compact and thus contains Ext(B), and the sets
z“(i}—l)r'\K2 are both w*-dense in K,; hence the Krein—Milman theorem

s that 1 - «.dense in B.

that the sets z~*(+1)n B are also w*-dense in ‘

Showliickaxe){ and £>0, and let ¥ be a w*-open subset of B such that

x(y) > llxill —e.

1 i = have {|z+xl|l{ = yo(z+x)
Since there exists yo&V such that z(yo) . 1, we _
> |||x]{l + 1 —2 and thus |[|z+x{|| = 14 |lIxll|; since [liz]|| = 1, the result fqllows. ]

Y yeV,

Remarks IL5. 1) The above proof shows that if X contains [*(}V), there
are a dual unit ball B in X* and zeX** suf:h that |z| 4% on B, |z| =bl.tc1>1n
Ext(B), and z™ (4 1) n Ext(B) are w*-dense in Ext{B). This seems to be the
optimal “oscillation result” one cQuld expect (see [25], [17D). | which

2) The local reflexivity principle 1mp?1es that every norm I w!
satisfies condition (2) of Theorem IL.4 satisfies:
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(0) For every F < X with dimF < oo and every & > 0, there exists Xp,eX
with lljxg,l]l =1 and

e+ Axplll 2 (1—8)(llxl + |2

The converse is true if X is separable [147; it is therefore natural to call such
a norm an octahedral norm, This condition (0) is also equivalent [14] to the
foliowing: if B,,...,B, are a finite number of balls such that
X, € Byw...uB,, there exists {, 1 < i< n,such that X, < B;. Meoreover, (0)
is also equivalent to the fact that every finite convex combination of w*-open
slices of X* has diameter 2 (see [7]); i.e., all the slices of the family are big “in
the same direction™; this implies that every w*-open subset of X* has diameter
2. For the related notion of “strongly regular” set, see e.g. [3], [10], [18],

3} This leads to the question of whether a norm can be constructed on
X = ['(N) such that every convex combination of weakly open slices of X* has
diameter 2. For solving affirmatively this (open) question, it would be sufficient
to answer positively the following

for every xeF and AeR.

QuesTION. If X contains [*(N), does there exist an equivalent norm on
X such that the bidual norm is octahedral on X**?

Let us mention that the canonical norm of /1** js clearly octaledral while
the canonical norm of #([0, 1])** is not, although #([0, 1]) is octahedral.

4) It is easy to deduce from the proof of Theorem I1.4 that if ze X BNX s
such that thete exists Y < X isomorphic to I'(IV) such that ze Y**, then there
is a norm ||| |[| such that z satisfies condition (2) of IL4. However, the converse
is not true, as shown by the example of

z = lgn0,13Tio,1300

in #([0, 17)** which is of the second Baire class and thus cannot belong to ¥4+
with Y isomorphic to I*(N) (by (6]). The question for which ze X** such
a norm exists appears to be delicate. An cbvipus—e.g. by Theorem .2
—necessary condition is that z cannot be of the first Baire class.

5) The element z of #([0, 1]y** which is defined above permits one to show
that the function “w*.Osc(z)” depends heavily upon the norm. Indeed, the
w*-oscillation of z on the canonical dual unit ball of .# (0, 1) is identically 2; on
the other hand, there exists by Remark L.4.4 a dyal unit ball K such that z|, is
w*-continuous at every point of a w*-dense G, of K.

Let us conclude this work by a characterization of Banach spaces not
containing [*(IV) in terms of norming subspaces of the dual space. This result

icm

First Buire elass linear forms

Tueorem IL6. Let X be a Banach space. Then either
(i) for every equivalent norm on X, the dual X* contains a smallest norming

subspace, or .
(i) there exists a norm on X such that every w*-closed hyperplane of X
contains the intersection of two norming hyperplanes.

Moreover, (1) is equivalent to: X does not contain I*(N).

Proof Y is norming if and only if the canonical _quotient IrLap
rpi X*% - X%/ YL induces an isometric embedding on X, which means that

V xeX, |x|=inf{|x+z|lzeY*}, ie.

VxeX, Vzel |x+zl| =[x}

Consider the cone
@ = {zeX*||x+z| = |x| V xeX}.

i ing i if Yt i tained in #.
By the above, Y is norming if and only if ¥ 1s con :
’ If X I'(N), then by ([14], Corollary V.5) the? cone € is a w*-cl(();ﬁd
vector subspace (see [12] for a simpler proof when X is separable). f N = € is

the orthogonal of # in X* then
Y norming < Yt ¢ =N" < Y=22N

d this shows that X # [*(N) implies (i).
an Assume now that X o I*(N), and let ||| ||| and ze X**\{0} be such that

condition (2) of Theorem IL4 holds. Pick xeX \{0} and let
el Ul

TP TR TP TE

izl ™

For every x¥’€X and i =1, 2, one has
Hlizg + Xl = W+ +illelil 2 [l

and thus z, and z, belong to %; hence, the spaces Kerz (i =1, 2) are norming
hyperplanes and since x = (z, +25), we have

Kerz, nKerz, = Kerx.

Hence the norm ||| ||| satisfies (ii). =

Remark II7. When X* contains a smallest norming subgpacc N ,dthen
X has atlmost one isometric prcdua]-—nﬁmely the;: ISE]HC'; hlgé;z};sl?}sete];; rc;xgiz

in [12]; for much more along these lines, see [ 14]. IL
}cllf:dfzizt[thgt; the class of Banach spaces not containing I*(N) is exactly the

isomorphic class to which this technique applies.

was proved in [15] (Theorem 1V.4) in the case of X separable.
Recall that a subspace Y of the dual X* of X is said to be norming if

_ VxeX, x|l =sup{px)lyey, Iyl < 1}.
With this terminology, the following holds:
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