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A new look on Hankel forms over Fock space
by

SVANTE JANSON (Uppsala), JAAK PEETRE (Stockholm) and
ROBERT WALLSTEN (Uppsala)

Abstract. By a generalized Hankel form over Fock space F**(C) we mean a bilinear form of
the type

Nalfe =11 E(%z’) E( ;”‘z)fltzl)fz(zz) di el ().

Here dJ, is the Gaussian measure in € with density {(x/n)e™ " (x > 0) and an entire function
J = f{z) betongs to F=*(C) iff it is square integrable with respect to it. A trace ideal criterion is
proved for such forms which generalizes the corresponding results for ordinary Hankel forms, the
case h= 1 ([JPR], [W])

0. Introduction. In [JP] the following new point of view in the theory of
Hankel forms (operators) was advocated. Let ¥ be a Hilbert space of analytic
functions over a “homogeneous” domain £ in C* on which the corresponding
symmetry group G acts via unitary operators. Identifying Hilbert—Schmidt
forms over V with elements of V® V, one has also an action of G on bilinear
forms. Defining a Hankel form as a bilinear form I" such that the value I'(f, g)
for f, g€V depends only on the combination f-g, we may identify the space of
all Hankel forms as a special irreducible component of ¥® ¥ under the above
action.

Consider, for instance, the weighted Bergman case (d =1, = 4 = unit
disk in C, G = SU(1, 1)/+1, V = 4%2(4)). Then ¥® V comes as a discrete sum
of irreducible G-modules, one of which then consists of Hankel forms, and the
elements of the other components are termed Hankel forms of higher weight.
This case was studied at length in [JP].

The situation of the Fock space (d =1, Q = C, G = # = Heisenberg
group, V = F%2(C) = Fock space), actually a limiting case of the previous and
briefly alluded to in [JP], is somewhat special, in the respect that now all

1980 Mathematics Subject Classification: 47B33, 47B10.
Key words and phrases: Hankel form, Fock space, Heisenberg group, Hilbert-Schmidt class,
trace class. : :
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34 S. Janson ei al

irreducible “Heisenberg modules” in F**(C) are “isotypic” (isomorphic to
an Z(C))

This forces a changed point of view. As above we identify bilinear
Hilbert-Schmidt forms over F*2(C) with functions in F*2(C?). If fe F**(C?)
then the corresponding form L, is given by

Ly(f, ) = [[ B(zs, 22) f(2,) [ (2) dAof21) dAl2))
c2

with dA (z) = (¢/m)e” " dE(2) (E = Fuclidean area measure). Recall also that
feF=Y() = “f(z)lzdﬁ. (2} < o0.

(More generally, we define for 0 <p < w
feF*?(C) < j|f(z)e‘“|’|2"2|i’dE(z) < o0
¢

with the usual interpretation if p = o0.)

DErmrTION, BY a generalized Hankel form is meant a form that generates
an irreducible Heisenberg module (an #-module).
By general principles (see Sec. 1 for the motlvatlon) then f is expected to

be of the form
Z,—Z Zi+2
sz b5 (25 %),

-with b, he F?***(C), The 2 factors are chosen mostly out of convenience. We
will denote the corresponding form by I',,.

In Sections 2-3 of this paper we investigate the smoothness and
boundedness properties of such forms. Our objective is to carry the theory to
the same level as for “ordinary” Hankel forms over Fock space ([JPR], [W]).
Section 1 is devoted to merely formal considerations.

All our considerations generalize mutatis mutandis to the case of higher
dimension (4 > 1) but for simplicity we have confined our attention to the case
d=1.

The Fock space corresponds to “bosons™. Probably there is also a corres-
ponding theory with “fermions”. Then the réle of the Heisenberg group & is
taken by the Clifford algebra. We plan to return to the fermionic case in
a subsequent publication.

1. Formal considerations on generalized Hankel forms, We begin with some
general nonsense.
Quite generally, consider a finite-dimensional G-module V =V, @...@ ¥,
“which is the sum of isotypic irreducible G-modules ¥;; G is now any group, say,
finite. Let V=V @®...@V, be any other such decomposition. Then there
exists an endomorphism of G-modules T: V-V such that ¥ = TV. By
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Schur’s lemma T must be of the form
x'=Tk <« xi=) ayx;,

where x; and x; are the components of x and x' in the decompositions
V=V,@.. .®Khand V=V ®...0V and the a;'s are scalars. It follows that
each I} consists of vectors of the form (a,,x, a,;x) with x e V,, This gives the
general form of an irreducible submodule of V. u

The statement about the form of £ made in the introduction, apparently, is
just a “continucus” analogue of the above fact.

There arises now the question how to pick up h in a natural way. Let M,
denote the #-moduie corresponding to a given function h:

- {ﬁ: B Bz, z,) = h(”“;—zz)b(ﬁ;ﬂ)}

We observe that the metaplectic group Mp(2, R) (a double cover of the
symplectic group Sp(2, R} = SL(2, R)) permutes the spaces M,. In the notation
of [Peel]
G;Ca)T-+=Cb) (b =ga),

where 7; denotes the Shale—Weil representation of Mp{2, R) and C is the
Bargmann-Segal representation of the Heisenberg group #, § denoting an
element of Mp(2, R) which projects onto the matrix g in Sp(2, R}. (Let M be an
arbitrary s -module and ye TiM, ie. y = Tpx, xe M, Then

ClB)y = Cb) Tx = [C(@)x,

ie. (as C(a)xe M) C(b)ye Ty;M and Ty M too is an #'-module.) More explicitly,
(for o = 1) let

Tf(z)= Mjcxp{z(Az +2Bzw+Cw2)}f(w)dJL (w).
Then we find
TB(zy, 2;) = _” exp {3(A4z} + 2Bz, w; + CW)

c?
'12L(A22+2BZZW2+CW2 }ﬁ Wy, wz)dA ( 1)dll(W2)
2
- +
or, using the identities (21 222) +(z1 222

B 7,425\ zZ,+2,
_P-gexp{A( 3 )+2B 5

) =472 4322 ete,

W sz}h(W) di,(w)

— 2 smm—
xjexp{A(zl 2zz> +2321222W+sz}b(w)dﬂ.z(w) :
C .
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A natural choice seems therefore to be (“Gauss—Weierstrass functions™)

. . nEij24cz
h =g, = &=/

because this family is permuted by Mp(2, R} [Peel]. One can take a = 0, i.e.
one is led to consider generalized Hankel forms corresponding to

flZ1—z z +Z
Bay, 2) = e Z)flb(nlni-i).

The case ¢ = 0, apparently, is treated in [JPR], ie.
Bley, 7,) = b(%—)

Next (following the line of thought in [Pee2], [Pee3]) one can think of the
case

h = P(2)e,, = P(z)e™ 2+

where P(z) is a polynomial. These functions also are permuted by Mp(2, R). In
particular, it would be nice to have a closer look at the case

Blzy, 23) = (24 "“zz)kb('z”%‘“—;—zz)

mentioned already in {JP].

Remark (on the Gauss-Weierstrass functions). The functions e,, satisfy
an eigenvalue equation
0 az |le = ce
Oz o

In particular, they correspond in a natural way to positive isotropic subspaces
of maximal dimension (= elements of Siegel’s (generalized) upper halfplane).
Thus they have a meaning independent of the special representation of the
commutation relations used here (viz. the Bargmann—Segal representation).

Similarly, the functions P-e, may be viewed as “associated” functions, i.e.

solutions of
a N
G-

2. Boundedness and smoothness properties of generalized Hankel forms (the
case 1 < p < o0). So far all our considerations have been purely formal. Now
we address ourselves to the issue of smoothness of generalized Hankel forms.
We begin with the case 1 < p € 0. The case 0 < p < 1 will be treated in the
following section. '

First we settle the question of Hilbert-Schmidt forms.
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THEOREM 1. Assume that h-b # 0. Then the form Ty, (if it can be defined in
any natural way) is in S, (Hilbert—Schmidt class) iff b, he F**%(C).

Proof This is easy, as quite generally

1gllfs. = [§ 1821, 2017 dAy(z))dA,(z,).

cxC

Blz,, 2,) = h(z’; ;z)b(i;ﬁ)

=5 |zt L, 2
3 |+| 2 I —|Z1E+|22|=

Take now

Using the identity

1) 2

TN

we thus obtain

2 _ 2
T alfas. = GE) if h(%)
x b(ZL;zJ'.)

As dE(z,)dE(z;) = 4dE(Zl-;zz)dE(zi-2—zz) it follows that

g2z~ 22)2

2
ezt 22 g B (2 VdE(z,).

”rb,hn?{.S. ='||h”%'2°‘!1(6) HbH%‘ZM(C)- L
Next we investigate when a generalized Hankel form is bounded.

THEOREM 2. (a) Assume that he F>*Y(C). Then beF*»*(C) implies that

Ty is bounded on F%*(C).
(b) Assume that h % 0. Then I'y, bounded implies that be F***(C}.

Proof. (a) be F2%®(C) means that |b(z)) < Ce**", and he F?*(C) that
{clh(z)| d2,(z) = D < 0. Using the former, and once more‘identity (1), we find

ITs 4 (f1s f2) < C(%) {J; h(ﬁ“}z"g)
X |f1(21)|e_almzlfz(zzne_alzzlsz(Zl)dE(zz)

- 05

X |fy () e MR 1, () e e AE 2, dE ).

ezt 2|2

e z|(z1 ~ £2)/2}?

- k3
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The last expression is of the form (i, ¢ *¥)rxc, where = is convolution in
C and ue I (C), @, ¥ = I2{C), hence can be estimated by [[uf [, (Here

||, serves to denote the norm in IP{C)) This shows that

@) Foulfis 2 € M| fillpere) | fallpeors

with M ==4CD. m

(b} Assuming that I',, is bounded, ie. that inequality (2) is fulfilled for
some M, and also (without loss of generality} that h(0) # 0, we take in it
fil2) = %%, fi(z) = ¢ (where weC fixed). As the function ™ is the
reproducing kernel in F**(C) we have

B e — +z
T ’ (eaw , euW) — h(zl ZZ)b(zl 2)
h lf 2 2

x 2@tz 44 (2 )d) (z,)

2, — Z;—z
=1(h 1 2 1 2
(5257
X jb(i%fl) g2z +2))2 dizu(zl +22>
¢ 2

= [ @) A5, (2) bw) = h(O) biw).

As moreover [ ||z = ™2, it follows from (2) that
|B(w)| < M R(0)| ™t e ",
ie. b is in F2*=(C). =

THEOREM 3. Assume that he F2*Y(C). Then be F**Y(C) implies T, €S,
(trace class one). ’

Proof If beF?*!(C) we may write (see [TPR])

b(z) = Zcieh“‘*““l“"P, Y ley| < o0.
Then

Toulfis12) = 2.6 ”h(zl ;Zz) 2ewilEs 22)/2 g - afwil?
o2

X[y (z) flz5)dA,(z ) Ay (z,)
=¥& C52ﬁ'("ffi)'"l(wi+f§)f2(w,-—a:) B, (O)-e= 1,
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Each of the forms
fuxfufi w0 fo(wi—0)
has rank one and the §;-norm. equals
Wit L312 galw =12
It follows that
NPonlls, < 3 led [l etttz getm iz gmetmil 4, ()
4

= Y lcl [ [BQ1e™ d2p,(0) < 0. =

By standard duality and interpolation arguments, going back to Peller’s
classical paper [Pel] (see also e.g. [JPR], we obtain from Theorem 1-3
(Theorem 3 with p = 1) the following final {for p > 1) result.

TREOREM 4. Assume that he F2**(C) and that h # Q. Then I'y €S, where
1<p<co, ff be F**P(C). m

For ordinary Hankel forms {1 = 1) this result is in [JPR]. In the following
section we extend this, thanks to results in [W], to the case 0 <p < 1.

3. The case 0 < p < 1. The purpose of this section is to establish the
following theorem, where in the proof we follow the same general scheme as in
Semmes [S].

THEOREM 5. Let O < p < 1. Assume that he F>*#(C) and that k # 0. Then
Fb,},ESP Iff bEFZ“’p(C}.

Proof, For the direct proof write (see {WJ)
hiz) = Y hye?®® =il Y [P < oo,
b(z) = Y berm=maml N b < 0.
Then
Faalfys ) = [ T b Gt pgiames Tyt
e

x f1(z1) f2(23) da,(z,) d4,(z;)

_ z ﬁEj ” emh(www;)—uiwd-w;\?/l eaiz(WJ—W¢)"¢|WJ—WiI“I2
1
L] €2

Xf1(21) ol dig(2) a22)
= U v e PR o whe e
Li

1t follows that (see the proof of Theorem 2(b))

1Ty 4lls, € ClHlpzen [ Blirerc).
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For the convetse assume, to begin with, that beF?*?(C) and choose
a l-dense and separated set {w} < C such that

Z|b(wi)e"'w"2|" =, i bl f2azie)-

(As in the proof of Theorem 2 we may also assume that h(0)  0.) Decompose
{w;} into finitely many sequences {w{}, # = 1, ..., ¢ = ¢(N), such that W, —w|
=N, i#j Let H be an abstract Hilbert space with basis {e{}. By the
decomposition theorem for F*2(C) (see [TPRY), the relation

SNy =T f@) = =it
i

defines a bounded map from H* into F*2(C). Define a bilinear form B on
H= ("Bc:i H by
B(fy, o) = 21 ulS°f1, §°15).
Then clearly
[1Bls, < Cpnlllpulls,-

Let D be the diagonal part of B and set F — B—D. Then
1Dlls, = 2\ Loalf P

=2 ﬂ’f(ﬁ‘;—zz)ﬁ(ﬁ%)ﬁ(zz)ﬁ'(zz) Do) iz
B

Z,—2 Zi+z o iz
[T o e e
c? .

= Ii h(2) dho, (2)[ 3 b(wi)e il

ir

P

= U; h(2) dhs,(2)]7¢, 1B |Bauniey-
If we can also prove that

1Flls, = o(||b prare)

we can thus conclude that

as N— oo,

16| p2esicy € ClITplls, -
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(s

x @ME1 22 — R )2 palzr +z2)(Wi+ w2

Indeed, one has

IFig, < %
|wi—wy| 2N

p
X g~ e w2 ~altwt w21 g3 (7 Vd) (2,)

— r
h wi— W g altwimwyzltp Wit W, g oWt w22
lwi—wylzN 2 2

= o({{h |F2emey ”b”f‘ZAM(C))

Finally, assuming only I';4€S,, let us put by(z) = b({z) for [{] < I. Then
(T by is a holomorphic §,-valued function. By the maximum principle [K. ]
we have

as Noow.

[Tyl

‘ sp S [T balls,-
Since
bl g2eniey = Hm || by | posoney
{+1

the theorem is proved. m
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