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Some restriction theorems for the Heisenberg group
by
5. THANGAVELU (Bangalore)

Albstract. We prove two restriction theorems for the Heisenberg group: one analogous to the
Stein-Tomas restriction theorem for the Fourfer transform on R" and the other analogous to
Zygmund’s theorem for the Fourier transform on R*.

1. Introduction. On R" we can write the Fourier inversion formula in polar
coordinates as

(L.1) fx) = (2m)™" Gf( § e fu)do) inm 1 dA.
0

sn:l

Then the expression

@m)y~anmt | e wde

sn—1

(1.2) Quf(x) =

is an eigenfunction of the Laplacian with eigenvalue — A2, In terms of Q, f we
can write the inversion formula as

(13) £ =] 0,/ ()d

The operators Q, can also be written as convolutions with Bessel functions,
namely

(14) Q,f(x) = (21t)“"l""1nf Sy A2 s (Al .

For these operators it has been proved that for 1

(L.5) @Sl < Call S -

As a consequence, one can obtain the Stein—Tomas restriction theorem for the
Fourier transform (see [8]):

o (] 1PwPae<cifl, 1<p<2t)

£p < 2(n+1)/(n-+3) one has
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a measurable partition P we define P(4) = \/4ea®* P. We put Py = P(Z7),
Pg = P(Z%) and P, = P(Z&, 1 <n < d. Analogously we define .4, /5 and
of, where o is a cr—subalgebra of B, 1<n <d

By the past o-algebra determined by a partition P we mean the o-algebra
P=Pv Py. _

A g-subalgebra 4 which is totally invariant under @ is called a factor of 9.
The factor-action of & determined by a factor #° is denoted by 615/// We
denote by 4 the trivial factor of @.

Let 2 be a fixed factor of &. For a partition Pe% we put A(P, ¢|3#)
= H(P| Py v #). We define the relative entropy h(® | 3#) of & with respect to
# by the formula .

h(®| #) = sup{h(P, D|#), PecZ}
and the relative Pinsker o-algebra m(®| ) of & with respect o # as the
smallest o-algebra containing all P2 with A(P, ®|#) =

Remark that h(®|.A4) and =(®|.A") are equal to the entropy h(®) and the
Pinsker s-algebra n(®) of & respectively (cf. {13).

If o o & is a factor of @ then we write

W@, sf| ) and  =(P, o | H)
instead of
h(®/of | 5#) and =n(P/f | )
respectively. In particular, we define
WG, ) = @, AN, P, )= (@, | N).
We put
= {PeZ; h(P, ®|#) = h(®|#), TIy=T,

A ZA-action @ is said to be a relative K-action with respect to H if
1P| #) = # and a K-action if the above equality holds for # = A7

The following definition is equivalent to that of a relatively pexfect partition
given in [7]. .
A g-subalgebra o — & is said to be relatively perfect with respect to # if
(i) H oo, o, geZb,

(i) for every Dedekind cut (4, B) of (Z*, <} which is a gap

\/ @t = (| DA,

gek geB

(iif) (2% =

(iv) () et = n(P| ),
geZd

) W@ |#) = H(d | 5).
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Using the standard automorphisms 7, .. ., T, determined by & it is easy to
check that the above conditions may be wniten in the following form: -

{i) H o= o, e oo, 1<k<d,
(i) ﬁ T, = niamz“l, 2<k<d,
(i) \/ Tret, — B,
n=o
(iv) fj n(®|#), d,=AZ) 1<k<d,
v) WO | #) = H(sd | 7).

The existence of relatively perfect o-algebras is announced in (6] and
proved in [7]. It is clear that a g-algebra relatively perfect with respect to the
trivial o-algebra 4" is perfect ([4]).

It has been shown in [4] that perfect o-algebras are useful tools for the
investigation of mixing and spectral properties of Z%actions. On the other

© hand, the existence of relatively perfect o-zlgebras allows one to obtain

a functorial characterization of entropy (cf. [7]).

The object of our considerations are generators of perfect ¢-algebras, ie.

generators Pe of € such that a given perfect o-algebra .o is the past
g-algebra determined by P.

It is known (cf. [117) that if @ is a Z'-action with finite entropy then any
past g-algebra of @ determined by a generator of @ is perfect and vice versa,
any perfect g-algebra is the past o-algebra determined by some generator of &.

It is shown in [9] that, in contrast to the case d = 1, there are Z>2-actions
¢ with past o-algebras, determined by generators of ®, which are not perfect.
This fact has stimulated the 1nvest1gatlon of the set of those generators of
Zi-actions, d > 2 (called regular in [97]) whose past g-algebras are perfect.

For this purpose relative ergodic theory has been a useful tool. There are
well known interesting applications of this theory to the Z'-dynamics (see for
instance [10], [12], [13]).

We have proved in [5] the existence of countable regular generators with
finite entropy of Z*-actions by a characterization of these generators in terms
of the Thouvenot relative K-automorphisms and a relativized Rokhlin
generator theorem.

In this paper we sharpen this result. Suppose @ is a strongly ergodic
Z'-action with h(®) < co. The main results of this paper are the following.

Applying a relativized generator theorem (Proposition 2) we show that
for every finite generator P of ¢ there exists a finite regular generator Q
which is a refinement of P and that the set of all finite regular generators is
dense in I,

i
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Next we prove that in the case h(®) = 0, by the use of a relativized Sinai
theorem (Theorem A), we may replace regular generators by nonregular ones in
the above result. We also show (Proposition 3) that the second result cannot be
extended to actions with zerc entropy.

2. Results of relative ergodic theory. Let @ be a fixed Z%action on
a Lebesgue probability space (X, 4, u) and let A be a fixed factor of &.

ProrosiTiON 1. If o, % = @ are factors of & with b < # — < then
WP, o | €)= h(D, o | H)+h(D, H|F).

Proof Let P,,Q,e#, k, I = 1, be such that P, ## and Q,.o¢, Using

a simple generalization of the Pinsker formuls (17} we have
B(Py v Qi B%) = h(P,, B D)+ H(Q,| Q7 v (P v ©),

k= 1. Hence we get
(1) (P, v Q, §1%) > h(P,, B|€)+h(Q,, ©|#),
@) h(Qy, D1%) < h(Py, ®|B)+H(Q,| 07 v Py v B),

k1= 1. Suppose h(D, of | %} < oo, First taking in (1) the limit as /— o0 and
next as k—co we get

3) WD, o |F) = WD, A | H)+h(D, #)F).

It is clear that (3} is valid also in the case when h(®, &7 | %)

= c0. The converse
inequality can be deduced from (2) in a similar way.

Now assume #{P, #) < c0. The following corcllary shows that in this case
our definition of a relative K-action coincides with that of Thouvenot ([14]).

COROLLARY 1. @ is a K-action relative to # iff for every factor o of ® with
o o H and W(®, o) = h(P, #) we have o = .

Proof. = Substituting, in Proposition 1, ¥ = A" we obtain h({®, of | #)
= 0. Hence, by our assumption, & < n(®|#) = # and so o = #.

<= Note that (&, n(P|#)|#)=0. Substituting, in Proposition 1,
o =q(®| ) and € = A we get

h(®, (@] ) =

Hence, by our assumption, n{®|#) =
respect to S,

(P, H#).

M, ie P is a relative K-action with

The following two results are shown in the case of Z!-actions in [13] and
[2] respectively. Their proofs for arbitrary Z‘-actions are similar.
Let I be a finite probability vector and H(I) the entropy of I. For a finite

ordered partition P = (P,, ..., P,) of X we denote by dist P the probability
vector

dist P = (u(P,), ..., u(P,).

icm
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TueoreM A. If @ is ergodic with h(® | 5#) > O and I is a probability vector
such that H(I) < h(®| ') then there exists a finite partition P of X such that
dist P = I, the partitions ®°P, ge Z°, are independent and the factors P, and

M are independent.

A measurable partition P of X is said to be an #-relative generator of & if
Pov # = 4. An A -relative generator of @ is said to be a generator.

THEOREM B. If @ is ergodic with h(®) < oo then the set of finite generators of
@ is dense in I.

The existence of a finite generator of @ is shown for instance in [13] (see
also [12])

PROPOSITION 2. If & is ergodic and h(P|#) < co then there exists a finite
# -relative gencrator of ®. The set of all finite #-relative generators is
dense in I,

Proof. It follows from [8] that there exists an s#-relative generator Q e &
and that the set of all such generators is dense in I',. Applying Theorem B to
the factor Q, we get the result

Remark. The first part of Proposition 2 is also shown in [12].

3. Main results. Let & be a Z-action on (X, 4, u) with h(®) < oo, let # be
a fixed factor of ¢ and let Ty,..., T, be the standard automorphisms
determined by &. For a given partition Pe# we denote by & the past
a-algebra determined by P.

LemMa 1. For every partition Pe
5]
ﬂ (PP v H) (D, Py v | H).

The above lemma is a consequence of the following property which may be
shown similarly to property 8 in [1].

Remark 1. For any partitions P,Qec%

lim H(P|Ps v Ty "(Qy)7, v #) =

n-ro

(P, &| ).
Lemma 2 (cf. [70). If of o ## is a o-algebra satisfying the properties {')—(iii")
of relatively perfect o-algebras then (2o Ty "o, = n(®|#).

Now suppose ¢ is aperiodic. Since h(®|#) < oo there exists (cf. [8]) an
H-relative generator of @ belonging to #.

Lemma 3. For every #-relative generator P of &
W@ #)=h(®,, P v # [T, P v H).
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Proof. Let Qe and Q =&, v #. Hence (Q,)r, v # <= Ty ' v
and so

hQ, | TP v #)=H(Q|Qq, v Ty ‘& v #)
< H(Q|Qs, v (@7, v #)
=h(Q, @|H) < W(D|5H).
ie.
WD, P v T P v )< h(P) ).
Using the generalized Kolmogorov—-Sinai theorem (cf. [8]) we get
h(@1 Y =h(P, ®|H)=H(P|Ps v #)=H(P|Py, v TT P, v #)
Sh(®,, Z v HNTV1H v H),
which completes the proof.

Remark 2. Using Proposition 1 it is possible to get the following formula
which is a gereralization of that given in Lemma 3:

WP, TIP v KT VP, v H) = nh(B| H), n2 1.

Let P be an #-relative generator of &. P is said to be # -regular if the
o-algebra @ v # is relatively perfect with respect to #. A generator P of
& which is A -reguiar is said to be regular.

It follows from Lemmas 1 and 2 and the generalized Kolmogorov-Sinai
theorem that in the case d = | every #-relative generator is #-regular,

For d = 2 we have the following

LemmA 4. An #-relative generator P of & is H-regular iff for every
V< k< d—1 the factor-action @,/%, v # is a relative K-action with respect to
the c-algebra T, 'R v #°.

Proof Fist of all observe that due to Lemmas 1 and 2 the #-regularity of
P is equivalent to the fact that the g-algebra 2 v o satisfies (i), i.e.

4

(D)

(T* &~ ) =Tt v #, 2<i<d

0
Suppose P is #-regular and 2 < k <d Using the equalities (4) for

E+1<1<d and the equality

oG

V (RHY #) =B v A

n=0
we see that # v o satisfies the properties (i)-(iii") of relatively perfect
o-algebras of @, _, acting on the space (X, Z_, v #', ) with respect to the
g-algebra ;24 %, v #. Therefore applying Lemma 2 we get-

i

Oo(rﬂc_"% VYD (Do, By v HNTIND, v H),

Generators of o-algebras 7

Substituting in (4) [ =k we obtain
MOp1s By v KN TNR v #) = TAR, v X,

which proves the necessity.
. The converse implication follows from the obvious inclusion ﬂ,,io T, "4
o 21, 2<1<d, and the inclusion

(TP v #) S @y, By v A TR, v ),

1Ds

n

which is a consequence of Lemma 1 applied to the action ¢;., and the
g-algebra T,_1A_, v #, 2<si<d

COROLLARY 2. If P is a regular generator of ® then the action @, is a relative
K-aciion with respect to the factor T{'#,.

- Prooi First observe that for every natural number k we have
n(®,, TEP | T, 1 P,) = Ty * #,. Indeed, it follows from Lemma 4 with # = A4~
that this equality is true for k = 0. If it is true for some k > 0 then it is also true
for k+1 by Lemma 2 applied to the probability space (X, T¥*!2,, u), the
action @,, o = Tf"'# and # =T, '#,. Since P is a generator we have
TF#, ~®. Thus the last equality, by the property (h) of [5], implies
n(®, | Ty 1#) = T ' #,, which completes the proof.

Tueorem 1. For any positive integer d, strongly ergodic Z%-action @, factor
H of ® with h(®|#) < oo, finite H -relative generator P of @ and & > 0 there
exists a finite # -relative generator Q = P which is s -regular and ¢(P, Q) < ¢.

Proof. Since for d =1 every i -relative generator is #-regular our
theorem is trivially satisfied in this case.

Now, suppose that our theorem is true ford —1. Let &, #, P. ¢ be as in the
assumptions of the theorem. Since

B(®,, 1D, | T P, v #)| TP, v #) =0

the strong ergodicity of ¢ and Proposition 2 imply there exists a finite partition
§ with ¢(Q, T, 'P) < /2 and

TP v # v O, =n(@ | TP v H).
Putting §=P v TIIQ“ and # =(Q,)7, v # we get
®) H o= a(® | TP v H),
6) o(P, )< o(Q, T ' P) < ¢/2.
From (5) and [5] (the property (e)) we obtain
0 . W, | ) = .
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It follows from Lemma 3 that
WD, O, v | ) = h(B| #) < co.

Applying the induction assumption to the factor-action @, /O, v # and to
the o-algebra 7 we get a finite partition Q > J such that

(8) Qv#=0 v #,

{9) the factor-action @,/T,(\/f-2(Q)7, v ) is a relative K-action with
respect to the o-algebra \/}=,(Q)7, v #, 2< k < d,

(10) 0@, 0) < ¢/2.

We shall show that the partition Q satisfies the desired properties.

It is clear that Q is an J#-relative generator. Since Q is a refinement of
¢ and Q < 3, v # we have 5 = (Q,)7, v #. Therefore it follows from (9)
that the factor-action @,/T(\/}-1(Q)7,) v 5 is a relative K-action with
tespect to the o-algebra \/f=,(Q)7, v #, 2 < k< d, and (7) implies that this
property also holds for k = 1. This means, by Lemma 4, that Q is #-regular. It
follows from (6) and (10) that (P, Q) < =.

. Combining the second part of Proposition 2 with Theorem 1 we get at once
the following

CoROLLARY 3. The set of all finite # -relative generators of & which are
H-regular is dense in T.

Substituting #° = A" in Corollary 3 we obtain the first result stated in the
abstract.

THEOREM 2. For any integer d > 2, strongly ergodic Z%-action ® such that
0 < h(®) < oo, and finite generator P of & there exists a nonregular finite
generator Q of @ which is a refinement of P. The set of all finite nonregular
generators is dense in Iy,

Proof Let 0 < & < h(®) be arbitrary and let I be a probability vector such
that H(I) = e. It follows from our assumptions and Lemma 3 with # = 4"
that the action &, is ergodic and h($,, # | T '2) = h(d) > 0. Applying
Theorem A to the factor-action &,/ the o-algebra # = T, '#, and (he
probability vector I we get a finite partition § — #, which generates a Ber-
noulli factor Q, = ((Z4) such that dist § = I and the factors 0, and T2,
are independent.

It is shown in [3] that Bernoulli shifts are not coalescent. It is not difficult
to extend this result to arbitrary Bernoulli Z4-actions, d > 2. From this it
follows that there exists a finite partition § < (, which generates a Bernoulli
factor @, such that §J, # @, and

(11} : hQ, 2) = h(0, &,).

icm
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We define
H=Q vI'F, #F=0,v I[P

It is clear that

(12) H# A

Now we will check that

(13) n(®,, H|H)= #.

By the Pinsker formula we have

(14) WAV 0, &, | T9) = WG, &, T )+ kG, &, 7).

It follows from (11) and the definition of  and § that
K@V O 0,12 =h(G &, | T R) = W@, &, | T ).
Therefore (14) gives h(0, &,|#) =0, ie. J < n(®,, #|#). Hence #
< n(®,, #| ) and so (13) is fulfilled. Combining (12} with (13) we get
(15) 2(®, | ) # 7.
Let Q = P v T, Q. It is clear that Q is a generator of @ which refines P. We
also have

o(P,Q)=H@IP)<HQ) = H() =«

By (15), Corollary 2 and the equality # = (Q,)r, the generator Q is nonregular,
which proves our theorem.

Remark. By a slight modification of the argumenis used in the proof of
Theorem 2 one can prove the relative version of this theorem, similar to
Theorem 1. _

Now we will show that Theorem 2 cannot be extended to actions with zero
entropy.

ProrosiTioN 3. There exist Z%-actions with zero entropy any generator of
which is regular.

Proof Let (X, 4, y) be a nonatomic Lebesgue space and let T;, ..., T; be
commuting and algebraically independent automorphisms of X such that
h(T,) = 0 and T, is ergodic. We define the action @ on (X, 4, u) by the formula

@9 =Ty, T, g=(nyg,...,nHeds

It is known (cf. [17]) that A(®) == 0. Let P be an arbitrary generator of ¢ and
let £ be the past g-algebra determined by P. Since Ty &, = &, and M(T}) =0
we have Ty '@, = #,. Therefore # =% and so

M@, BT P = TP, 1<sk<d,

ie. P is regular.
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Generators of perfect ¢-algebras of Z4-actions
by

B. KAMINSKI (Toruf)

Absiraet, Let @ be o Z%-action, d 2 2, with finite entropy h(d), on a Lebesgue space (X, 4, 1)
and let Iy, be the set of all countable measurable partitions P of X with finite entropy such that the
mean entropy h(P &) equals A{P). Tt is shown that if @ is strongly ergodic then the set of all finite

partitions of X which generate perfect g-algebras of @ is dense in Iy X h($) > 0 then it is also
a boundary set in Iy,

1. Introduction and notations. Let (X, &, u) be a Lebesgue probability space
and & the set of all countable measurable partitions of X with finite entropy.
We consider in & the Rokhlin metric

o(P. Q) =H(PIQ)+H(Q|P), P,QeZ.

.Let z d_enote the group of d-dimensional integers and < the lexicogra-
phical ordering in Z° for 4 2 2 and the natural ordering for d = 1. Let e'e Z9 be
the ith unit coordinate vector. We put

Zo={g=(my,....,m)eZ m, =
Z4 = {geZt g < (0, ..., 0)}.

Let @ be a Z%-action on (X, B, p), ie. @ is an isomorphism of the group Z¢
into the group of all measure-preserving automorphisms of (X, 4, w).

The restriction of @ to Z¢ is denoted by @,. We denote by T}, ..., T, the
generators of the group ®(Z%) which are the images by & of the vectors
e, “ respectively. We call them the standard automorphisms determined
by &.

A Zf-getion & is said to be aperiodic if

plixe X: ®1x =x1)=0 for every geZ7\{(O0, ..., 0)}.

@ is said to be ergodic if for any ®¥-invariant set A% and geZ” either
1A) = 0 or u(X\A) = 0. We say that ¢ is strongly ergodic if the automorphism
T, is ergodic. 1t is clear that every strongly ergodic action is ergodic.

Let o7, i€ ], be a family of measurable subsets of X. The smallest ¢-algebra
containing all o, iel, is denoted by \/iey.of,. For a given set 4 = Z* and

=m,=0}, 1<n<d,
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