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Homogeneous Besov spaces
on locally compact Vilenkin groups

by
C. W. ONNEWEER (Albuguerque, N.M.) and SUU WEIYI* (Nanjing)

Abstract. In this paper we shall show the equivalence of various characterizations of the
homogeneous Besov spaces defined on certain topological groups G that are the locally compact
analogue of the compact groups introduced by Vilenkin in 1947. We then apply some of the
results to study the regular extension to G xZ of the distributions belonging to such Besov
spaces.

1. Introduction. For a > 0 and O < p, g < oo there exist a large number
of equivalent characterizations of the Besov or generalized Lipschitz spaces
B%, on R". For carly results, subject to the restrictions 2 >0 and 1<p,
q < < co, see the papers by Besov [2] and Taibleson [13]-[15]. For additional
results, see [11] or [20], whereas for the atomic decomposition of Besov
spaces on R”, see [6]. In [12] Ricci and Taibleson considered the harmonic
extension to the upper half-plane R% of functions belonging to certain Besov
spaces on R. They introduced a class of function spaces, called A7,, on Rz
and showed that the boundary values of the functions in A%, can be
identified as linear functionals on certain Besov spaces. In [3] Bui extended
their results to R™. These papers were the motivation for the present paper in
which we consider this circle of ideas in the context of a certain class of
topological groups instead of R or-R".

We now summarize the content of this paper. In the remainder of t}ns
section we describe the topological groups G that will be considered here and
we give a brief outline of the distribution theory on these groups. In Section
2 we introduce the inhomogeneous and homogeneous Besov spaces on G.
We present several equivalént (quasi-) norms for these spaces and state a
duality theorem. In that section we also compare the inhomogeneous and the

1980 Mathematics Subject Classification: 43A15, 43A70, 26Al6.

Key words and phrases: locally compact Vilenkin groups, homogencous Besov spaces,
mean oscillation spaces, atomic decomposition, regularization, regular extension.
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gthematics for its hospitality.
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18 C. W. Onneweer and S. Weiyi

homogeneous Besov spaces with each other. In Section 3 we present a
characterization for the homogeneous Besov spaces on G in terms of mean
oscillation spaces, whereas in Section 4 we treat the atomic decomposition of
the Besov spaces. Finally, in Section 5 we treat the regularization of the
distributions belonging to certain homogeneous Besov spaces. We introduce
a new class of function spaces and we show that, under suitable restrictions
on the parameters involved, their elements can be identified with the
elements of the Besov spaces on G.

In this paper G will denote a locally compact Abelian topological group
containing a strictly decreasing sequence of open compact subgroups (G,)% .
such that

® U G.=Gand (A G, =0,

(ii) M :=suplorder(G,/G,. ) reZ} < o,

Such groups are totally disconnected and they are the locally compact
analogue of the groups described by Vilenkin in [217]. Several examples of
such groups are given in [5, §4.1.2]. Additional examples are the p-adic
numbers and, more general, the additive group of a local field (see [16] or
[(19]).

Let I denote the dual group of G and for each neZ, let 1" denote the
annihilator of G,, ie,

F,={yel'; y(x)=1 for all xeG,}.

Then (cf. [5, § 4.1.4]) the (I')Z,, form a strictly increasing sequence of open
compact subgroups of I' and we have

@* U I.=Tand N I,={l},

(iy* order(Il,,/T,} = order(G,/G,+,).

If we choose Haar measures uonGand 1 on I' such that u(Go) = A(Fy)
=1 then u(G,) = (A(F))" " for all neZ; we set m,:= A(T,).

We mention here three simple inequalities for the m, that will be used
frequently. For each « > 0 and keZ we have

(1) 2m, £ < Mm,,
) T (m)~* < Clmy™,
n=k
. k
® 3 < Con
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Inequality (1) foliows from (i), whereas (2) and (3) follow easily from (1),
Here, like elsewhere in this paper, C denotes a constant whose value may
change from one occurrence to the next,

For each neZ we choose elements z,,€G (leZ,) so that the subsets
Gipi=21a+G, of G satisfy G, , NG, =@ il k #  and |2, G,, = G; moreo-
ver, we choose z,, so that G, ,=G,.

If we define the function d: G xG —~R by

0 if x—y=0,

d(x, y) = %(mn)‘l if x—yeG \Gpiy,

then 4 defines' a metric on G xG and the topology on G induced by this
metric is the same as the original topology on G. Next, for xeG we set || x|
=d(x,0) if xeG,\G,+4, and {0} = 0; then |[x]| =(m,)~' if and only if
x€G,\G,+. In a similar way we can define a metric 4 on I" xI" such that if
we set ||y[l = d{(y, 1) then ||y]l = m, if and only if yely W\ Iy—y

For p with 0 <p < co we define p’ by p =0 if 0 <p< 1 and p' is the
usual conjugate of p if 1 < p< o, ie, I/p+1/p =1. For a given set 4 we
denote its characteristic function by &,. The symbols ~ and ~ will be used to
denote the Fourier transform and the inverse Fourier transform, respectively,
It is easy to see that if we define the functions 4,, n€Z, on G by

4,(x) = (u(GY) " &g, () = my &g (%),

then, for yerl,

4)" () =&, (),
o0, we have

|4l = (my)! = 4.

To simph'fy our notation: later on, we define the functions ¢, on G by
= A, —~A,_4, nelZ

Fol]owmg Taibleson’s development of a distribution theory on local
fields (cf. [16] or [19]), we define .#’(G) to be the set of functions on G that
have compact support and are constant on the cosets of some G, in G. A
sequence ()" in .¥(G) is said to converge to W €.%(G) if all ¥,, ¥ vanish
outside a fixed G, in G, all \},, ¥ are constant on the cosets of a fixed G; in G
and y,(x) converges uniformly to ¥ (x) on'G. Then ¥(G) is called the space
of test functions on G. The space of linear functionals on % (G) is dencted by
Y"{@), its elements are called distributions on G. We say that a sequence
(/) of elements in %" (G) converges to f & %" (G) if for all ¥ . #(G) we have

im (fo, ¥ = {f, ¥).

n-—+oa

and, for 0 < p <

Clearly, similar spaces ef test functions and distributions can be defined
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on I'. It can be shown that the Fourier transform maps .%(G) one-to-ome
onto (. Moreover, if we extend the Fourier transform to &*(G) in the
usua!l way then the Fourier transform maps %' (G) one-to-one onto .%'(I).
Additional results for such test functions and distributions in case G = K™,
the additive group of a local field K, can be found in [19]. These results
easily extend to groups G as considered here and will be used without further
comment. In particular, for f €5 (G) and ¥ € #(G) such that \ is constant
on the cosets of G, in G, the convolution fxy is defined both as a
distribution in % (G) and as a function on G that is constant on the cosets of
G, (cf. [18] or [19, Ch. III, (3.15)]).

2. Homogeneous and inhomogeneous Besov spaces. Before giving the
definition of the Besov spaces on G we need to introduce a second space of
test functicns and distributions. Qur approach here is similar to Triebel's
approach to defining the homogeneous Besov spaces on R" [20], but with
appropriate changes to account for the topological structure of G. Let

Z(6) = W e#(G): ¥ (O = [ 1)du(0) =0},

and define convergence in Z(G) like in ¥(G). Let Z'(G) be the space of
linear functionals on Z{G) with convergence in Z'(G) defined like in &'(G).
If % denotes the set of constant distributions in %(G) then Z’'(G) can be
identified with .%'(G)/% in the sense that (i) for each f & ¥ (G} its restriction
to Z (G) belongs to Z’(G), (ii) if f, g € #'(G) and if g = f+ ¢ for some constant
¢ € % (G) then the restrictions of fand g to Z(G) determine the same element
of Z'(G), (iii) if f €Z’'(G) then there exists an f € % (G) so that its restriction
to Z (G) equals f; moreover, modulo constants fis determined uniquely by /i
These facts are easy to establish and we omit the proof At times we shall
disregard the difference between f€Z'(G) and a corresponding f € % (G).

We now give the definition of the homogencous Besov spaces on G.

Dermrtion 1. Let «eR and {0 <p, g € 0. Then

B(d, p’ Q) = {f EZ’ (G)= "f]lﬂ(a.p,q) :=( f (("'trl)l:I Ilf* (Pn“p)q)”q <o }'s

n= — a0
with the usual modification if g = 0.

' We first make a simple observation about the distributions belonging to
B, p,q) in case a >0 and 1 < p< o0,

Prorosmrion 1. If o« >0, 0<g<oo  then

. I<psco and
B(Oﬂ, p! ‘I) CI‘:}O(;(G)‘ )
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Proof. Take any f €B(a, p, ). Since f€.9(G) we have
f=f*‘40+ z f*qon:
n=1

with convergence in % (G). If 1 < g < co, then it follows from the inequali-

ties of Minkowski and Hélder that

Ilf Freo < L )72 m) I f = ol
=1 n=1

<( i ()~} (g (117 * ol )

<C ”f“ﬁ(a,p,q) < oo,

by inequality (2). If 0 <g <1, the inclusion relation for sequence Spaces,
B <, 1, implies that

Ilf Frodl, < zlnfup,nps zl 1S * @l
n=1 a= n=
<(T (17 + 01, < 1 flna < -
=1

Thus for 0 < g < co, we have ¥ ne; f *@, €L7(G). Since f » 4, is continuous,
we may conclude that f eIl {(G).

Interiude. In his Ph.D. dissertation Ombe defined and studied the
inhomogeneous Besov spaces B(a, p, q) on G. For xR and 0 <p, g € o©
these spaces are defined as follows (with the usual modification if g = c0):

B, p, @) = {f €% (G); IS llpee,pp = (IS * Aoll}

+ i (e I1f * @ull))"* < oo},

As is to be expected, a number of the results proved in 97 for
inhomogeneous Besov spaces extend immediately to homogeneous Besov
spaces. We mention here two such results. Since the proofs for the homoge-
neous case closely resemble the proofs in [9] for the inhomogeneous case,
they will be omitted. Observe that Theorem 1(c) shows that the spaces
B(x, p, q) are generalizations to ¢ €R and 0 <p, g < o« of the generalized
Lipschitz spaces on G.
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TrEOREM 1. Let >0 and 1<p, q < 0. For fell (G) the following
quantities define equivalent norms on B(a, p, q):

@ 1/ llsepa-:
@

® (X (mPlf=f *40,))"

n=-—m

© ( éguryf~f|:;',nyn-"“‘*”clu(y))“",

where T, f (x) = f(x—) for x, yeG. (For q = oo, replace the expressions in
(0) and (c) by sup,(m,)* ||f— 4, f|l, and esssup, ||yl *|lz, f~f|l,, respectively.)

A special case of the inhomogeneous version of this theorem, namely,
where G is the additive group of a local field, was proved earlier by
Taibleson (cf. [19, Ch. VI, Theorem (2.2)]). His proof served as model for
Ombe’s proof in [9].

The second theorem whose proof can be based on Ombe’s work
identifies the dual spaces B(«, p, g)* of the homogeneous Besov spaces on G.

THEOREM 2. Let ¢ R and 0 < g < 0.
(@) If 1 <p <oo we have Bla, p, 9)* = B(—u, p, q).
(o) If 0 <p <1 we have B(x, p, 9* = B(—a—1+1/p, ¢, 4.

In the remainder of this section we turn briefly to a comparison between
the B-spaces and the B-spaces on G. In [1, Theorem 6.3.2] it was shown that
for the Besov spaces on R" we have B3 =1I7 nB:, when a >0 and
1< p, g < co. In [10] one of the present authors obtaincd a similar result for
the Besov spaces on G (see also [97]).

TueoreM 3. Let a > 0 and 1 <P, g < co. Then

B(a, p, 9y = I "B(a, p, 9).

Proof If feB(x, p, g) then an argument like in the proof of Proposi-
tion 1 shows that feI?(G). Moreover

Mya € 5 (071, Qi+ 114, -

n=—om

+ 3 (nIf wp )

<S2ZUAL X (m)e+ i (1S = 0L,

n= —o0

< Clfl+ ; (1S * @I, < o0
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Conversely, if fel” nB(ax, p, q) then

1 Mocema = (1 Aollt + i () 1S *@all)) "

<OfEIAGE+ T (mIlf * ol )™

n=—o0

A+ s, pg < -

This completes the proof of Theorem 3. .

A second result relating the spaces B(x, p, g} and B{x, p, g) is given in
Theorem 4. This result is similar to a result of Johnson for Besov spaces on
R" (see [7, Theorem 1.13). In both [7] and [8] several applications of
Johnson’s theorem are given. We intend to give some applications of
Theorem 4 elsewhere.

TueoreM 4, Let >0 and 1 <p,g< oo. Let

7B, p, q):={f€Bla, p, q); for all yeI' we have
o eBla, p, @) and 1 s pay < CQYIP ”f”p+Hf||B{a,p b

Then nB(x, p, 9 = B, p, 9).

Proof. First assume fenB(x,p,q). Take any yel\Il,: then
yel,\I',_, for some n>1 and we have ‘
@) y(f = do) = 3 wydo * @y

To see this, take any gel'; then

((f * 40) () = f(o'—v) dy(c—),

whereas
(f *y4o% ) (0) = flo— v)do(a 7) $a0).
Now observe that Ag(o—7) #0 if and only if o—yel,, ie, if gey+I,.
Since nz 1, y+ T I\ -1, Furthermore, for cel \I,_, we have @,{0)
= 1. Thus we see that ( (f #do)) (o) = ()gf*ydo*qa,,) “(6) for all o el, which
implies (4).
Consequently,
ILf * dolly = [l7 (f * o)l = 740 * (@a+ 2,
5 ”?AOHI “(PH *Yf”p £ (mn)—a”'yfuma,p,q)'

(since 1 < p < o0)
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" Thus

Mt = (17 = dolE-+ T (0m¥ 7= 0, )}

< (m) ™1 11Y )i

. Bl=, p,q) * Hf”B(a P4
ie, 7B, p, 9) = B(x, p, g). Note that this inclusion is true for all « €R and
1<p<oo and 0 <g< . .

Next, assume feB(x, p, ). If y=1 then yf = f and yf €B(«, p, q) by
Theorem 3. ¥ y# 1 then yel,\I',—, for some neZ and, moreover, ||y
=m,. Now we observe that for all x, heG we have

(c-n 0 =W X = T4y (N e b =AY X+ (D 3 () (7R = 1).

< c0,

Thus,

e - w2 =1l < lirwy@ s =Dl +ly (=111,

=l S~ (B =1 151,
Therefore, applying Theorem 1(c), we see that

19l < C ([l =AW A~ du(m)
C(flr—y f=FUB AN~ du(h)™™
C(J Iy (M =119 1712 8l ===t dp ()

< Clflp+2C1ANL( [ =2 (),

G\G,
since y(h) = 1 for yerl, and heG,. For the integral in the last term we have
n—1 :
T dpty = 3§ kT dpdh)
G\Gn fJ=—w G[\G[.'. 1
nm1

< X mrim) Tt <

I=—w

according to inequality (3). Thus we see that

C U M3, + IPI1LA 1D

Clm)™ = Cliyli*,

”?f”B(z p,q)
which implies that fenB(x, p, g).

3. Homogeneous Besov spaces and mean oscillation spaces, In this section
we give a characterization of the spaces B(a, p, g) in terms of the so-called
mean oscillation spaces on G. The equivalence between homogeneous Besov
spaces and mean oscillation spaces on R was observed by Ricci and
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" Taibleson in [12]; for extensions to R® see [3] or [4]. Because the groups G

. e . o
considered here have a natural decomposition into G = {}j=¢ Gru fol: eac_h
neZ, there is an obvious way of defining the mean oscillation spaces in this
context.

DeFmiTioN 2. Let 0 <p<co, nel andfeL,iM(G). Then

<
056y 1= (3 (s T 1 09~fo, | uCaY)™"

G! n
where fg,  =m jG[nf(t)d,u(c) = fxd,(z,,) = f*4,(x) for xeG,.

DerFmviTion 3. For O <p,g< o0 and xeR the space MOifa, p, q) 18
defined as the space of equivalence classes of locally integrable functions f
modulo constants, ie., f €L},./%, such that

MO, p. @) (f):=

=1

( T {m)rosc,(f, W) <

We have the following result.

Tueorem 5. {a) Let 1<p,g<oc and a>0 If feB(oc p. q) then

fEMO (a——l/p, 2 Q) and

(b) Let O0<p,g<oo and a>0.
feB, p, g and

Cllf 3tz par- _
If feMO{u—1/p, p,@ then

“f”B(a pna) = CMO(“ l/p? p.q (f)

- Proof. (a) If 1 < p < oo then Holder’s inequality implies that for each

nelk,

mri( i ( j |f(JC) —f * A" (x)l dﬂ (x))P)ljp

=0 Gl,n

(3 [ 1/ # 4, (0 dp () (m) )

I=0 Gy

osc,(f. n) =

= (m P ([1f ()= % 4,7 du(x))
G
= (m) || f—f +A.l,-

Hence, for each g with 1< g <o we have

2]

MO (2—1/p, p, () =( ¥ ((mu)“”” osc, (f, W)

n= o

<( 3 ((m,.)“IIfhf*AnII M < ClI S s

n=—w
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according to Theorem 1(b). Clearly, the above inequality also holds if
g=
" If p=oo0 we have for each neZ,

osc, (f, )wsup(m» J1f =T, du(x)) < If— 4y % Sl -

Gln
Consequently, for each g with 1 < g < oo, ‘

o0

MOG@, w0, (N <( L ((mdllf~ 4, f1l)")"

n= - oo

8 C“f”l?(a, 2,q) ‘
according to Theorem 1(b). If g =00 the foregoing argument can be
simplified slightly,
(b) For 0 <p <oc and neZ we have

oo

If*@le=3 [ |f*@.(x)Idu(x)

i=0 GI,J’I

Z (m) "' f * 4, (zln) —f*d, s (2,7,

1= 0

because both f*4, and f+4,., are constant on the sets G, .. Therefore,

”f*gan”p Z (m llmn f f(x)d,u(x)—f*d,, 1 zl n)l

Gyn
Z ()2~ (G f 1f()=S*4,- 1(21.,.)| dp ().

We now observe that each coset of G,_; contains p,, = Jrn,,/m,,~1 cosets of
G,. Thus there are p, different elements z;, such that the cosets z,,+ G,
coincide. Hence,

frols < ZWN”( |

Fin—1+Gpay
[2d] 1 .
1,;0 ( ) (May [ 1SS * dyey @ r)l dul))

) —fwd,_, (Zjn- I dﬂ(x))p

M1 Gin—1

y Y1

m,.|

that is,
”f * (pn“p < C'(mn— 1)— e OSCp (f; n— 1)

The same inequality holds if p = co and its proof is simpier. Consequently, -
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for each g with 0 <g € o we have

=]

1 F e = (3, ()17 % @t ))

="

o

<C( Y ((mu- iy VP osc,(f, -1

n= -~ o0

=C-MO(@—L/p, p, 9 (/).
CorouLary 1. If 1<p,g<o and o >0 then MO(x~1/p, p, q)
= B(x, p, q) and for f belongmg to these spaces we have

I b, p.0 = MO(2—1/p, p, ().

4. Atomic decomposition of the spaces B(x, p, g). A further description
of the homogeneous Besov spaces on G involves an atomic decomposition
for the elements of these spaces. On R" comparable results were obtained by
Bui [3, Theorem 7]; for additional results see the paper by Frazier and
Jawerth [6] who considered both homogeneous and inhomogeneous Besov
spaces on R"

DermniTioN 4. A function a: G =+ C is an (s, o) atom, s€R, if
(i) a is supported on a set z+G, for some zeG and neZ,
@) el < (2 +Gy) " = (m),

(i) [a(ddu(y) =

G

We have the following result.

THEOREM 6. Ler 0 <‘p, < o and aeR. For each feB(x, p, q) there
exist constants A,;, 1€Z, and j€Z, and (—a+1/p, o) atoms ay; with
suppla, ;) = z,;+G;~ such that

f“' Z Z}.l-’al} in .9‘”/(6.

j=—w =0
Moreover,
Wlne:=( 3 (X 144" < Cliflsara:
J=—m =
(b) Ler 0 <p, g<oc and o <0. Let A;, leZ, and jeZ, be constants

suck that [|A)],, < co. For each l1eZ, and jeZ, let a;; be an (—a+1/p, o)
arom supported on z,;+G;. If

f= 2 zlualﬂ

j=—wml=0

then f EB (05: P a and ”f”ﬂ(a,p q) ”Mip 'e
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Proof (a) For each fe%/% we have

f= _Z_ BEXME Z_ Frouxp,(x)
= f [ * @) p(x~ ) dpu(t)
n=—-wG

= 5 T [ Freaenx—0du

n=—ml=08],

0 a0

= 3 Y 7 0ul) palx =2,

n=—wl=0

= Z Z j‘l,n a[,n(x):

n=-—cl=0

where A, = (m,—1f"Y*f + p,(z,,) and a,,
For each a;, we have
(1) Supp (al,n) < Zl,n+ Gn— 1-

(i) e, (O < (myq) 7T,

(i) |a.(x)dp(x) =
1]

Thus a,, is an (—a+1/p, ) atom on G with support in z,,+G,_;.

Moreover, for the 4, we have

oo

e =( 3 (X Ilm

me - =0

ST g (2, )Y

(T @S [ 1S ven@Pdu))"

n=—<w =0z ,+G,
= C IIfHﬂ(lz,p,q)-

This completes the proof of (a).

(b) Let a,; be a (~a+1/p, o) atom with support in z;;+G;. We first
derive an estimate for |la,;*¢,|[, and we distinguish two cases.

(@) If j = n then the function ¢,, which is constant on the cosets of G,, is
constant on the cosets of G, in G. Therefore, for each x €G we have

5% 0n(3) = [0 02 (4= 04U () = C [ a,(0dpu(§) = 0
G1.1
since a, ; is an atom. Consequently, for. all atoms a,; with j >
0 <p< oo we have |la; x|, =0.

= (mn—l)—¢+1/p(mn)_ : Dn (X—ZJ_,,).

n and all p with
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(i) If j <n then
' supp(dx,; *@,) < supp (@, ;}+supp (¢,)
= (2,4 G)+ G,y = 2,;+G;.
Therefore, if 0 <p < o0,
lag s @ully < llay; * @ullo (1 (supp (ay;+ @)™
<

lay ll o l|@ally (=212
< 2(m)~ PP < 2(m) "

Next, if £ =Y2 oY ico;a; We estimate !lfl}m o 88 follows.

(AY f 0 < p<1 then for each neZ,

[|.f (pnll.’f Z E Ml,jlp”al,,*@n”p
j=—wmi=0 j=—wml=0
Thus for each g with 0 <g <w we ‘have
- o RISV,
(5) I lswne =( T (0mdilf 5 oullf)
C( Z (mn)aq( Z (m —ap Z |)~ | )q/p)llq.
n=— oo j= — o
M0 <qg<p so that 0 <g/p<1, we obta_m
) n—1 o
—a TNV
1 Nape < CL Lm0 X ((mp™ [ZO A7)
n=-co j= - =
- n-1 w
=C( X (my* Y (my™™(X W
n=—w j==wm =0
=C( L m)™= T oy )
j= o n=j+1 =0
[- 9] oD
<C( T (T )" = Cllilpe

j=—w =0

n—1 -]
C 3 3 1Al m)~=.
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If p < g < o0, s0 that 1 < g/p < oo, then we can apply Hélder's inequali-

ty to (5) with r = g/p and we obtain

2] n=~1

flswna < C( 3 (md® T (om)™e (m) == 3, 1A1,071)"

n== o j=—m

[oe]

<C( T (m) S Y (m)““"(len A7)

H= = 0 J-—-DO _;——»m
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n—1 o0

SC( Y (mfam,_) " T (m) (Y 1 7))
o]

n= - J=—w I=
-1

<C( 3 o Y (m) (T 1AM < CllL,
Je= 0

"= j= -

by the same argument as was used in case 0 < g < p.
If g =0cc we have

”f“ﬁ(a,p, w) = SUP(mn)a ”f * (pn”p

n—1 w

< Csup(m)*( Y (m)~*r Y Mt.ﬂp)w-

. J= = =0
Now observe that for each sum in this expression we have

r—1 a1

2 (m)7m X AP < sup( ) (A )7) X (my)™®®
=0 i I=0

Jj=-—w J=—w
o
< C(m,) ™ *"sup 3. [4y,".
J =0
Thus we see that

Al 00 < CsUp(m)*(m)~*(sup 3 14,47 = C Al o
" - J I=8

B)If 1 <p <o, we have for each neZ, xeG and each t© with
D<t<l,

-1
lf*(!’n(x)i & Z Z M!,jlIai,j*QD,,(x)FHl_')
j=-ewI=0
-1 o w .
< X (T (ullons» 0, ) (3 o v (21707
j=-wm I= =

Also, if j<n then supp(a;; * @,) < z,;+G;. Thus the functions in the last
Sum.a]l have different and disjoint supports, so that for each x €G this sum
consists of {(at most) one nonzero term, Hence,

n=1

If el <C } (i(liul |a j* (p,,(x)|')p)”p(mj)(‘°‘+lfp)(i—r)‘
J I=e

= -G

Thus we .see that

r-1 @ ‘
If *@all, <C T Am) =295 10, lla» 0,7) .
J=—w

=0
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Again, since the functions in the last sum have disjoint supperts we obtain

S Vo lan o)y = (I 3 1P lay; + 0,0 du ()"
=9

|
Gi=0

= (3 W f? [lay; * @u(xPdu(x))'"
=0 G

o
é C( Z H‘l,jlp(mj)‘—"(' lfp)zp(mj)_. 1)1“,
=0 . .

o
— C(m,)"” ip— 11’1’( Z Hl,jlp)”p-
=0
Consequently,

n—1 oo ‘
- - - - 1/p
If @l <C 3, (mpl-2r 1P (myf=er inem i (3 |4, 1#)
FE- =0

' a1 3
=C X (mj)ﬂ(,z A A7)
=0

j=-w®

From this we sec immediately that for 0 <g <co and x <0,

bl n—1 o
b0 < € T (mf* X (MJ)_"(ZO g 7))
. =

n=—w i=—=
—e( 5 tmye(E 3 ) < Clilng
j=-m =0 =+

For ¢ =0 the foregoing proof can be simplified somewhat.

O If p=cw, 0<g<ow and z<0 we can still show that
£, gy S CHAllis,q- The proof is simpler than for the cases considered in (A)
and in (B), and wili be omitted. ) Cee s

Remark. 1. In [6] Frazier and Jawerth defined their -atoms to be-func-
tions on R" whose partial derivatives up to a certain order, depending on o,
satisfy certain growth restrictions. Using such atoms they proved a result for the
spaces B;’,q(R"), like our Theorem 6(b), for all x €R. It would be interesting to
obtain a more general condition than condition (ii) in Definition 4 for atoms
on G so that we could extend Theorem 6{(b) te all weR.

5. The regularization of Besov spaces and the spaces A (x, p, ). In [17]
Taibleson gave convincing reasons for his claim that the functions 4,(x),
called R(x, —n) in [17], on a local fieild K play the same réle there as the
Poisson kernels P(x, y) de on R%'!, That is, if for a given fe¥"(G) we
define F: K xZ = C by F(x, n) = f »4,(x), then the function F plays the
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r6le of a harmonic function on K x Z. F is called the regularization of f and
F is an example of a regular function on K x Z. Here a regular function is
defined to be a function u on K xZ so that (i) for each keZ the function
U (x) 1= u(x, k) is constant on the cosets of G, in G, and (ii) #;(x) = u, %u;(x)
for all xeG and k, /€Z such that k < . In [17, Lemma 1] (see also [19, Ch.
IV, Lemma (1.5))) Taibleson proved that every regular function u(x, k) is the
regularization of some distribution f € % (K) and that fis the boundary value
of u, in the sense that Hm,.,.u(x, k)= fin *(K). Moreover, u is the
regularization of its boundary value f. Clearly, we can replace K by G in the
foregoing without any difficulty.

In this section we study the regularization of distributions F belonging
to certain Besov spaces on G. We now give a definition.

DeriniTioN 5. Let 0 <p, g < o0 and aeR. For a measurable function

u: GxZ —C we set
[« <)

. — ‘
lelaspg = ( 3, (Cm) ™l (-, 1)),
n=— o
with the usual modification if ¢ = oo, and we define A(x, p, g) to be the
space of all regular functions ¥ on G xZ for which [l g < cC.

Remark 2. Since the spaces A4(x, p, g) are, in fact, mixed norm spaces
the usual inclusion relations hold. Specifically, if 0 < P1 £ py €00,
0<g<q, <ooand a+1/p=a;+1/p, then A(x, p, 9) = Afxy, p1, 41), With
continuous embedding. '

As we shall see, the spaces A(x, p, 4) play an important réle in the study
of the regularization of the elements of Besq spaces. We fitst prove a
representation theorem for the functions in 4 (%, p, Q).

TuroreM 7. Let 0 <p, g < oo and a > ~1fp. If ueA(x, p, q) then u can
be represented as
k

u(x! k): Z u(': j)*fPJ(x):

j=—w
with the sum converging absolutely for each x cG.
Proof. We have

k k

Ai= 3 lyrpl< ¥ (.l'lu(zaj)@;(x—Z)ldM(Z)-

=—w j:-—w

k .
y ¥ (g‘ a2, )P () (] |y (x— 2P dpaz) 7
J=—w . G .
k

< X Ul 14,

Jj=— e

(@ X 1 <p<oo we can apply Holder’s inequality and we obtain
<

A

Besov spaces on Vilenkin groups 33

Since ued{x, p, g we have for each jeZ, (m}-}”'“’ lfudly < (|l p,q- Thus

k
A s Cuu”rz,p,q E (mj)r'.“p < O,

==

by inequality (3), which can be applied since «+1/p > 0.

(b) If 0 <p <1 then )
A< Y gl fiolo-

j=—w

Since u; is constant on the cosets of G; we have

el = [lulz, Dl dulz) = tZﬂ(mj "z D
G =
< (i (mp = u (z[‘j:j)lp)”p
=o

o (m) Y ) bz DY
=0
= (m)e= ([ lu(z, e du(2)""”.
G

Hence, if 0 <p <1 then

k k
B 41
A<C Y m)Pllufl, < Cllullyp, X (m)**'* <oo.

j==w Jj=-m .
Thus the series Z’;=_mu(-, JD*0;(x) converges absolutely and it obviously
converges to u(x, k).

Cororiary 2. Let 0 <p,g<0and a > —1/p. f ucAfa, p, q) then there
exist constants Aj; with 1eZ, and jeZ, so that u can be represented as

k -]
uix, k) = Z Z (mj}g—l+”pl'l,jq’j(x_'zl,j)'
J=—mi=0
Moreover, ||Al), . < Cllufls, p,q-
Proof According to Theorem 7 we have

wk= T 3 [ 4 )ote—2dut)

j=-mI=06y;
k k) L )
= X Z(mf)a—ﬂ /p’.{'l,jgpj(x—zl,j):
j=—wi=0

where 4,; = (m)~*" YPu(z,;, j). An easy computation shows that

e =( T (m)~luly))™ < llla e

jm—w

3 — Studia Mathematica 93.1
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We now sfatc a converse to this corollary. Its proof will be omitted,
because it is virtually the same as the proof of Theorem 6(b).

THEOREM 8. Let 0 <p, g < oo and a > 0. If A;; satisfies |||, < oo and
if u: Gx2Z —C is defined by

u(x, k) = Z Z(m)“ YRR D0y (x2, ),

j==wl=0

then the series defining u(x, k) converges absolutely for every xeG and
uniformly or each set

Erg:=1(x, k); xeG and —c0 <k <k}, kieZ.

Moreover, ully,pq < CllAlLq-

Remark 3. Corollary 2 and Theorem 8 are the amalogue on G of
Theorem (1.10) in [12] or Proposition 4 in [3].

"~ We now turn to the. final results of this paper which, in fact, are its
raison d'étre, namely, a description of the regularization of the elements of a
Besov space Bz, p, g).

THEOREM 9. Let 0 <p, g < o and o >0

{a) If feB(—ua, p, q) then its regularization F belongs to A(x, p, q) and
”FHm,p,q g- C”f”ﬁ(~m,p,q)‘

(b) If FeA(oc, p,q) then for each keZ, F,eB(—«,p, q and
1Fllsc~a, ) S ClIFlls,pg- Moreover, if f denotes the boundary value of F, i.e., if
f=lmF, in &(G), then f €B(—2, p, ) and ||flla-s,pa < ClIFlls pg-

Proof. (a) If feB(~a, p, q) then, according to Theorem 6(a), there .

exist constants J;; such that JA),, < C|f |lB(~2nq and there exist
(+1/p, o) atoms a;; with supp(a,;) <z,;+G;-, such that

o a
22 Ay
J=-—wlil=0

Also (compare the proof of Theorem 6(a), replacmg o, by 4, thcre) for sach
neZ we have -

”a[J*A,,”P—O ifj> n,
a4, < Clm)™ i j<n

An argument like in the proof of Theorem 6(b) then shows that for all p, ¢
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with 0 < p, g < o we have

o

(T (IS « A0 < Clillg-

n=— o

Thus we may conclude that

”FHﬂ,p,q s- C”f”ﬂ(—u',p,g)'
(b) Let F, = F(:, k) = f +A,. For neZ with n > k we have Fyx @, =0,
whereas F,x @, = F,—F,_ = f o, if n < k. Therefore,

o
WFlliang =( 2 (m) = IFe* @.,))"

n= = o

k

=( 3 (I *eull)) "

ne= - 0

Using the representation for the functions F, given in Corollary 2, a proof
like that for Theorem 6(b) shows that for each keZ,
NFllg(-a,p9 < ClIFlla,p,q- Therefore,

1 gwapg =( T (Mm% f * @)™ < CllFllucpgs

which completes the proof of Theorem 9.
We can reformulate Theorem 9 as follows.
CoroLLARY 3. Let O <p,q< o and a>0. For any distribution
fe&(G) we have - _ _
e =( 3 (m)7*IF <l )™

~ _f ()™ =111 = 41",

Tt is easy to see, by means of an example, that Theorem 9(a) dees not
extend to o < 0. Namely, if we take f = 4, then

a0

Mallc-epg=( ()"0 @il))

=—w

=( zﬂ; (tm) ™= el Y1)

k==

0
<SC( T (m)=rimumyt <oo,

k=—

in case —a+1—1/p >0 and g > 0. Also, if F denotes the regularization of
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A4, then

o

”F“a,p,q = ( Z ((mk)—a ”AD * Ak[ip)q)”q

k=—.m
o w
= ( Z ((mk)_u”‘dk“ ) Zl((mk n:”AOHP)'J)I,'q
k=~ @ =
0 4]
=( 2 () ety Y (mk)—a:q)lfq
k= — k=1

and the last series diverges when e €0 and ¢> 0. Thus if 0 <p< 0, ¢> 0
and o <min(0, 1—1/p) then d,eB(—a, p, g) and F¢A(a, p, q).

If 1 < p, ¢ < oo then Theorem 9(b) can be extended to values of & with
a> —1/p in the sense that in this case the boundary value of a given
FeA(a, p, q) can be identified as a bounded linear functional on the mean

oscillation space MO (a—1/p’, p, ). We first present a simple lemma,

LevMa L Tet O <p,g< 0 and o > —1. For each keZ rhefunérion 4,
belongs to MO (a, p, 9) and MO (x; p, ) (4 € C(my** .

Proof. We first estimate osc,;{d;, n) for neZ. If n <
we have

k then G,c « G, and

(Ak)Gg," =My .r Ak(t) d},L(t) = Wy,

Gy
whereas for | > 1 we have
ddey, =m | AH@du)=0
. zl.n+ G,

A simple computaticn shows that osc,{4;, n) < .M n>k and if 2,
-+G, < G, then (A;c)a, = m,, whereas if (z, TG nGk O we have (4 )Gz .
= (. Thus we see immediately that osc,(d, n) = 0. Therefore, -

k

MO, p, (4 =( Y, ((m) osc,(dy, n))™

x
<2( Y m) g < Compt

=~
because {a-+1)g > 0.

‘THEOREM 10, Let 1
each keZ define

Spgswanda>—1/pand let Fed(x, p, q). For

A MO(@—1/p, p',q) = C
by Ax(g) = {Fy, 9). Then A, is a continuous linear functional on MO (x

icm
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—1p, p., 4 and
IAk (g)i =C ”F”a,p,q MO (05“— 1/P’, P', q’) (g)

Moreover, if we define A(g) = lim, _ A, (9), then A eMO (x~1/p, p', ¢y and

[A{g)| € C|Flls,p, MO(@—1/p, P, 4} (g).

In addition, we have F(x, n) = A(t.4,) for (x, W eG x Z.

Proof, According to Corollary 2, each F; can be represented as

k oo
Fe(x) = Z Z Az,j(mj)a_llp’ (Pj(x—zl.j):

j=—wi=0

where 4,; satisfies [{A]l,, < C||F]l, ;4 Thus, for each geMO (x—1/p, 7', 4
we have : .

k 2]

Aol =] X Z Ary (mpy= prj(x z,)g (x) dp ()]
i)

=—e =0

EZMI

]—7— oo |=

) i1 JfP;*g(ZzJ)[

Since | < p, g < o0, Hilder’s inequality implies that

|Ak(g)|<uz||,,q( Z (my)©~ ”P’”(Z Kep; * )z 7Y 7).

j=—a
We now derive an inequality for the inner sum. For each ! > 0 we have
lo; *g (2,0l =1(4;+g) (z,) ~(d;=1 xg) (21
<my | lg0—(ds-1 * Mz )l dp()

zg’j*‘(?j
S. ij-l j‘

z;,j+Gf— 1

lgy—{A;_ 1 % g) (2, )l dp(t).
Therefore

(Z (o0 )™

ms I8 @=A)-sea) (i) )"

=0 z[J+G

"~ Now we observe that each coset of Gj, 1 contains precisely .my/m,.., different
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cosets of G;; hence

(3 I(0;%6) 2 )"
=0

< C( e i (mj—‘l }

Mi—1 s=0 25,5-116Gj-1

N\
lg (&) —(d;— %)z ;- 1) dﬂ(f))P )

< C(mymy..) "7 osc, (g, j—1).

Consequentliy,
k I3 ’
M) < CllAlg( X ((m)(my- 1)~ 4% 0sc, (g, j~ 1))
f=—m

< C|Flle,p.e MO —1/p', P, 4)(9)-

Clearly, with A as defined in the theorem, A satisfies the inequality stated
there. Finally, according to Lemma 1, each 4, belongs to MO (z— 1/p', p', q)
and a straightforward computation shows that

A, A) = im A, (z. 4,) = F(x, 1)
k—oc

for every. (x, M eG x Z, which completes the proof of Theorem 10.

Remark 4. In view of the identification of the mean oscillation spaces
with certain B-spaces, as given in Corollary 1, and the duality theorem for B-
spaces, as given in Theorem 2, Theorem 10, when restricied to o > 0 and
1. p, ¢ < o0, agrees with Theorem 9(b).
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