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, Abstract. For antomorphisms arising from substitutions of constant length all factors are
described. o

Introduction. Let T: (X, #4, ) o be an ergodic automorphism of a
Lebesgue space. Then an automorphism t: (Y, %, v) & is called a factor of T
whenever there exists a measure-preserving f: (X, #, w) —(Y, %, v} such that
1f = fT. It is a general problem in ergodic theory to determine all factors (up
to measure-theoretic isomorphism) for a given T.

In the present paper we deal with this problem for the class of
substitutions of constant length [1], [37], [8]. From the ergodic theory point
of view the automorphisms generated by substitutions are finite extensions of
automorphisms with rational pure point spectra, i.e. X = X'xZ,, p=p' xv,
va()=1/m), T=T;,, where y: X —S8(m is measurable and
T (X', #, W} > has (rational) pure point spectrum, T'(x/, i) = T;{x’, i)
= (T"(x),  (x') (i)). Therefore T* is a factor of 7 This factor has discrete
spectrum. An interesting question is whether there are other factors but with
partly continuous spectrum. In 1972 Kamae [3] introduced an algorithm to

_produce some new substitutions starting with a fixed one. It turns out that

his procedure yields some nontrivial factors. The point is that, in fact, it gives
all factors with partly continuous spectrum (Theorem 8).

It is well known that to determine all factors (up to m.t. isomorphism) it
is enough to compute all Tinvariant sub-o-algebras % < #. However, it is
then possible that for some different %, %’ < 4 the corresponding factors T
(X, %, ) o and T: (X, ', ) & are isomorphic. If this is not the. case we
say that all factors are canonical [6]. We prove that the number of € < 4

inducing factors with partly continuous spectrum is finite.

Preliminaries. Let 4 = (X, 4, p, T), where T 'is an automorphism of
the Lebesgue space (X, #,u), be an ergodic dynamical system. If %
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= (Y, ¢, v, S) is another dynamical system then we call ¥ a factor of & if
there is a measure-preserving map ¢ from X onto Ysatisfying T = Se. If &
is a factor of & then there exists a Lebesgue space (Z, #, «) such that % is
isomorphic to the system (YxZ, ¥®%F, v xa, T) with T defined by

Ty, 2 =S, (),

where {T,},.y is a measurable familly of automorphisms of Z (see [6]). In
what follows we will write T instead of 1. Moreover, if no confusion can
arise we will omit 4, u and write. # = (X, T).

Denote by L*(#) the Hilbert space of complex-valued square integrable
functions on X with inner product (f, g) = [fgdu. We define Uy: L*()
~ I2(2) by the formula Ur(f)= foT Then Uy is a unitary operator on
I*{«). Denote by §,(T) the discrete part of the spectrum of Uy. We will say
“spectrum of T instead of “spectrum of U;” and “discrete part of the
specirum of T instead of “discrete part of the spectrum of U;”, If the set of
all eigenfunctions of T is linear dense in I?(:) then we call & (or T) a
system with discrete spectrum, or a system with pure point spectrum, If
S(T)# {1} and T is not with discrete spectrum then T is said to be a
system with partly continuous specrrum. ’

Dermvrion 1 ([6]). A factor % of an ergodic dynamical system ¥ is
said to be canonical if any two homomorphisms ¢, ¥: 4 — % satisfy

@™ o) = ¥ (e),

where &y denotes the point partition of Y.
A canonical system is a dynamical system % such that for any ergodic
system %, if % is a factor of & then % is a canonical factor of 4.

Lemuma 2 ([6], [4]). An ergodic dynamical system % is a canonical
system if and only if % has discrete spectrum.

DeFinrmion 3. If & =(D, %, v, 1) is a factor with discrete spectrum of
an ergodic dynamical system #° via a homomorphism ¢, and a natural

number ¢ satisfies ‘
c=cardp '(d) for ae. deD
then # is called a c-extension of . |
Lemma 4 ([7)). If & is an ergodic dynamical system and % is a c-

extension of its maximal factor with discrete specrrum then the maximgl
sequence entropy of & is equal to log{c). =

Lemma 5. Let & = (X, T) be an ergodic c-extension of its maximal Jactor
@ =(D, ) with discrete spectrum. If % = (Y, §) is a factor of X' then:
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(i) % is a b-extension of its maximal fuctor with discrete spectrum and
bge

(i) There exists a factor %, of & such that &y is a b-extension of ¥ and
W is a factor of ¥y.

Proef. Assertion {i) is an immediate consequence of Lemma 4. To
prove (i) Jet us assume that X =DxZ, Y =ExV and T4, z)
=(x(d), T;(2), S(e, v} = (y{e), S.(v}), where (E, y) is a maximal factor of %
with discrete spectrum.

Define a T-invariant partition ¢ on X by the formula

&= (my xvy) v 07 ey),
where @ is & homomorphism from X ounto Y. Let X, = X|., To = Tl;, %
= (X, To). Obviously, %, is a factor of ¥, # is a factor of 4, and &, is a
cy-extension of @ for some ¢, € ¢. By Lemma 4
(1) Co = b.

On the other hand, the partitions ep xv, and @~ !(g; % vy) satisfy

&p Xy > 07 (gp X ¥y).
It follows that for each deD there exists ecE such that {d} xZ ¢
o~ ({e} x V). Thus

Wl xZ = (d xZ)ne (el x V= |J ((1d] xZ)n o~ (e, 1)).
veV

This implies that almost each atom of the partition g, xv; consists of at
most card ¥V =5 atoms of the partition ¢é. Hence c; < b. In view of (1),
Cn = b ]

Lemma 6. If (X, T) is an ergodic dynamical system with partly continuous
spectrum and X o is an ergodic component of T" where h is a natural number,
then (Xo, TH) is a system with partly continuous spectrum.

Proof. Denote by ¢ the Tinvariant partition of (X, T) corresponding
to its, maximal factor with discrete spectrum and by ¢, the T™invariant
partition of (X,, T" corresponding lo ils maximal factor with discrete
spectrum, We intend to prove that ¢y, > ;.

It f;, is an eigenfunction of U} LAE T cor‘1‘esp911<i.ing to the elgenvalue
Ao, then we can extend fy, Lo an eigenfunction f of Uy in the following way:
Pllt A’h == 20. If

X=XquTXou. . uT X, TXenTXe=0,1%],
where g divides h, then we define

f) =20, (T if xeT X,
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Then for xeT* X,
AT =2 (T 1T} = A2, (T %) = Af ().
Hence f = f; is an eigenfunction of T and fily, = f,-
~ This implies that each eigenfunction of Uy is constant on atoms
of &lyy 50 Clxy > &o ) )
Obviously, &|x, # &y, Therefore &, # ey, and (X,, T%) has partly conti-
nuous spectrum. @

12X, Th

Now, we define the notion of dynamical system arising from a substitu-
tion of constant length.

Let 7 be a natural number. The set {0, 1, ..., r—1} will be denoted by
N,. Put N} =), N;. The elements of N} are called blocks. If BeN*, B
=(boby...b,-y), then B[s, t]=(b;...b), B[s,s]=B[s], 0<s <t <n—1,
and the number |B| = n is called the length of B. Similarly we define x[s, 1]
for xeNZ. ' '

In the sequel we will use the metric d on N7, n > 1, defined by

d(B, C) =card {0 £t < n—1: B[t] # C[t]}/n for B, CeNy.

We assume that the reader is acquainted with [1]. In this paper we only
recall some facts connected with this subject.

Let A be a natural number, A > 2, and let 6: N, — N} There is a natural
extension of 6 to a map from N7 into N** and also to a map from NZ into
itself (denoted by @ as well) given by

8(B) = 0(bg) 0(by)...0(b,—y) if B =(bo...b, ,)EN",
0() =...005-1)6(b))8(by)... if x=...b_ byb,...cNZ

where in the latter case by convention the (th symbol of #(x) coincides with
the initial symbol of 0(b,). Then 6 denotes the k-fold composition of 4,

Assume that §: N, »N} is a one-to-one map. If there exists a natural
number m such that for any i, jeN, and for some 0 < & < A"—1 the equality
6™ (i) [s] = j holds, then @ is called a substitution of constant length 4 on r
symbols.

For such a substitution there exist i and j in N, such that for some ¢ the
first symbol of & (j) is j and thelast symbol of & (i) is i (such symbols are said
to be the cyclic first symbol and the cyclic last symbol respectively).

Let x5 eNZ be defined by the formula

g [—AM A1) = 0", n=1,2, ..

Then x, is a fixed point of ¢, If we replace ¢ by 0 and A by 4 then the
number t in the definition of the cyclic first symbol and the cyclic last
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symbol is equal to I, the definition of x, is
Xo[—A% A"—1] = 0"(if), n=1,2,

and x, is a fixed point of 6,

Let T be the shift on NZ ie. T is defined by T(x) =y, where y[n]
=x[n+1], neZ. o _

Denote by X (0) = {T"(x,): neZ| the closure in NZ of the orbit of x,
via. 70 Then (see [I} (X(®, T) is a uniquely ergodic dynamical system
equipped with a unique Tinvariant probability measure p. Let Z(0)
=(X(0), u, T) and §,(6) = §,(T). Dekking [2] has shown that S,(6)
= lexp (2mik/(hA")): keZ, neN|, where h is a natural number called the
height of 0 and h < r, g.cd. (h, 1) = | (Queffelec [8] has shown that h divides
A=1). If A =1 then the substitution 0 is called pure. In this case 6 is a c-
extension of the system 2 (1) =(Z (%), v,7)(Z(4) denotes the topological
group of A-adic numbers, v is the Haar measure and t denotes the
homeomorphism of Z (A} corresponding to the addition of the unit element)
for some. natural number c (see [2]). We call ¢ = c(0) the column number of 6.

If 2> 1 then #(f) is isomorphic to

ey

(2) (Zh X X(f']), J)s
where &, = Z/hZ, n is a pure substitution of length 4 and

g+1,xy ifg=0,1,..., h—2,
olyg, x) =

@ 0,7 . ifg=h—1.

(We will use the symbol T to denote the shift transformation on X (n) for
any substitution #.) 4

The substitution # is said to be the pure base of 6. .

There are algorithms to calculate the height and column -num_ber‘ of @
(see [2]). Another definition of the' column number of a pure substitution &
of length A on » symbols is :

(4 c(f) =min  min card {(Q)[+], &"(1)[T, ..., " — D) L]},
Nl gagrgan- | .
By the column number of any substitution we mean the column number

of its pure base. : _ o .
I 1 is a natural number then eache block 8" (i), where ieN,, is said to be

an n-symbol. '
It is an easy consequence of the definition of X (6) that each x e X (9) is,

for any natural number n, an infinite concatenation of n-symbols, i.e.
(5) ‘ x = o 00 ) 0" (i0) 07 G
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Kamae [3] has shown that X (6} is, for any n, the disjoint union of the
sets X% = T*(¢"(X(0)), k=0, 1, ..., A"—1. This implies that the representa-
tion (5) is unique.

If x, yeX(6) then we say that x and y have the same structure of n-
symbols if there is 0 < k < 2"—1 such that x, ye X% (see Fig, 1).

0

9””.1] 1r

., .
. r # hul-_lr LTA 1
L AL L ]

cee 0T W o 6T
L s Jo 1

Fig. 1

We will deal with substitutions with partly continuous spectrum. It has
been proved in [5] that if ¢ is such a substitution then for i, jeN,, i # ],
there 15 a natural number § > 0 such that for all n >0

(6) (6", 6" () = 8.

The factors, Assume that 6 is a substitution of length A on r symbols.
The construction below (used by Kamae [3] to calculate the height of a
substitution) gives a factor # of #(6) such that either
S.(F) > {exp(2nik/i”): keZ, neN), or

n

S.(#) < lexp(2rik/h): keZ),
where h is the height of 6.

Drrinrion 7 ([3]). An equivalence relation ~ on N, is said to be 6-
consistent if i~ j implies 8()[¢] ~0(ji[t], t =0,1, ..., A—1L.

Let ~ be a f-consistent relation on N,. Assume that ©: N, = N,/~ is a
bijection. Then the substitution & on N, defined by

(7) Oy =" (i)

has length A and (@) is a factor of #'(6). If the height of 8 is 1 and s> 1
then S,(6) = S,(8). We can find examples such that #'() has partly conti-
nuous spectrum as well as ones with pure point spectrum. If & > 1 then there
is a relation ~ such that #'(f) is a rotation on Z, (3]

The factors of #(f) having pure point spectrum are well known: each of
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them i$ isomorphic to some rotation on the character group (Sp(.ﬁifj)‘ of
S (#), ie.
*

{8) Fxy (p) x ﬁ‘pms

where pg = 4 lor some ¢ and m divides 4 h for some r.

-

Turorim 8. Assume that 0 is a substitution of constant length A and the
height of 0 is equal to h, Then the only fuctors of 4(0) are either substitutions
defined by (1) or fuctors with pure point specirum of the form (8).

In order to prove Theorem 8 we will need some lurther facts. First we
describe (see [2]) a construction of the pure base of a substitution & of height
h>1. ‘

Let x, be a fixed point of 0. Set M = !BeN": there is an integer n such
that B = x,[nh, (n+ 1) h—17].

Assume that 2 N, — M is a bijection. We define the substitution 7 on
N, putling

n(j) =y oy (),
e i 4 (j)=ji...J, then

Y = O ) = Ry kg R Y L TR RISy,

= Ry kT e Kag) T R r  K)

Then 7 is the pure base of 6.
The elements of M satisfy ([2]):

9 If B,CeM and B[u] = C[4] then u =v.

It follows from (9) that each sequence x from X (0) is a unique concatenation
of blocks from M.

We say that x and y have the same structure of M-blocks if there is
0t <h~1 such that x[nrh-+1, (n+1)h+t—11eM and y[rh+t, (n+1)h
+t=1]aM for any neZ,

Il we denole by ¢ the partition of X () corresponding to the (canonical)
factor 7 (A) then almost each atom of ¢ consists of ¢h points, where h is Lhe
height of @ Take P&, Then

(104 card P[] = ch
(P[0] denotes the set ix;[0],..., x,,[0]!, where P = {Xl_, vovy X)) . Indeed,
(10) easily follows from (9) and [2]. Set
o/ = [A < N,icard A = ch and there is Pe¢ such that
A= P[0] and p{P: P[0] = A} = pu(4) > 0}.
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DerintTioN 9. A pair (I, HeN, x N, is called essential if there exists a set
A e/ containing i and j.

Lemma 10. (a) If Pe¢ then O(P) el
(b) A pair (i, j) is essential if and only if for any n2> 1 and any 0 < k< A"
1, (8"(y [k, 8"(j)[K]) is an essential pair.

Proof. (a) Take Pef, P= 1x1,...,xc,,, Then x,,..., x,; have the
same structure of n-symbols for each »n = 1, and so do 8(x,), ..., 8(x,). Since
¢ is one-to-one, card (P} = ch. Thus G(P)ch

(b) Suppose (i, j) is an essential pair. Then there are x, y € P such that
x[0] =i, y[0]=j. By (a), 6(x),0(y)ePel and 0()[k] = T*(6(x)[0]),
B (}[k] = T*(6 (» [0]). The proof of the “if” part is similar.

LeMmma 11, The right~hand side of (4) is equal to ch.

Proof. It follows from (9) that each 6"(i), neN, ieN,, is a unique
concatenation of the form '

0" = Bo By ... B, [t, A"—t—1],
where By, By, ..., B,eM and t =t(n, i) depends on n and i, 0 St < h—1.
Set ‘
S =1{ieN,: t(n, i) =t}.
The sets (Sni-d are pairwise disjoint and satisfy SpusSiu... S =N,
for each ».

It is caéy to calculate that for a pure substltutzon % on N,
(11) lim card 0gp<g -1 cardr; (N)[pl=c(mi/ir=1.

This implies o
c=min min card 8 (S)[p] for each :.
BLEE N EFESLEY
By virtue of (9)
min min card 8"(N)[p] =ch n

"2l pgan—y

LEMMA 12. There exists w > 0 such that for any two distinct symf;ols i
and j from N, and for n large enough

 card [0<r<A"=1: (0"@[r], ")) is an essential pair} = wA",
_Proof Let

b=max{f,: f,<1, p#4q,p,qeN,}, where
Bog = klim (8" (p), *(9)).
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Let w = f/4, where f satisfies (6) for all i3] Take {#j. Assume that
( (i), 8"(N)) —=p; >0 Let §>0, 5 <(1-b) )B/2. If n is large enough then
(12) By < d(0"(), 8" () < Bii+4.
Set
0" (i) = i, vk G =

y (12), there are indices s, ...

. 8y, where B, A" < u < (f;;4+6) A", such that
by # e M =1, ...

»U, and i, =j, for pélsy, ..., s,). Let

ty = lim d (0%, ), 6% (js ).

ka0

Then

ﬁij Z Oy S ﬂu“"‘ gy A"

Assume that g, =. . =g, =1,
= AKX {Gyy i, ...s G, . We have

By <v+u—va=v(l-a)+ua, ie v(l—

ey <1, Gue, <1,...,a,<1. Let a

a) = ﬁ,-jﬂ.“—*ua.
Therefore

ﬁu —Uud ﬁ:jj' -~ (B, +8) A"
1-a 1—a

= &"(ﬁ,j—ﬁ”a~—5a)/(1—a)
= B A" A" Saf(1—a) = fi,; A"/2.

Since f <2 <b and § < f(1 —b)/2 we have
vz fAY2 = 2win,
By (11), at least v/2 indices ¢ among s, ...
card 0"(N,) [t = ch.
Take Peé such that P < X!, Then P[0] = 6"(N,) [t]. Therefore
0", ') =l ji} = PLO]
and (i, j,) is an essential pair.
Since v > ZWA" v/2 = win
Lemma 13, There is an integer N such that for a.e, Pef
{PLO], P[1, ..., PIN=1]} =

, §, satisfy
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Proof. Set
o/ = [A < N,: card A = ch and there are neN and t, 0t < 2" ~1,
such that A4 = §"(N)[t]}.
Since .7 is a finite set, there is n such that

A = {4 =N, card4d =ch and there is ¢, 0 <t € A"—1,

such that 4 = 0"(N,){t]}.

Take Peé, Aesf. Since u(d) >0 and (11) holds, we can assume that
AG,(Z ]

The proposition below gives the first part of Theorem 8.

Prorosirion 14, If @ is a substitution of constant length A on r symbols

and F is a factor of A(0) with partly continuous spectrum and S, (.F)

]exp{?,mk/.l”) keZ, neN| then F is isomorphic to ¥ (6) for some subsn-
tution 8 given by (7).

Proof Denote by ¢ and h the column number and height of ¢
respectively. Then S (F) = fexp(Zrcik/(gl”}) keZ, neN}, where g divides h.
In other words, the maximal factor ¢ of # with dlscrete spectrum is
isomorphic to % (1) x%,. By Lemma 5, # is a h-extension of ¢ and 1
<b<c Since ¥ is canomcal & is a bg-extension of #(1). Therefore there
exist a Lebesgue space V of cardinality bg and a family
automorphisms of Vsuch that F = Z () xVand S(d, v) = (t{d). S:(»)). Mo-
reover, the partition |Z(J) x {v} ],y is generating for S. Hence for any o > 0
there is a finite code ¢, of length 2m;-+1 approximating ¢, ie.

¢y [
Sqlaezzy of

o erm5+1 "")V;
(13) Ps

kﬁjn d(@s () [—k, k], 0 (x)[—k, k) <& for ae xeX(0).

Since for each natural n, X (8) = X (68" we can assume the following:

(14)  The number N from Lemma 13 is less than A

(15)  For any x X () the sector x[0, A—17 contains each element of N,
and some pairs ij and if, j # j.

(16)  For each ieN, the initial symbol of 0() is a cyclic first symbol,

Take ¢>0, & <1/(24%). Put & = ¢/(44?).

Let @; be a finite code
satisfying (13).

icm
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First, we establish the following: If (i, j) is an essential pair then either
(17) d {5 (0(), ps(0"(D) <& or
d (@5 (8", 5(0" () > 1~

for n large enough.

Take Pecl. In other words, P is a set of cardinality ch of elements from
X (0) baving the same structure of n-symbols for each n. Let x, y€P. Then
for some a, b 2 0 {a, b depend on a)

X[—a, bl = "1 (k) = 0°(k,)..
y=a, ] =0l = ().

1€

L% (k).
(L),

and for each 1, Ay (k;, 1) 18 an essential pair. Assume that n satisfies

my < 64" and

((Pa )E k k—

; /1"-2_
@(¥). Then

dps () [~a, b1, es(W[—a, b)) < d{ps () [—a, b], (x)[—a, b])
+d(p()[~a, b], @) [—a, b])+d(e[—a, b], ps(N[—a, b))
<26+20 =45,

1, o) [k, k—1]) <&

for any zeP and k
1. Suppose @(x} =

This implies that
d(@s(07 (k). 05 (07(L))) < 484 <,
2. If ¢(x) # @(y) then '
I=d{p()[a, b], o) [~a, b)) S d(@()[—a. b], @s(x)[—a, b])
+d(@s(x)[~a, b], o;()[~a, b])+d(0s(0) [—a, b], oM [—a. b]).

t=1,..., A

Hence _
d{ps(x)[~a. b, @s()[—a, b]) > 144,
d{is (")), @:(0"UN) > 1=a, 1 =1,..., A.
It follows from (14) that (17) holds.
We look al Fig. 2 and suppose that
(18) (i) is an essential pait and d{p,(0"()), @5(0"()) <&
The block 6"** (i) starts with the block B"(r) where i’ is a cyclic first symbol

(by (16)), hence 6"(i) starts with 8"~ (i'}, Obviously, 6" (z’} starts with 8"~ 1 (i").
The same holds for j. By (18),
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(s (B™ 1 (@), @s(8" 1)) < e

Thus

d(%(gnﬂ(i))’ (pa(gn+1(j))) <(ln+1m(ln—1_lns))/ln+1

=1—(1/—efl) <1—1/A* <1—-2 <1-¢. |

By virtue of (17), d(p(6""* (), ;(6"**()) <& We have obtained
(19) If {18) holds for » then it holds for n+1.
Similarly we can show the opposite implication. ‘This forces
(20) e =00 f @(0x)=0e@0).

Let ~ be the smallest equivalence relation on N, including the relation
R defined as follows:

(21) iRj iff the condition (18) holds.
We will show the following:
{22) The relation ~ is #-consistent.

Assume that i ~j. Then there are symbols k%, ..., k%, s <r, such that
iRk', k* RK?, ..., K*Rj. Set

06) =iy ...is,
B(kP) = ki ... k%,
We have to show that for any 1 <z <4, i, ~ji. Indeed, by (19), k? Rk/*1,

i, Rk}, ki Rj,. Therefore i, ~j, for t =1,...,4 and ~ is O-consistent.
Observe that X (f) is an infinite set, ie.

(23)  Z() is a factor of Z'(H.

Indeed, otherwise #'(f) = Zyps where h, divides h, and any two points
x, y€X(6) which have the same structure of M-blocks satisfy x ~ y. Take
P e, Since the number b is greater than 1, there are x, yeP such that x, y
have the same structure of M-blocks and ¢(x) # (). By (20),
@ (0"(x) # @(60"(). Thus x £y, a contradiction.

B =71
r=1,...,s.
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To finish the proof of our proposition we will show that ZB) is
isomorphic to .#. Actually we will prove a somewhat stronger fact, namely

(24 If x, veX (B then x ~y iff @(x)= @y,

where x ~ y iff x[n] ~ y[n] for each neZ.

Assume that @(x) == @(y). Then, by the assumption of the proposition,
x and y have the same structure of n-symbols for all natural n. Take n
for which (18) holds. Then x and y belong to X“ for some a. Hence
0 (T(x)) ~ 0"(T™*(1). By (22), T™*x~ T "y and x ~ y.

Now, assume that x ~ y. By (22), 0"(x) ~ 0"(¥). It follows from (23} that
x and y have, for all n, the same structure of n-symbols, Therefore
(x[k}, y[k]) is an essential pair, for each k: hence, by (17), @{¢"(x)
= ¢ (0"{y)). From (23), @ (x) = ¢ (y). The fact (24) forces # to be isomorphic
to 7M. m

Prorosrrion 15 If F is a factor of '(0) and the maximal factor of .#
with discrete spectrum is equal to #, x % (p), where p divides A and p + A,
then 7 = & < (p), ie. . F is a system with discrete spectrum.

Proof. By virtue of Lemma 6 it is sufiicient to show this for a pure
substilution ¢ (since the pure base of any substitution is isomorphic to an
ergodic component of its h-power).

Assume that @ is a pure substitution and 4 is a factor of 4(6) satisfying
the assumptions of the proposition. Suppose % has partly continuous
spectrum. By Proposition 14 and Lemma 5 we can assume that % is a c-
extension of its maximal factor with discrete spectrum, where ¢ is the column
number of 4.

Let ¢ be a finite code as in the proof of Proposition 14. Assume that
d and & arc as in that proof and moreover, & < w?/2000, with w as in
Lemma 12

If (i, /) is an essential pair then

(25) d(@s(0"(D), @a{0" (1)) > 1—+

From this and lLemma 12 we have

for n large enough.

(26)  There exists a natural 1, ¢ < 2/w, such that for any distinct i and j
from N, d(ps(0" (D), @0 () > 1/1.
Denote by P the number of all blocks on N, of length 1 (see (14)-{16)). Let
W be a finite collection of elements from X (@) such that for any x, yeW,
o(x} = (¥ and card W= 2tP (for ae. zeF, card ¢ ™! (z) == continuum). Then
there are 2¢ clements from W as in Fig. 3,
From [x,,..., x,} we choose elemenls x, y such that the number d
defined by Fig. 4 satisfes d < A"(2t). Moreover, we can assume that

A4 < d < A,

§ - Studin Muthemitics
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Then each n-symbol 6”(i) has the form as in Fig. 5, where 2t <s <41 and

M. K. Mentzen

d{p;(NL), 0;(ND) <s*e (N = d).

0
o7 a7,) . 8", )
L 1 b 2 ;
X I ,]LL IF }{ 4 Jl
8"} 8"7,) 7%
[ 1 . ii
% f i Lf iE ]
0", 8%, 87,
I 1 aC
Xat T ul 2 1k 4 1
Fig. 3
0
8", 87i,)
x—t ¥ i
| .
| L n
| c 81, A
¥ ; f . IF ¥ 4
|
H——g——)—l
Fig. 4
i i { ;
N, N, i
87y 3 MR
I 1 1 i
1 d ‘; :.“ q i
Fig. 5

Indeed,

hence

2§ > d(@a(X}[—A"+l, An-ﬁl M]_]’ qo,;(y)[—l"“, A"+1 — 1])1

d(gﬂa(N;‘), @5(N}c+ 1)) < 25223 = 4848 < 8¢,

Therefore

d(0s{N2), 05 (N)) < sd (93 (ND), 04(NLsy)) <528,

By virtue of (25),

(27) ' d (s (ND), 0s(N{) > 1/(2t) - 25%¢.
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To finish the proof let us consider Fig. 6, where j & j'. By (27),

1/(20) = 2% & < (s (V). @a(N]) < d(p5(A), y(B))+2575

< 8¢+ 2s%¢.
no. m - .t
A L T
AR o
. N
B T e e E Tprrat:
:d? 8" ") anin Toamh o
[
Fig. 6

Therefore 1/(2t) < se+4s*e <dte+4-16t%¢ = 4t(1+16t)¢ and
e > 1/(8* (14 161)) > 1/(81 - 20¢) = 1/(160t%) > w?/(200-8)
= w?/1600 > w?/2000 > &,
a contradiction, Thus # is a factor with discrete spectrum. m

" Proof of Theorem 8. This is a simple consequence of Propositions
14 and 15 »

Some properties of factors of snbstitutions. Theorem 8 says that the only
factors with partly continnous spectrum of a substitution 6 are among
substitutions defined by some f-consistent relations on the set of symbols.
Such relations determine some T-invariant partitions of X{(6). Moreover, if
there are two different @-comsistent relations on N, then the corresponding

. partitions are different as well, From {23) it follows that if # is such a factor

then it is not only isomorphic to ¥ (8), where ~ is defined by (21), but even

‘the partitions of X (8) corresponding to % and % (f)) are the same. Hence

each substitution admits only a finite number of Tinvariant sub-¢-algebras
corresponding to factors with partly continuous spectrum.

The following example shows that it can happen that there are two
factors with partly continuous spectrum and that their maximal common
factor has pure point spectrum, ie. there is no smallest factor with partly
conlinuous spectrum.

Examprr 1. Let 8 be defined as follows:
0 —0021
1—=1130

2 ~2203
3 3312
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There are two f-consistent relations on N,:

Ri=110,11,12, 3] l=:1a,b], Ry=10,2,11,31=:ic,d.
The corresponding substitutions are

. a—aaba o ¢ —eeed
T p abbab T g o ddde

The maximal common factor of #, and n: is the factor with discrete
spectrum 2 (4).

Consider the partition £ of X (8) corresponding Lo the maximal factor of
#'(6) with discrete spectrum. The atoms of this partition consist of ¢ points,
where ¢ is the column number of 8. If # is a substitution such that Fin) is a
factor of Z'(#) then using the canonical system of measures ([97) on & we
obtain the following

CoroLLAry 16, The column number of v divides the column number of @
and the height of u divides the height of 6.

The converse of the above corollary is not true. Namely, if ¢(0) = abh,
a, b # 1, then there need not be a f-consistent relation ~ on the set of

symbols of 8 such that ¢(f) = a. To illustrate this let us consider another
example:

ExamMmpLE 2.

0 —-013
1122
2 —230
3 —301

The column number of @ is equal to 4, but it has no factors with partly
conhnuous spectrum.

It follows from Theorem 8 that if & is a factor of 8 and (8,(0):5,(5)
=ou then # is a system with discrete spectrum. But we can find a
substitution & of height 2 which has a pure substitution J as a factor with
partly continuous spectrim:

ExampLE 3.

0 — 01230
1 —-10321
2~ 23012
3 —32103
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There are threz {-consistent relations:

Ry=1{10.2,11,3]}, R, =1{0,1},12,3)}, R,={0,3},{1,2}.

The substitutions #; corresponding to the relations R, are the following:

001010
To° 1 10101
000110
T S 11001
001100
T2 1 S 10011

e is cyclic: the set X(n,) consists of two points. 7, and #, are p‘#‘e
substitutions with partly continuous spectrum.
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