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Lower s-numbers and their asymptotic behaviour
by

VLADIMIR RAKOCEVIC (Ni§) and JAROSLAV ZEMANEK (Warszawa)

Abstract. We introduce geometric characteristics of Banach space operators, analogous to
the s-numbers, which are suitable for the lower part of the spectrum. For Hilbert space
operators these quantities coincide with the eigenvalues below the bottom of the essential
spectrum of the meodulus, In general, their asymptotic behaviour correspends to the distribution
of the jumps of the minimum index in the semi-Fredholm domain, The paper is a continuation
of [14].

1. Tower approximation numbers. Let T be a bounded linear operator
on a complex Banach space X. Let U denote the closed unit ball of X. Let

m(T) = inf (|| TX]}: |xI| = 1}
be the minimum modulus of T, and let
g(T)=supie =0: TU o U}
be the surjection modulus of T We note that both m(T) and ¢(7) are
pos_iti\_/e1 i_f1 and only if T is imvertible, and in this case m(T)=q(T)
Hg‘orlleac‘:h r=1,2, ..., o we define the following lower analogues of the

approximation numbers:

m, (T) = sup {m(T+ F): rank F <rl,

g, (T) = sup {g(T+F): rank F <r},

g,(T) = max {m,(T}, q.(T)}.

We note that g (T} > 0 if and only if T is a semi-Fredholm operator, i.e.
either the null space N (T) is finite-dimensional and the range R(T) is closed,
or the codimension of R(T) is finite. For such operators it will be useful to
consider the index

ind T = dim N(T)—codim R{T),
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and also the minimum index
minind T = min {dim N(T), codimR(T)},

which is always finite for semi-Fredholm operators.
It was shown in {14], Theorem 8.3 that

$(T) = limg,, (TH'
k

is the semi-Fredholm radius of T, i.e. the supremum of all £ = 0 such that T
— Al is semi-Fredholm for |A < s In this paper we intend to study the
asymptotic behaviour of the finer characteristics g,(T) for r=1,2,... It
turns out that this is closely related to the distribution of the jumps of the
function min.ind(T—AJ) in the disk |A| <s(7). These jumping points were
also studied in Section 7 of [14], and we develop further the underlying
technique. .

It is well known that the function min.nd (T A1) is constant everywhere
in the disk |A{ < s(T) except possibly for a discrete subset E. We denote by
n(T) this constant, and call it the stability index of the semi-Fredholm
operator T For o in E we have minind(T—wl) > n(T), and X decomposes
into the direct sum of two closed T-invariant subspaces Y, and Z,, where Z,,
is finite-dimensional and T—wl is nilpotent on it, while the restriction of T
— Al to Y, has constant minimum index on a neighbourhood of w. This is
the Kato decomposition [4], Theorem 4, an elementary exposition has
recently been given by West [10]. Consistently with the matrix case we
define the (algebraic) multiplicity of the jumping point @ to be dimZ, in the
corresponding Kato decomposition (cf. [2], Theorem 2.21). In other words, it
is the dimension of the salient of the generalized kernel (|, N (T—wI}))” on
the generalized range M, R{(T—wI)*) {cf. [4], [10]). Thus the points in E can
be ordered in such a way that

oo (TH < (TY < ... < s(T),

where each jump appears consecutively according to its multiplicity. If there
are only p (=0,1,2,..) such jumps, we put |w,, (T) = e, (TH=...
=s(T). Our main result can be stated as follows.

1.1, TueoreMm. Ler T be a semi-Eredholm operator. For each re=1,2,...
we have

(1) |U),-(T)| = limgkn-br(Th)”ka
k

where n = n(T) Is the stability index of T.

In [5] and [14] analogous formulas were derived for the eigenvalues of
T having absolute value greater than the essential spectral radius of T
However, the corresponding s-number function depended only on the index of
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the eigenvalue. This is not surprising in the jight of Theorem 1.1, because on
punctured neighbourhoods of such eigenvalues we have T— Al invertible so
that ‘the stability index is zero in that case.

The proof of Theorem 1.1 will be given in Section 3. As in [14] the
difficult part lies in the lower estimate showing that the quantities in
guestion converge sufficiently far; the essential tool is analytic: [15], Theo-
rem 2. Although the desired upper estimate can be obtained directly, it seems
uselul 10 compare the g-numbers with a natural extemsion of the Bernstein
and Mityagin numbers introduced in Section 2. This way is almost equally
simple and, moreover, it reveals a link between the Riesz eigenvalues and the
Kato jumps in the spectrum of a general operator. The connection becomes
particularly transparent for Hilbert space operators for which we identify, in
Section 4, the geometric characteristics with the eigenvalues of the modulus,

obtaining thus a symmetric counterpart to the classical characterization of
the s-numbers.

2. Lower Bernstein and Mityagin numbers. If W is a closed subspace of
X, we denote by Jy the embedding map of W into X, and by Qp the
canonical map of X onto the quotient space X/W. The process started in [7]
and continued in {14] admits a further extension in the case of Bernstein and
Mityagin sequences. For each r=1,2, ..., oc let us define

B,(T) = sup {m(TJy): codimW <r},
M, (T) =sup{g(Qy T): dimV <r}.

Clearly, B,(T) >0 if and only if T is a semi-Fredholm operator with
dim N(T) <r. Similarly, M,(T) > 0 if and only if T is semi-Fredholm with
codimR(T) <r.

It is easy to see that m.(7T) > 0 if and only if T is semi-Fredholm with
dim N(T} < r and ind T < 0. Similarly, ¢,(T) > 0 if and only if T is semi-
Fredholm with codim R{T) <r and ind T = 0. Consequently, m,.(T) and
q.({T} are equal whenever they are both positive.

It is well known that the set of semi-Fredholm operators having the
minimym index less than a fixed r is open in the algebra B(X) of all
operators (c¢f. [1], Theorems 4.2.1 and 4.2.2). If T is in this set, we denote by
d,(T) the radius of the largest open ball centred at T and contained in that
set; otherwise we put d,(T) = 0. We recall that the index is constant on any
connected set (in particular, on any ball) censisting of semi-Fredholm opera-
tors. ' B

2.1. ProrosiTioN. For every operator T and each v =1, 2, , o we
have m,(T) < B,(T), 4,(T) < M,(T), and max {B,(T), M,(T)} < 4,(T).

Proof Let rank F <r. Then W = N(F) has codimension less than r
and m{T+F) < m((T+F)Jy) =m(TJy), hence m.(T)< B.(T). Alo V
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= R(F) has dimension less than r and q(T+F) < q(Qy(T+F)) =q(Qy T),
hence g, (7) < M. (T).

Let S be any operator with ||Sif < B,(T). By the definition of the latter
quantity there is a subspace W of codimension less than # such that ||S]]
< m{TJyw). Since

m{(T+8) )= m(TTw)f < STyl <

we conclude that m{(T+S}Jw) > 0. This implies that 7+ § is semi-Fredholm
with dim N(T+8) <r, hence B,(T) < d,(T). Similarly one can show that also
M (T) < dAT).

2.2. Lemma. Suppose that T is semi-Fredholm and X decomposes into the
direct sum of two closed T-invariant subspaces Y and Z. Let minind (TJy) = n
in Y, and dimZ = r. Let P be the projection of X onto Z along Y. Then

s (T) S IPI [T

Proof. Let § be the operator which is zero on ¥ and — T on Z. Then
minind(T+$) = n+r and for any x = Px+{]—P)x we have Sx = §Px =
— TPx, hence ||8]| <{|TJZ] |[P||. This proves the lemma.

ISil <m(Tdw),

3. Proof of Theorem 1.1. 1. Let r be a positive integer such that |w,(7T)|
< s(T). Let Z be the direct sum of the finite-dimensional parts in the Kato
decompositions corresponding to the points wy (7)), ..., @,(T); we note that
the parts corresponding to different jumps have zero intersection because the
restriction of T—AI to these parts is either invertible or nilpotent. Hence
dim Z = r by the definition of the multiplicity. Dencting by ¥ the intersec-
tion of the corresponding Kato complements, we have min.ind ((T—Al)Jy)
=n1in ¥ on a neighbourhood of zero in the complex plane; this implies that
minind(T*Jy) =kn for k=1,2,... (cf. [15], p. 139). Hence Lemma 2.2
yields

s (TS |PI-HTHI, k=1,2, .

Since ]fT" Jy||** tends to the spectral radius of TJ,, which is |, (T,
conclude that

(2) Hn}sup dkn—l-r(Tk)Uk “<- |CEJ,.(T)|
k

If j (TN = s( ), then the last inequality is a consequence of [14], Theorem
8.2. By Pr0p051t1on 2.1 this proves one inequality for (1).

II. To prove the other inequality we may suppose that jw,(T)| > 0. We
also omit the trivial case when X is finite-dimensional and r > dim X,
because then both sides in (1) are clearly infinite. Let p denote the total
multiplicity of the jumps having absclute value less than |w,(T)|. So we have
0 < p <r. Asin part I we consider the direct sum Z of the finite-dimensional
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summands at the points @, (T), ..., w,(T). Now dimZ = p. Let Y be the
complement to Z from the Kato decompesition.

Let Fy=oJ, with o so large that (T+ F,—1)J, be invertible on ||
< |w,(T)|. We extend F, by zero on ¥. Thus rank F, = p.

Next we let F; be zero on Z. We note that the minimum index of
(T—A)Jy is constant on |A] < |w.{T)|, being equal to the stability index
n=n(T) Let 0 <& =<]a(T). By [15], Theorem 2 we can construct F, in
B(Y) of rank n such that the minimum index of (T+F,~A)Jy in Y is zero
on |4 & |@,{T) —e&. (I ind T" < 0, this construction is shown in [15], p. 138. If
ind T 0, we choose n functionals linearly independent on every N((T-2)Jy)
for |A] < |e,(T) —e&, of. [15], p. 141, and then apply the argument in [11],
Theorem 3.10.)

Let A== T4+F,+F, on X. Singe A~Al is bounded from below or
surjective on the disk |4] < |w,(T) ¢, we gel by [6]

3) limg, (A 2 Jo, (T)] — .
k

Since Fy commutes with both T and F,, we can write

= (T Fy + Fa)f

where R(B,) is contained in K(F,), hence rank B, €
(T+ F)f = T+ C,,

= (T4 Fo)' + By,

p <r. Next, we have

where R(C,) is contained in the sum R(Fy)+ TR(F)+...+ T*"* R(F,), hence
rank C, < kn. Conseguently, we get A* = T*+S,, where S, = By,+C, has
rank less than kn+r. Hence g, (4% < g,4.(T% by the definition of the g-
numbers. Thus (3) actually proves the remaining inequality for (1).

Proposition 2,1 and inequality (2) yield the following corollary of
Theorem 1.1, '

3.1 Corotiary. Let T be a semi-Fredholm operator. For each v

w1, 2, ... we have
(4) [0, (T)] == Tirn ., { T
k
where 1 = n(T) is the stability index of T If ind T <0, then also
(3) |, (T)] = lifﬂ By (TH
for all vy and if ind T =0, then .
(6) |oo; (T)] = Him My, (TH
k
Jor all r.
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We note that (5) does not generally hold if ind T > 0, because dim N(T%)
may be too large which makes the B-numbers small: for instance, if ind T =
+ o0, then all the B-numbers are zero. Similarly for (6).

One could also establish a number of analogues of the axiomatic
properties of the s-numbers stated in [7], Section [, but we omit these
questions because they are not difficult and we do not need them in this
paper. On the other hand, we are able to prove directly the Hilbert space
characterization in the next section.

4. Hilbert space operators. For operators on Hilbert spaces we show
that the geometric characteristics studied in the preceding sections have a
natural eigenvalue interpretation analogous to the classical characterization
of the s-numbers.

We recall that T is a semi-Fredholm operator with finite-dimensional
null space if and only if the bottom pu (T) of the essential spectrum of the
modulus |T] = (T* T)Y# is positive, and u,{T) = d(T) in that case [12].
Let

m(Ty < (M <.

be the sequence of the cigenvalues of | T less than p,(7), counted according
to their algebraic multiplicities. If there are only p (=0,1,2,...) such
eigenvalues, we put g, (T) =i, 12 (T) = ...= 1, (T). We also define v, (7)
= 1, (T*) for all .,

Now we can state the following refinement of the aforementioned result
of [12] and of that in [3], Proposition 6.10(j).

4.1. TueoreM. Let T be an operator on a Hilbert space. Then B.(T)
= 1 (), M(T) = (T}, and g,(T) = max (B,(T), M,(T)} = d,(T) for each
r=1,2,...,00. More precisely, if T is not semi-Fredholm of positive index,
then m (1) = B{T) = d {T) = w{T) for all v, and if T is not semi-Fredholm of
negative index, then ¢.(T) = M,(T) = d,(T) = v,(T) for ali r.

Proof If T is not semi-Fredholm, then all the above quantities arc
zero. So suppose in the rest that T is serni-Fredholm, If ind 7'<C (, then an
argument similar to [12], p. 226 shows that 4.(T) € x. (7). If ind T = (, then

by duality we get 4,(T) < v,(T). Hence d,(T) < max {1, (T), v,(T)) for all r.

The equality B,(T) = (T) is the minimax principle ([9], Theorem
XII1.1), and M, (T) = v, (T) follows by duality as in [14], Theorem 4.2(iii).

By virtue of Proposition 2.1 and duality it remains to show that m.(T)
2z (T, provided that ind T< 0. To this end we may suppose that
ATy > 0. Let 0 <& < p (7). By the minimax principle ({97, Theorem XIII.1)
there is a closed subspace W of codimension less than r such that
m(TJy) = p.{Tt—& We shall construct an operator F of rank less than r
such that m(T+F) = m(Tfy). This will prove the claim.
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Let V be the orthogonal complement to W. Lel 2 be a complement to
the direct (but not necessarily orthogonal) sum W&N (T). Since T is one-to-
one on WiZ, we have R(T) = R(TJy)®R(TJ,). Since ind T < 0, we have
codim R(T) = dim N(T). Hence

codimR(TJy) 2 dimN({T)+dimZ = codim W = dim V.

This inequality ensures that there exists a one-to-one map § from V into the
orthogonal complement of R{TJy), and we may require that m(SJy) be
equal to a prescribed positive number, say m(7TJy). Let

Foe(§~Te  for vin W,

Fw = for win W,

so Lhat rank F' - p,

Let x =op+w be a unit vector with v in ¥V and w In W. Hence ||v]|?
+{[w]|* = 1. Since (T4 F)x = Sp+ Tw, where Sv and T are orthogonal, we
have

(T FYst|? o= [Sull? )| TWll® 2 (7T (J6l]® -+ [wl1?) = m (TS w)?,

hence m(T+F) 2z m(TJy). This completes the proof.

Corollary 3.1 and Theorem 4.1 show that among the various s-numbers
studied in [7] the Bernstein and Mityagin sequences appear to be the most
universal ones, giving & unified approach to the subtle structure of the
spectrum of a general operator. The following corollary, which generalizes
[13], Corollary 2, explains the relationships between the stability index, the
Kato jumps, and the eigenvalues of the modulus.

4.2, Corortary. Lei T be a semi-Fredholm operator on a Hilbert space.
Let r=1,2,... If ind T O, then

(TN = lim fge  (THH,
k

and if ind T 22 0, then

o2 (T ==l vy (T4
1

where n == n(TY is the stability imdex of T

4.3, Coroliary. Let T be a normal operator on a Hilbert space. Then
lew, (T == p (T for all v, R

Proof. [t is well known and easy to show {by using the property || Tl
= ||T* x|)) that normal operators have finite ascent (actually, N(T) = N (T3).
This implies that the stability index of such operators can only be zero (cf.
[10], Proposltmn 2.6: in other words, this is the well known fact that for -
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normal operators the Weyl and Browder essential spectra coincide). Hence in
Corollary 4.2 we now have n(T) =0, and the result follows by the spectral
mapping theorem.

One could also consider analogous perturbations of the reduced mini-
mum modulus

3(T) = {inf {|| Tx||: dist(x, N(T}) = 1}
by letting
3, (T) = sup {p(T+ F); rank F <r}

for r =1, 2, ..., co. With the functions y, and 7y, asymptotic formulas were
obtained for the stability radius ([15], Theorem 1) and the semi-Fredholm
radius ([14], Theorem 8.2). However, the refinements v, for r =2, 3, ... are
too crude in general. For instance, considering the matrices

-3} *=(T05)

as operators on the two-dimensional Hilbert space, we have y(THF) =
(lcf*+4)42, hence y,(T) = oc. The example can be modified to the infinite-
dimensional Hilbert space by letting 7= 3I on the orthogonal extension;
then 7,(T) = 3 = s(T). So there is no hope of obtaining the eigenvalue 2 of
T in terms of the functions v,.
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