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Weighted inequalities on product domains
by

SHUICHI SATO (Sendai)

Abstract. We prove weighted integral inequalities between the Lusin area functions and the
nontangential maximal functions of bikarmounic functions on product domains, Furthermore, we
study the duality of weighted BMO spaces and weighted H' spaces in the two-parameter theory.

~ §1. Introduction. Let A(u) and N(u) be the Lusin area function and the
nontangential maximal functmn respecnvely, of a b1harmon1c function u on
the product space R} xR2™!, where RI™'=R¥x(0,00) (i=1,2).
In this note we consider a weight function w which satisfies the two-
parameter analogue of the Muckenhoupt 4, condition and we prove the
weighted L7-“norm” inequalities:

INGle < clldGlly, (0 <p <)

for biharmonic functions satisfying a reasonable condition (see Theorem 3 in
§3). This is an extension to the weighted LP-spaces of a result of Gundy—
Stein [13]. For the proof of Theorem 3, results of Wheeden [23] (see also
[11] and [14]) about harmonic majorization and H” spaces of conjugate
harmonic functions are extended to the case of biharmonic functions on the
product domains (see Theorems 1 and 2 in §3). These results together with
the weighted inequalities for the Lusin functions and the nontangential
maximal functions (of the one-parameter theory) proved in [14] are applied
to obtain the desired result if we argue as in [13].

As for the converse, we have obtained only a partial result, which we
can derive from a weighted analogue of a result of Merryfield [16] (see also
[12], [13] and [15] for the unweighted case). We w111 state these results in
§ 3 without proofs.

Finally, we also study the duality of weighted BMO spaces and weight-
ed H' spaces on the product domains (see Theorem 5 in §3).
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§2. Preliminaries. In this section we introduce our basic notation and
give some preliminary results,

21. Let xeR"xRZ=R' (n=n,+ny). We write x=(x, x?),
xPeR", x®eR™?, xY =(xP, ..., x) (=1, 2, When Ji=1 m=1, we
also  write x{?=x, x{ ’mxz b1 XER"1 R?™, we write X

=Y, r; xP 1), where xPeR™, 1 eR (:—-1,2). We also write
W, ¢, %3 £3) = (x, 1), where x = (W, XD, ¢ =y, ). Set D, =RIT"
={(x, ) R >0} (i=1,2) and D =D, x Dy.

22 For ay, a; >0, define
IO = (9, ) eDy: [x0 =y <apn),
and for a =(a,, a,), set
Tu(x) =T (x™M) x F”’ (=)
= [, 15 ¥2, ) (9, 1) EI"f,?(x"')) (i=1,2)j.

If F 1s a measurable function on D, we define the nontangential maximal
Sfunction by

N, (F)(x) =sup {|F (y, 1)]: (v,
and the Lusin function by

_ 172
So(F)(x) = ( §IFQ, 0Pt "ty 2 dy— ) .
s tity

We W[‘ite N“ 1) = N S(1 1) = S

23. Let H=oxP, j=1,...,n, 8 =0, (i=1,2. We define
L n o2
|V F =(Z 8P FIPP2, 0, PGl = (3 Y (80 82 G)2)2
=0 J=0k=0

for suitable functions F and G. We set A,(G) =

S.(K}, where K(y, 1)
=111V, V2 G(y, 0] and write 4, ;, = A.

24. Let 1| <p < oo and recall that a positive weight w on R is said to
belong to the Muckenhoupt class A,(R% if there is a constant ¢ such that

(=1 _(W(x) dx)(11)~? l|‘w(x)- HE= 1) et g

for all cubes I = R? (see Muckenhoupt [17]) The least such ¢ will be
denoted by ¢,(w).

Let w(x‘“, x4 be 1oca11y integrable and: 0.<w < o0, Fo]]owmg Feffer-
man and Stein [10], we say that w belongs tp the class a, =@, 0, (1 <p

icm
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<o) if w(-, ) ed,(R™), w(x™", )ed,(R™) for all x*, x!? and

sup ¢, (w(-, x?) <0, sup ¢, {w(x", )) < c0.
H2Der"2 ADeg"

We define the class 4,

of a, are easily verlﬁed

(241) a,ca,<a,

@oony g DY 8o = {Ups1 ap. The following properties

(I'<p=<g<on).
(24.2) If wea, (1 <p <o), then there is & > 0 such that wea,..

(24.3) Ifw_era (1 <p <o), then w *’“’eap, where p' —-p/(p 1)
(244) If wea, (1 <p <o), then '

fwin IT & @+1xP - "’I) Ydy<e | wiay,
P i=1,2 R(x.0)
where R(x, ) = By (x™V, t;) xB,(x", t_,_) (x==(x‘1) X3, b= (1, L)), B(x9, 1)
= {yP eR™: |x®—p| <t}L (i=1,2).
(245) Let E (= R™) be a bounded measurable set of positive measure
and let s >0. If wea, (1 <p < w), then

W) =5 [w(x®, xP)dx? e 4,(R™)
E

and there is a constant ¢ independent of E and s such that ¢, (W) <c
Proof. Since wea,, we have

(24.6) J' MO () (xXMN)Pw (D, xPh dxD
Rl
<c [ 1 ED)Pwx®, x)dx,

a1
where M™ is the Hardy-Littlewood maximal operator on R™:

‘”(f) @) = sup [By (X, 1))t [ SOy

>0 Byl
and ¢ is independent of x™®. Multiplying both sides of the 1nequahty (2.4.6)
by s and integrating them over E, we find

@47) | (MO WD) <c | GO () .
Rl K :

Let T be a cube in R™. If we take f = W™1®~ Dy, in (24.7) (for a set §, g
denotes its characteristic function), we obtain the desired result. This com-
pletes the proof.
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If F is a bounded measurable set of positive measure in R™, then a
similar result holds for V(x®) = s {rw(x™, x®)dxV).

(24.8) Let wea, (1 <p < o). Then
[ Ms(fywdx<c [|fPwdx,
& R
where M, is the strong maximal operator defined by
M (f)(x) =sup|R(e, 07" | [f(ldy.
! R{x,1}

§3. Statement of results. First we extend results of Wheeden [23], Gundy
and Wheeden [14] to the product spaces (see also [11]). We consider vector-
valued functions of the form

F(xn f) = (“0 (xs f)w 221 (x: 1:), LR uN(x: f)),

where u;(x, 1) =u;(x, t;;x!® 1) =0, 1,..., N) is biharmonic on D, ie.
u; is t_wice ‘continuously differentiable on D and 4,u; =0 (i = 1, 2), where 4,
=3 (8" is the Laplacian.

TueoreM 1. Let F be as above. Suppose that
N
F e 0170 = (Xl G, 077 (po > 0)
=0

is bisubhgrmonic on D, i.e. subharmonic in each set of variables {(xM, 1) on
D, i=1,2 Then if po <p < and

sup [ JF(x, P w(x)dx < o0

I g
Sor W ey, the following holds:
(a) lim,_q F{x, t) = F(x, 0) exists for almost every xeR", v

®) IF(, 0—F(, Oll.z =0 as ¢ —0. (Here LI ={f fw'/?eL?} and
1A 1er = L2, )
(©) N(F) < c{M(F(-, 00}

In order to prove Theorem 1 we need the next theorem.
Tueorem 2, Let P, (x) =[]z 1,2 P¥ (xY), where
P?I) (x(i)) =, ri (Ix(l')}z._}_ EEZ)'(H;"" 1)/2

is the Poisson kernel associated with B; (i=1,2). Let 1 <p < o and WEd,.
If s is a nonnegative bisubharmonic function on D satisfying

sup [-s{x, ) w(x)dx < o0,
4
.4
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then for a =gy, @) (24, a; > 0) we have
s{x, t+a) < P,xs(-, a)(x),
where = denotes convolution.
Theorem 1 will be used to prove the following assertion.

THEGREM 3. Let w€ay,. If u is biharmonic on D and u(x, 1) =0 (|{j - =0}
for each x, then ‘

[N@wdx<c [ Awfwdx (0 <p <o0).
R B
Next to state a2 theorem which will be applied to refme Theorem 3, we

introduce a maximal operator. Let F(x,t) be a function on D and A
_‘:{’Il: A‘Z) (lla A’Z > 1): h =(h13 hz) (hls hZ > 0): r>0. We set

TP = sup ( [ IFO.oF T &g ™ dyds,

hi.h >0 S(R(x.h) i= 1,2
where for an open set U (=R, §(U) is defined by
S(U)y=i{y.0eD: R(y,1) = U}.

(This is a two-parameter analogue of the maximal function introduced by
Fefferman—Stein [7]) Then results of Barker [1]. Torchinsky [22] and
Muckenhoupt-Wheeden [18] are extended to the product domains as fol-
lows.

TueoreMm 4. Let F be continuous on D. Then

(@) T (F) < c[MINFY®IT (@>1, r>0);
(b) if pur™' > 1 and wed,y,,, then

[ Ty FPwdx <c [ N(FPwdx.
R R

If 4 is biharmomic on D, we can prove N,(u) < ¢T, () as in [18, §1] by
applying an inequality of Hardy and Littlewood. Therefore (b) of Theorem 4
will be used to obtain a refinement of Theorem 3.

Now we stale partial results about the converse of Theorem 3 without
proofs (the result (3.2), (3.3)). We confine ourselves to thecase ny, =1, ny = 1,
We first give a weighted analogue of a theorem of Merryfield [16]. We
consider weight functions of the form

B w =we @V (x=(xy, %)),

where w, satisfies- ¢; < wq < ¢, for some constants ¢4, &y >0 and b, is the
modified Hilbert transform of a real-valued function b; e L=(R") with III_J.-HLI_'oo
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< /2. (The modified Hilbert transform b of beL®(R") is defined by

- 1 k
b =limn™' | b(y)[m+ (y)] v,
e—+0 Ix—y|>g y

where k()= 11if |y = 1 and k(y) =0 if |y} < 1.) Let a real-valued function
@eCE(RY) (the class of infinitely differentiable functions with compact sup-
port) be such that
w
| olxjdx=1.
Set g, (%) =t et x) (=1, 2), B(x) =@, (X)) @, (x2) (¢ = (£, 1), x
= (x;, X,)). Then we have the following.

(3.2) Let w(x) = wg(x) S0 2D b o above. Let g €L (RY), u(x, £)
=P, xg(x) and let f €L®(R?) be such that f—c;el? for some constant ¢;.
Suppose thar N(u)(x} < 1 for all xesupp(f). Then there is 6 > 0 such that if
bl 0 <& (i=1,2), then

[|V1 Pau(x, 02 |®, = £ (x)|? efloswisi ¢ ¢ d dt

supp(p) <[ —1, 1],

<c |l O P wdx+e [ 1f(9—c ?w(x)dx,
»? R?

where P(logw)(x, 1) = P, xlogw(x), u(x, 0) =
used below).

g (x} (a similar notation will be

We can prove (3.2) by extending [16, Lemma 3.1] to weighted cases. As
a consequence of (3.2), we have the following.

(3.3) Let u and & be as in (3.2). Suppose that a weight w has the form
(31 with bl o <8 (i=1,2). Then

(a) (I)CEI{2 A(u) x) >l} Cl 2 " {N(M) /\A}zwdx
RZ

for A >0, where mw(E) [ewdx for a set E and A denotes taking the

minimum;

(b) § A{wPwdx <
el

It is well known that (b) follows immediately from (a) (see, e.g., [3,
Lemma 3.3)).

¢ [ Nwrwdx (0<p<2).
R

Finally, we state a result about the duality of weighted BMO spaces and
weighted H' spaces, (For the one-parameter theory, see Muckenhoupt~
Wheeden [19, 20].) Let #4(R" denote the subspace of the Schwartz class
F(R")  consisting of fe#(R) such that FfeCPRY) and
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supp(Ff) = {x eR": x5 0, x1¥ % 0} (#F 1 denotes the Fourier transform of
1) :

TheoreM 5. Let f e %4 (R" and u(y, 1) = P, » f (). Let g be a measurable
function on R" such that

g [T A+~ e L (RY,

i=1,2

Let wea,,. Suppose that there is g constant ¢ > O such that
‘ V1 ¥ P(Q)(J’, e~ Plkmy, ¢, dydt < c*m, (U}

for all open sets U in R". If we denote the least such c by ||g|E*’w, then
| § 7 g(x)dx| < cliglly | A@W)EIw(x) dx
R &
This will be proved as in [16, §6] (see also [5], [6], [8]).

Remark. It is an easy consequence of the definition of a;m that if
WEd,, then

[flogw] TT (L+{x“)™" *dx < o0. -
pe i=1,2

Thus the iterated Poisson integral P(logw) in Theorem 5 is well defined.

§4. Proof of Theorem 2. By the subharmonicity of s on D,, we have
2ty

1
@ s(xMn X ) <ea [ s, 5 3, u)dy® du,
0 B

where B = By (x'?, 15}, Let W(x") = [pw(x'?, y)dy® for a fixed (x1?, t,).
Then by Holder’s inequality and the fact that w€a,, we ecasily have

@2)  [sOd, 105 ¥, ug)dy@
]
& et (fs (), £33, ug wxV, y @ dy@)le w (5B~ e,
P

where ¢ is independent of x. By (4.1) and (4.2) we have

(4.3) s, 1y X2, 1)
iy ) ‘
0 KB .

Multiplying both ‘sides of the inequality in (4.3) by W(x")'/7 and using

. § = Sludis Muthematico Y21



icm

66 S. Sato

Holder's inequality on the right-hand side, we find

(D, £y; P, ) WP
2ty
_ LT 2 1
~<\ Ctz L+1fp ( jS(x“'], 11; y(lll HZ)pW(X(”, y'Zl)dy( )duz) fﬂ_
0B
Thus

sup | (D, g5 x4, 1)? W (xMydxt
t1 >0 g1

< cfsup [ s(x, Pw(x) dx) < ou.
'ORe

Since W ed,(R") (see (24.5)), by Wheeden [23, Lemma 1] we have
(44) s(xV, 1y +ag; X2, 1)

< .
< }EIS(ym’ gy x? ) Pii)(x‘”—y‘”) dy,
a .

for ail a, > 0. Repeating the above argument, we also have

(4.5) s(x, 13 x?, 1+ a;)
<L s, 101y, ag) PR~y ) P,
R2
for atl ¢, > 0. Combining the inequalities in (4.4) and (4.5), we easily obtain
the desired result.

§5. Proof of Theorem 1. Let py <p < X and set ¢ = p/pe (= 1), sy, 1)
=|F (v, )" = |F(p, 0)|". Then s is bisubharmonic on D and

sup [3(y, 0w (dy = sup [IF(y, O windy < %
t !

Therefore by compactness there are a sequence e ok=1,2,..) with 1,
-0 (k — %) and a funclion hel} (R" such that

(5.1) sy, g wvdy = [h(y)g () w() dy

as k- for all g L%, Set go(y¥) = Pix—y)w( ™! for a fixed (x, t). Then
since w9 =w'""eqa,, it follows that gy L% (see (2.43) and (24.4). Thus
taking ¢ = go in {5.1) and using Theorem 2, we find (hat

s(x, 1) = lim s(x, t+1,) < lim P xs(, ) (x) = P+ h(x).

koo kereg
This implies |F (x, )] < |P, xh{x)|%?. Consequently,
G2 - NAFD (o < IN(P{I) ()19 < ¢ (Mg (R (x)}%”.
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Since {Mg(R)}¥? eL?, it follows that N (|F|)(x) < co ae. Thus by Calderén [2]
there is a function F(x, 0) such that F(x, t) -+ F(x, 0) a.e. as r —0. This
proves (a). (b) follows from (a) and the dorminated convergence theorem.
Finally, since also s(x, £} —|F(x, 04”4 (k - o2) in L4, by (5.1) we find that
h(x) = |F (x, 0)|". Combined with (5.2), this proves {c), which completes the
proof of Theorem 1.

§ 6. Proof of Theorem 3. We first prove the following lemma.

Lemma 1. Let wea,, and let u be a biharmonic function on D satisfying
u(x, 1) =0 as |t| > . Then '

sup J Ju(x, P w(x)dx < ¢ [ (Aa(0) ()P wix) dx
o L

for p, 0 <p<ao.

Proof. Let K be a compact set in RZ7'. We first remark that if .#' is
the Hilbert space defined by

= {F: |F)| = (-"IF(y(Z)’ t2)|2r;‘"2 dy(z)drz)ilz < oo},
f'4

then Gundy—-Wheeden [14, Theorem 1] extends to the case of harmonic
functions with values in .

Since u{x, t) =0 as |t| = oo, it follows that

(172w, £, p2, )26 "2 dy D dt, = ||||72u(y(1),‘t1; =0
i .
as t; —oo for all . Thus by the above remark we obtain

PO NP Pau G, a1y dy ™ dey 12w (x) dxt®
Zcsup [ IPu(x™, ty; )P w(x)dx'.
ty ]il"
Therefore if we take K = I'%)(x?) and Jet K — I'2(x?), we find

61 [ (407 wl)dx™

sl .
> csup § (ABEGD, 65 )P w(x)dx D,
g
where
A%’ (u (xm, £ys .))(xtz))
=( | Pau(x, 0y, )P dy P )2,

£2);
lgzj(ttz))
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Integrating both sides of the inequality in (6.1) over R"? and applying [14,
Theorem 17 to the Lusin function Aﬁf on the right-hand side, we easily
obtain the desired inequality. This completes the proof of Lemma 1.

Now we give a proof of Theorem 3. Since w €d, thereis g, 1 <gq < o0,
such that wea,. For any p, 0 <p <, let py be a positive number such
that p/p, > ¢ and let m be a positive integer such that

po > max {(n, = )f(m+ny —1), (n,— DAm+n,— 1)}

I B0 = (B9, ..., B9 (i =1, 2} is a multi-index isuch that 0 9 <n (
=1,..., m), we define a differential monomial DI of order m by

0 _ i) i)
bi" = afo(i) 6}1(1)-
1 "

Next, to prove Theorem 3, we may assume that [AWrwdx < o0, Then it

follows from Lemma 1 that sup,_[lu(x,‘t)l"w(x) dx < co, Thus arguing as in
Gundy-Wheeden [14, pp. 119-120], we can define the biharmonic functions

1 % o (1) (2
Up(1) g(2) (x, 1) :W{g '_‘[' {igz(Sl_ti) 1}D‘{ DE  u(x, s)ds, ds,
for all multi-indices B, B2 of the above form, Note that if g9
=(0,...,0 {i=1, 2), then i gy = ¥-

Let g, ty, ... ty (N = (4 1/ (n,+1)"—1) be an enumeration of the
above biharmonic functions such that u, =u. Define a vector-valued func-
tion F by

F(x, f) = ('U-O(JC, f), aeey HN(X, I)).

Then we first note that |[F(x, 0"® = (31 o fu;(x, 1)) % is bisubharmonic on
D.(We can prove this by using Calderén—Zygmund [4, Theorem 1]; see also
Stein [21, p. 217]) '
Next by applying twice the corresponding inequality of the one-parame-
ter theory (see Fefferman-Stein [7, p. 169]), we ecasily find that
Apyz yn ) <cdw for j=1,..., N. Thus again by Lemma 1 we have

(6.2) sup [IF (x, )P wix)dx < ¢ [ {A@) ()} wixydx (< 0).
1
Since p/po > g and weaq,, it follows that wea,, . Therefore by (6.2) and
Theorem 1, there is a limit F(x, 0) and
N{F) < ¢ My (F(, 0™,
Thus using (2.4.8), we find .
63 [Nwrwdx< [NIF)Pwdx < ¢ [ {M(F (-, 01"} wdx
<€ c[IF (x, 0))"w(x) dx.
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Combining the inequalities in (6.2) and (6.3), we conclude the proof of
Theorem 3. '

§7. Proof of Theorem 4. We first state some properties of Carleson
measures on D. Let « = 1 and let 4 be a positive measure on D such that

u(S(U)) < e|UF  for all open sets U c R".

Such a measure px will be called a Carleson measure of order o on D. Let F be
a continuous function on D and let u be a Carleson measure of order & on
D. Then

(7.1) w(iy, D eD: [F(y, 0l > s}) < clixeR™ NF)(x) > s}
for s > 0;
(7.2) [IFdu < ([ N(Fydxy;
D x
(7.3} [ |FI"du < c([N(F)dxf for all open sets U < R".
Siih U

. _((7.1) follows from the definition of a Carleson measure of order «. (7.1)
implies (7.2) and (7.3) follows from (7.2}; see Barker [1, Lemma 1])
Now we prove Theorem 4. Since dp =t "™ 'dy®d, (x>1) is a

Carleson measure of order « on B (i =1, 2) (ie. p(8;(I)) < c|* for all

‘cubes I, = R, where S;(I) = {(*, t)eD;: B,", t) = 1}, it is easy to see

that the product measure
du={T] & " "Ydyat
i=1,2
is a Carleson measure of order o on D. Thus by (7.3} we obtain

T Y = sup (b7 B2 [ |F(y, o) duyt
hyhy >0 S(R(x, i)

<e sup {hy PRy ([ N(F®dyFr.
hy.hz >0 Rix.h

This proves (a) of Theorem 4. (b) follows from (a) and (2.4.8). This completes
the proof of Theorem 4. :

§ 8. Proof of Theorem 5. We requife the following lemma.

Levma 2. Let w€a,. Then ‘

c eFllos Wiy} < {R (y, B~ 1 j w(x) dx < cy ePloswir.1)
Riyf v

We can prove this by using [20, Lemma 6] and (2.4.5). We omit .he
details. '
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Now we prove Theorem 5. For an integer k, let
E, = {xcR" A@W()>2), E, = {xeR" Mg(xe)(x} > cof,
where ¢, is & constant with 0 <¢q < 1/2 and will be determined later. Set A,
= S(E;)—S(Ej.,). Then it is easy to see that
o
(8.1) U A= W, 0eD: [P Pauly, 1) # 0]
Res — .

Next we show that

8.2 [ A@iwdxzc |V, P, e 1, dydt,
Ej~Egs Ak
To see this we first note that if (y, 1) €A, then R(y, t) = E; and
(8.3) IR(y, &} M By | € ceolR(y, 1.

Since wed,, if ¢, is small enough, by (8.3) we have

mw(R (yv t) m Ek+ 1) g- imw(R(y, t))
(see Fefferman [97). Thus
[ AwiPwdx

BBy

= _[“71 VZ“(y: t)|2 {mw(R(ys t)mEI’c)
b
—m (R, ) " Epy o)} T T gy gy
2 [ 1P Pauly, 0P m,(R(y, )1, " 1 "dydt.
Ay
Combined with Lemma 2, this proves (8.2).
Let v(y, t) = P{g)(y, 1). Then since f €%, (R") and
g0 IT +1x9)™ el

i=1,2
we easily see that

J'f(x (x)dx = cj {8 8P uly, D} &P 8P u(y, ), tydydt.

Thus using (8.1) and (8.2), we have

w

[[SGIgeIa] <c 37§ P, 7, uelomi)
R’

kz—CDAk
x |7y Vyo|e” PlBWNZYy ¢ dyds

Weighted irequalities on product domains 7
oD
<c 3 ATV Vouf2ef®e™ o dyde)'?
k=— o Ak

A [V Vyu|2e Mom e vy dydr}t/?

Ay

@0
ey [ 1 A@iwdx]'?

B =B

=
n
!

x| [ |V Vyule oW, 1 dydie )72
S(F"

CIIJ”*W Z zkmw(Ek) C“J”*, Z 2kmw(Ek)

k== k=~ o

< clgllyw [A@wdx.

Here we have used the inequality m,(EF) <¢c
(2.4.8). This completes the proof.

my, (Ex), which follows from
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The Denjoy extension of the
Bochner, Pettis, and Dunford integrals

by
R. A. GORDON (Walla Walla, Wash.}

Abstract. In this paper the Depjoy-Dunford, Denjoy-Pettis, and Denjoy-Bochner integrals
of functions mapping an interval [a, b] into a Banach space X are defined and studied.
Necessary and sufficient conditions for the existence of the Denjoy-Dunford integral are
determined. Tt is shown that a Denjoy-Dunford (Denjoy—Bochrer) integrable function on [«, &]
issDunford (Bochner) integrable on some subinterval of [«, b] and that for spaces that do not
contain a copy of ¢o, a Denjoy~Pettis integrable function on [a, b] is Petiis integrable on some
subinterval of [a, b]. For measurable functions, the Denioy-Dunford and Denjoy-Pettis inte-
grals are equivalent if and onmly if X is weakly sequentially complete. Several examples of
functions that are integrable in one sense but not another are included.

The Denjoy integral of a real-valued function is, in the descriptive sense
(that is, specifying the properties of the primitive), a natural extension of the
Lebesgue integral of a real-valued function. The Bochner, Pettis, and Dun-
ford integrals are generalizations of the Lebesgue integral to Banach-valued
functions. In this paper we will study the Denjoy extension of the Bochner,
Pettis, and Dunford integrals.

Before embarking on this study a firm foundation must be laid. The
reader may wish to begin with Definition 25 and refer to the introductory
material as the need arises. We begin with the notions of bounded
variation and absolute continuity on a set. Throughout this paper X will
denote a real Banach space and X* its dual. : :

Dernrrion 1. Let F: [a, b] —+ X and let £ be a subset of [a, b].

(a) The function F is BY on E if sup{}: I|F(d)—F{c)||} is finite where
the supremum is taken over all finite collections {[¢;, 4,]} of noncverlapping
intervals that have endpoints in E.

(b) The function F-is AC on E if for each ¢ > ( there exists § > 0 such
that 3, )IF (d)—F (el < & whenever {[¢, d,]} is a finite collection of nonover-
lapping intervals that have endpoints in E and satisfy Zi (d;~c) <.

{¢) The function F is BVG on E if E can be cxpressed as a countable
unjon of sets on each of which F 1s BV.



