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of the partition \/;': o T~/ B,. The set ﬂ;; of ~I(B,) is nonempty and open.
Hence f*(x) eﬂ;; oJ {(By) for some k by the density of the orbit of x. The
points (f*(x), () and (f/*(x), 7°(y,)) belong to different atoms of the set (2)
because d{t*(y), T*(y;)) > & > §,. Hence (x, y) and (x, y;) belong to different

elements of the partition
ek

(\/ T™B) < _\/

gy < Br.
This is a contradiction and hence y == y,, which finishes the proof.

B={BxB BxB, B xS where B
= (2%, aw) of

CoroLLarY. The  partition
= le¥™e: 0 <o < 4! is a generator for the transformation T(z, w)
the torus S* where a is not a root of unity.

Remark. The inequalities in Theorem 1 establish the best estimate of
the minimal cardinality of a generator.

The example given in the corollary belongs to the following class of
transformations: Let T be the i-sided (1/k, ..., 1/k) Bernoulli shift and let ¢
be any distal autemorphism. Then the generator f, constructed for Txt has
k+1 elements and the other generators have at least k+1 elements.
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On the strong Cesdro summability of
double orthogonal series

by

1. SZALAY* (Szeged)

Abstract. Tn a recent paper [3], Méricz gave a coefficient test for the strong summability of
double orthogonal series in the case of the parameters x and ff greater than 1/2 and the index 2
equal to 2. Using the definition of convergence in Pringsheim’s sense with a bound, the present
author extends the definition of strong summability to the case of 1 positive and a and j
nonnegative. The case « = =0 is the so-called sirong convergence. This note contains
coefficient conditions for nine cases of parameters and indices.

1. Imtroduction. First of all we mention that for a double sequence
'{wm,n}mn—-o the “little o”

man = 0(1)

{or max(m, n) = o0, OF m —> 00, OF R —0)

w as min(m, n) oo

means that w,, ,—0 as min(m, n) = oo (or max(m, n} >0, or m =, Or

n —oc) and in addition there exists a constant K such that |, | < K for
m,n=20,1,... The case
Wy =0(1) as minim, n) = oo

may be called convergence in Pringsheim's sense with a bound Our next
definitions are understood in this sense.
We say that a series

{1 Y Cik

k=0 .
is Cesaro summable with parameters o, f > — 1 —or (C, (x, f)) summable—to s
if
ol —s = o(1)
and it is said to be strongly Cesdro summable with parameters a, p >0 and
index 1> 0—or [C, (a, B)], summable~ta s if :

as min(m, n) — 00,

* This work was done while the author was visiting the Stekloy Mathematical Institute 1
Moscow, UJ.SS.R.
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1 m n
(a—l.,ﬂ‘ﬁl)_ A — 1
DD ,:;o k§0|ahk s*=0() as min(m, n) -0,

where
1 mok -

(2) U:(v;qx,'g) = Wizo kzo A%, A(nﬁ—)k Cix
is the (m, nth rectangular (C, (2, f)} mean of the partial sums

m H

Sm,ri = Z Z Ci,k

=0 k=0

with the Cesdro numbers

(1+a)(2+a)...(n+a)

1 =1,2,...

AP =1, AP =

(see e.g. [61, Vol. 1, pp. 76=77). Obviously, s, , = o0, so (C, (0, 0)) summa-

bility means the convergence of the series (1) in ll;rillgsheim’s sense with a
bound.

_ In the limit cases, when « or B or both are zero, we say that the series
(1) is [C, (0, A1, B> 0. [C.(x, 001, & > 0, and [C, (0, O¥]; summable to s if

1 men .
DT L L s i+ Dk D elf?) o = o (),

i=0 k=0
1 m n
T L L [ (@ D o) = o)
and
1

. m n . J'

{m+ 1)(n+1)f;0 k;()'All 6+ 1)(k+1)s,-,k)—s] =0

respectively as  min(m, n) o0, where A,y =0~ — 08—

twpg -y for i, k=0,1,2, ..., with w;,, =0if i or k or both are —1.
We use the following notation:

I m n

(e,f) .. -1 i
(3) zm,n - A(ﬂ)A(ﬂ) Z Z Af::—i )Asf‘—)kwi,k:
nt “ip =0 k=0
: m
4 o) ; Z Z": A 41
L A(,I)A(ﬁ) me—i =k ci,k?
" n im0 k=0

. . . 1 m n
(By — __ " (x—1 w1y r
(5) T = A 4B Z Z ARZTR AR Vike,
m n i=0 k=0
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for the series (1), where the last expression is thc.(m, njth rectangular
(C, (2, B)) mean of the sequence {mnc,,,}mn=o-
In [4] and [5] we proved the following theorems.

TreoreM A. If the series (1) is [C, (., B)); swmmable to s, a, £=0,
i >0, then it is also [C, {x, p)], summable to s for every u such that 0 < p
< A

TugomeMm B. Let A >1, a, B> 1/4 and &,y < 1—1/A If the series (1) is
[C, («, §)]; summable to s then it is also (C, (x—3, B—%)) summable to s.

Turorem C. If the series (1} is [C, (@, )], summable 10 s, o, f =0, then
it is also (C, (o, p)) summable to s.

TreoreM D. Let o, f =0 and A > 1. A necessary and sufficient condition
for the series (1) to be [C, (a, p)l. summable is that it be (C, (o, B)) summable
and that

1 m n
— T
{6) =D+ 5% kzﬂlzg,k | o(1),
i m  u i
R B — (1
" (m+1)(n+l)ig‘o gﬂ'ruk " =o(1),
1 m o n
{8) T Y REEM = o(l)

m+ D+ 1),55 5

as min(m, n) —c0.

Tueorem E. Let o, =0 and A = 1. The series (1) is [C, (a, B)1, sum-
mable to s if and only if

1 m n

YT i (e, A7) 4 —
(m+1)(n+ l)i;() kgolﬂll({l+1)(k+1)o-"k ) Si o(1)

as min{m, n) —+o0.

Tucorem F. Let a, B, 7,8 = 0 and A = 1. If the series (1) is [c, (o, Bl
summable to s then it is also [C, (x+8, B+7)]a summable to s.

Tuzorem G. If the series (1) is [C, (@, B)a summable to s, «, f =0 and
Az 1, then it is also [C, (@+6, f-+7)], summable to s for y,6 =20 and
D<ps i

THEOREM H. Suppose that either

o, 20 u>4=>1 and 8,y = 1/i—1fu, or

(i) o, f >0, g > A =1 and 8, y> 11/
Then if the series (1) is [C, {, B)1, summable to s, it s [C, {e+8, f+1],
summable to s.
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Turning to the double orthogonal series, let (X, #,0) be a given
arbitrary positive measure space and |¢, , (x)}%- ¢ an orthonormal systerm on
X. We consider the double orthogonal series

& Z a0 ().

Lk=0
For the series (9) we use 6@ (x), &P (x), t&8 (x) and 78 (x) defined in (2)-
(5) with ¢;;, = a, P (x). For a double sequence { f,, (%)} =0 of functions in
12 —LZ(X &, @), the symbol

Jun(x)=o0,(1) ae as min{m, n) — o,
{or max{m, n} =0, or m =0, Or 1 > o)

means that £, ,(x) ~»0 as min(m, n) — o0 (or max(m, n) —co, or m — o0, or n
—o0) and in addition there exists a function Fel? such that
SUP,, 150 fnn (X)) < F(x) ae. on X.

By the well-known Riesz—Fischer theorem, if

]

Z aly <o
k=0

then there exists a function f€L? such that the rectangular partial sums

S n x) Z Z a;ktpih

=0 k=0
of the series (9) converge to f in the L2-norm, ie.
(Sma(¥)—F (3) do(®) =0 as min(m, n) = w.

Here and in the sequel, the integrals are taken over the entire space X. We
call £ the L?-sum of the series (9).

The following coefficient tests for (C, (@, ) summability of double
orthogonal series are known.

TueorEMm 1. If

(2]

{10) Y @k [log(i+2)]* [log(k+2)]? < 0
ik

then the series (9) is a.e. (C, (0, 0) summable to its L*-sum. (See 1], Theorem
8.1)

TueoreM J. Suppose that either
B a>0 8=0 and

o

a1 L aix[loglog(i+ 412 [log(k+2)]* <-co,

Lk=90
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or
i) =0, $ >0 and

(12) .Y af [ogli+2)]? [leglogk+4)1 < w0,

k=0 .

or
(i) >0, f>0 and

(13) Y af, [loglog(i+4y]* [loglog (k+4)]* < cc.

Lk=0

Then the series (9) is ae. {C,(x, f)) summable to its L*-sum. (See [3],
Theorems 1 and 2.)

For [C, (¢, /)], summability, «, 8 >4, Méricz ([3], Theorem 6) proved

TuroreM K. If ¢ >4, B >4 and the condition (13) is sarisfied then the
series (9) is a.e. {C, (x, B)), summable to its L*-sum.

Remark, Taking A = 2, by Theorem B, we can easily deduce case (iii)
of Theorem J from Theorem K.

The aim of this note to prove the following

TuroreM. Let 0 <v <y, p 2 2, and let one of the following conditions be

satisfied:
@) «, ﬁ >1—1/u and (13) holds.
(i) ¢=1—1/u, B>1—1/p and

(i Y af [log(i+2)][loglog(k+4]* < oo.
ik=0
(i) s—~l/p<a<l—1/p f>1—-1/u and '

«

(15) ¥oai(i+1)peoueTe [loglog{k+4)]* < co.
k=0
(iv)e=p=1—1/u and
(16) § at[log(i+2)] [log(k+2)] < co.
iLk=0 .

W -lp<a<l-=1/p f=1-1/n and

(17) Y af i+ 129 [og(k+2)] < co.

k=0

vi) d=1/p€a <1—1/p 4=l f <1—1/p and

{18) | i a,‘ I..|_12(1 1/~ a}(k+1)l(1 Ye—8 < o
ik=0 .
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(vii} oo > 1—1/p, p=1-1/u and

(19) i a?, [log log (i +4)]* [log(k+2)} < 0.
LE=0
wiil) & > 1—1/p $=1/p<p<1-1/u and

oo

Y a}[log log (i +4)]* (k+ 1)~ Ve A < co,
ik=0
(ix) ¢ =1~y 3—1/u<p <1-1/u and

T a?, Clog(i+ 2Tk +1)*1 "1~ < oo

Lk=0
Then (9) is ae. [C, (a, )], summable to its L2-sum.
Remark. For u=2 in case (i) we recover Theorem K.
CoroLrary. Let p> 0. Under the condition (13),

W;Zo kzojslk (X)=f (X)F =o0,(1) ae as min(m, n) >0,

where f is the L2-sum of the series {9).

Proof. If x> 2 then for « = f =1 we immediately get the corollary
from case (i) of the Theorem. H 0 < u < 2 then the [C, (1, 1)], summability
is obtained by case (i) of the Theorem. Furthermore, taking A = 2, we may
apply Theorem A to get the ae. [C, (1, 1)], summability of the series (9) to
its L2-sum. .

2. Auxiliary results. Using the method of Mdricz, we prove the following
two lemmas.

LemMa 1. In the cases (i} o > %, (i) « = %, (i) —1 <« <4, the conditions

(20) § ary [log(k +2)]* < oo,
Lk=0
(21) Y ahflog(i+2)] [og(k+2))* < w0,
k=0
and

(22) ab (i+ 1) "2 [log(k+2)]* < w0

ir-1s

L= 0
respectively are sufficient in order that
ap+1

(23) 277 Y 22| =0.(1) ae as p—oow,

m=2F+1

uniformly in n.
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Proof, First, assume that n=2% g=0,1,... B
inequality we get

vy (3) and Cauchy’s

ap+1
277 Y e ()
mm 28+ 1
ap+l m 2
=277 Z |(Af,ﬁ,'))—1 Z Z A::il)iai.k@i,k(xﬂz
m=2P+1 1=0 k=0
2nt1 g=1
=27 ¥ | (a3
me=20+1 1= 2
m 2t+1
XADTTY T AL e (9)E+d)
i=0 k=2t

2p+1 -1 f4.3\2 m att1
gz"P Z ( (A(u)) |Z Z A(ﬂ 1)

m=2P+1 ‘““2 i=0 pegisg
. 2\ i 2
Xlai,k‘fpi,k(x)| ) Y (@+3)
t=—2
o . apt1
<427 3 EH3 L A
m=2P+1
m 21+1
X|Z Z A‘(a Ulalkfplk(x)l
=0 g=2t+1
where the convention
od x —1 fort=—-2
(24 o for t = —1
has been used.
Let us introduce the function
. t+3) aptl m a1
F=3 3 YAy Y ARPiaen G
p=01t=-2 m=2P+1 i=0 g=3"+1
and integrate it over X. Then we can write
[F*{x)do(x)
1 o+ 1
o ((43) 2 I Sinz 2 2
=Y T L L X e
p=0 1= =1 m=2P+1 =0 p=ai+y
oa 2!+1

K,,Z Y Y [log(8k+27?
p=0 1= =2 penlyy
2p+1 . m
x27F Y (m+D)T® Y ( (m—i+ 1) 2242,

m= 2P+ 1 =90
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8

—i=1)2* 2% ad,

< K, i [log®k+2)1* Y (m+1)~ 2! i (m
k=0

m=0 . im0

=K, Y [log@Bk+21* Y i2aZ ¥ (m—i+1)* 2(m+1)" 21,
k=0 i=0

m=i

A usual computation shows that

K. (i+1) if a>4%,
<< K (+D) " *log(i+1) ifa=1,
K (i+1)~%1 il —1 <a<?.

Hence by (20)(22) Levi’s theorem yields F elL? in each case, which proves
that

ap+1
(26 27y 5:23(3" 0.(1) ae as p—co,
m=2P+1

uniformly in g.
Now, consider 29 < n < 2?%! g =0, 1, ..
ski's inequality we obtain

. Using (3) again, by Minkow-

2p+1
S R
m=12P+1
ap+1 m n .
<L 4T Y Y AR e e P
m=2P+1 =0 k=0 '
2pt1
<Y R
m=2P+1
2p+1
in- {a)y—
PR Y AT Y AP e R
. m=3P+1 =0 k=441
Setting apt1
(,0) {h- -
MEP 0 = (277 (A2
m=2P+1
m n 2
X max ‘Z 2 AN Piag o ()71,
we gt Meng20T1 i=0 p_sq44
.42p+1

27N max {27fF Y

(0,00 (43 211/2
z x
2q {nszqq\-l | mn ( )| j

m=2P+1
ap+i .
9 o 12
<277 3 @R PR+ MED (x).
m=2P41

icm
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Applying the Men'shov—Rademacher lemma (see eg. [2], p. 79) gives

m H
1)+ 2
[( max |Z Z A(m_il) lal',k (Pf'k(x)n dQ(X)
2 <n<24tl 120 pumyagy
m 2q+1
S K(log?2¢h) Y 3 (AT ital,
=0 p=20+1
and so we have
aG ol
Y Z M2 (x))* do(x)
p=0 g=0
o W a2ptl 2q+1
kY SEVTy e f Y agred.
p=0 g=0 m=2P+1 =0 p=ad4

Hence repeating the previous arguments we see that for each case of the
parameter «, the series

YL JIMED (P de(o)

p=0 ¢=0
cOnverges. By Levi’s theorem,
T Mg (x
p=0 ¢g=0
is convergent almost everywhere and its sum is in I2. This vields that =
(28) MG (x) = 0,(1)
Combining (26), (27) and (28) completes the proof. .

ae. as max(p, g) —* 0.

Lemma 2. Suppose that > 0 and that either
(i) @ >% and :

o

(29) Y af[loglog(k +4)]% < oo,
oF LE=0

(1) « z{: and (14) holds,
or

(i) —1 <a <4 and

©
(30) by a2 i+ 1) 2 [loglog(k +4)]* < co.
k=0

Then

ap+1 20+ 1

31 D D)

m=2P+1 p=29+1

Iz(a: ﬂ)(

2= 0,{1)

a.e. as p —*oo,

uniformly in q.
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Proof. By (3) and Minkowski’s inequality we get
aptl 2gt1
YT e

m=2P+1 p=29+1
ap+1 2q+1

_.:_{z-p*a Z Z |(A§;'PASF))_1

m=2P+1 n=29+1

m n
x T LD AR a0, (0 12

i=0 k=0
2ptl I'm Ae-l 2y1/2
S{z-—p 2 E Z A(a) laik(pzk(x)}
m=2P+1 =0 k=0

22t 24t 1w n gl D) 2172
+{2—p—q Z z Z Z A(u) la;ka1 k(x) }
X m=2P+1 n=2941 =0 k=24+1

m n A(a 1) A(ﬁ) .
Z Z A(a) (A('” l)mi,kﬁoi,k(x)

i=0 k=0

2p+1 24+1 211/2
+{2‘1"4 Y 3 }

m=2P+1 n=24+1

=T33 () + T (9+ T ().

First, we estimate T{(x). Using the convention (24) in the summation,

consider the sequence
at+1
£ Y @) (i=0,1,2,...,1=-2,-1,0,1,..)
k 2t+1
and the system

zt+1
(ar) ™! Gu@inlx)  F af £0,
oty = G L Gwontd
(pi.zt‘\"l(x) lf ll - 0
and observe that
2P+l ) m  g—1 2
(TR =272 3 |49 Y % AG-Miat o (0]
m=2P41 i=0t=-2

Then (29), (14) and (30) imply (200H22) for 4.
Now we may apply Lemma 1 to the orthogonal series

2 2 ahel(®.

i=0 =2
By (3), putting n=49—1 in (23} gives
(32) T8 (x)=0.{1) ae as p—o0,

uniformly in gq.

icm
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: 2 .
Next, we estimate T, (x):

oo s}

Y ¥ (1752 ) detx)

=0 g=0
ap+1l 2a+1

5 K, i i 27 Z Z Z z (m_i+1)2n~2

p=04¢=0 m=2P+1 n=29+1 =0 k= 24+
x{m+1)"*i*ad,

w m 2q+1 .

Ka§ Y Y Y (mei+ )P Hme 1) a],

m=2 g=0 =0 944

<K, Y ¥ Y (m—i+ ) Em+1)" i%ad,
k=2 m=01i=0
=K, Z Zl aty Z (m—i+ 1) 2 (m+1)" 21,
k=2 i=0 m=i

Now (25) shows that

.K,,'Z'a,-":,‘ ifa>i
fk=0
Y IR P de(x) < K, zﬂaiz.k [og(i+2] ifa=%,
mg=0 ik=

" 5]
K, T ak(+)'"* i —1<a<i.
Lk=0

Hence, by (29), (14) and (30) we may apply Levi’s theorem to get

(33) T (x) =o0,(1) ae. as max(p, g) —>o.

Finally, we estimate T3 (x):

o oo
Y Y NI de(x)
=0 g=0
w0 2pF 1 28+1 m
<K, Z z 2-p=4¢ Z Z ): z (m_l+1}2a 2
p=0 g=0 m=2P+1 pe20+1 170 k=0

APy Y,
x(m-+ 1) ( Yo —1) i*al

<K T T o) Y Y tnmid

m=01=0 i=0k=0

99
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x(m+ 1)~ 21 (Af“ﬂ‘)" - 1)2i2 a2
A(ﬂ) ' ik
n

: f: (m—i+ 1> 2(m+ 1)~ "1

(5 oo (221))

Since for any positive f,

L (A
T o) ( it

2
) <K, (k=0,1,2,..)

(see [3], (4.9)), (25) shows that

Kl.ﬂ Z a,%k lfa >%,
Lh= 0
o
ZO NTZ 0P da(x) = 1 K,p Y af [og(i+2)] if a =1,
I k=0

Kep Y. ah(+D7% i —1 <a <},
k=0

and again (29), (14), (30) and Levi’s theorem give

(34) T3 =o0.(1) ae as max(p, g) - 0.

Finally, by (32), (33} and (34} we have (31).

The following two lemmas are analogous to Lemmas 1 and 2, 50 we
omit their proofs.

Levma 3. In the cases (i) f> 4, (i) B =4, (i) —1 < B <3, the condi-
tions

[~a]

2, anllog(i+2)]* < oo,

k=0

ol

3 o Dlog(+ )P og+2) < e,

-9

Y. allog(i+2)1?(k+1) "% < oo

k=0

icm
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respectively are sufficient in order that

24+1

(35) D)

n=29+1

ol G = 0,(1)  ae as g = o0,

uniformly in m.

Leémma 4. Suppose that « > 0 and that either
(i) B >% and

(36) Z aﬁk[log[og(i+4)]2<w’
k=0
or
(i) § =% and (19) holds
or
(i) —1<p <} and
67 Y ak [loglog(i+4) 2 (k+ 1)1 ™% < oo
k=0 . .
Then

op+l  pg+l

(38) 27eme ¥ TSR =0,(1)

m=2P+1 n=29+1.

ae. as g =,

uniformly in p.
Finally, we prove

Lemma 5. Let one of the following conditions be satisfied:
(i) a, B>4% and
o .
(39) Y af <.
k=10

() a =4, f>1 and
w

(40) )

i,k=1)

(i) =1 <a<4, >4 and

aix[logli+2)] < oo,

o

(41) Y af(i+1) 7 < oo,
Lk=0
(iv) a =B =14 and (16) holds
V) —1<u<i =% and
(42) T @i+ 1)1~ [log (k+2)] < .
k=10

2 — Studin Mathematica XCI2
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i) =1l <a<d, —1l<f<tand

o

43) Y ab (1) ek 1) < oo,

Lk=10
(vii) & > %, B =% and

e ]

Y, afDog(k+2)] < 0.

k=0

(vii)) & > %, ~1 <p <4 and

ol
Z ctiz,k(t'c—l—l)"""‘9 < 0.
Lk=0
(ix) a=3% —1<pf <1 and
o
Z a2 [log(i+2)(k+1)' "% < o0.
k=0
Then the series
a0
44 B2
(44) 3 e e
converges a.e.
Proof. By (5) we get
- {ec, B} 2
mzo "ZO m+1 (n+1 {IT n (x)l dQ(x)
1
K — 2e—2
,ﬂmzo "Zo(m+11+2a(n+1)1+23120k20 i+1)

x(n—k+ 1222 k2 g2,

mn " o«
=K,p . 2 2k ad (Y m—i+ 1) m+1)" 1)

i=0 k=0 m=i

o

(Y (n—k+1)2P" 2 (n41)"21),

n=k

Hence using (25) and applying Levi’s theorem yield the assertion.

3. Proof .of the Theorem. Our proof is divided into two parts,

Pgrr 1. In this part we prove the Theorem for p =2 omly. The argu
ment is based on Theorem D, so we have to show that the series (9) is au
(C, (2, B)) summable to its L2-sum (see also Theorems A and C) and the
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M

N
45 R B ()2 —
) (M+1) T, &, 7 0l = 0 (1),

M N
—_— (Gﬁ) )
46 DT L, & R = o,

1 M N

—_— (aﬁ .
(M+1)(N+1),,,ZO,,§:OI R Gl = 0.1

a.e., a8 min{M, N) = 0.
Take the integer w such that 2*~! < M < 2¥. Using the convention (24)

(47)

for w and p. we can write for M —0 1,2, ...and p=0,1,2, ...
1 M
- {2, 0) 2 {ax, 0)
1L HR P S z s
2 w—1 1 2p+1
= 2 27 T 12D (7
A S e 2”*2"122‘”+1

The estimate (23) means that there is F, €L* such that for p= -2,
—1,0,...and n=0,1,2, ...
ap+1
27PN 29O P F(x)  ae,
m=2F+1
and furthermore, for any positive ¢, there is a number » = %, (s) such that if
p>x then for n=0,1,2, ...
2p+1
2772 Y B0 <e  ae.
m=2P+1
Hence we see that for M=0,1,2, ... and n=0,1,2, ...
M

(M+17L Y 222001 <4F (x)  ae.

m=0

Furthermore, assuming that M > 2**? we have

M+1)7! Z |z’ CON*

aptl

1 .
p+2__ (,0) 2
2w+1( Z’ + Z 2 2 Z sz.ﬁl (x)l > .

p=-2 p=x+1 =2P 4

so the right-hand side is ae. small uniformly in n if M is large enough.
Thus in the case o > — 1, § = 0 we have shown (45) under the assump-
tions of Lemma 1.
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Now take the integers w and v such that 2¥~' < M < 2% and 2°7!
< N < 2°. Using the convention (24) for w, », p and g, we can write for M
=0,1,...and N=0, 1, ...

1 W
i {x.8) R (aﬁ)
(M+1)(N+1) mzo E s (2'“+1 2+ 1) Eo ;Zo'z'""

4 Wil t:il N 1 2%1 2'?Z+1 (ﬂ »
S — e M (2
(2w+1)(2u+1) s Pt 2p+22q+2mm2p+1 n=24+1| (x)F
The estimate (31) means that there is F, eL? such that for p = ~2,
—1,0,... and ¢g= -2, -1,0,...
ap+l g+l
27em22mam2 Y >
m=2F+1 n=29+1
and furthermore, for any positive & there is a number s = s, (g) such that if
p>x then for g = -2, -1,0, ...
ap+ 1l 24+l
et 3y
m=2P+1 n=24+1
Hence we conclude that for M =0,1,2, ...

2l (P < F2(x)  ae,

lZ80 () <e  ae.
and N=0,1, 2,...

METETD ZO Zolzﬂ‘ff’ (O < 64F, () ae.

Furthermore, assuming that M > 27!, we have

AFy(x) & T e
Seeney, s 2

p=—2g=~2

(M+l)(N+1) Z Z ez (3 <

m=0 n=0

w—1 v—1 ®
bR e SEOZT

‘e N=0,1,2,..).
QD@D 5 2 M ( )

Thus (45) is satisfied in the case « > —1, f > 0 under the assumptions of
Lemma 2.

Beplgcing (23) and (31) by (35) and (38), respectively, we can prove that
(46) is satisfied in the case @ =0, 8 > —1 under the assumptions of Lemma

3, and in the case « >0, f > —1 under the assumptions of Lemma 4.
The identity

1 1 M-1 N-1 m L]
— m+1 Bt Dby, = e b;
(M+1)(N+1)m20 n§0( ) ’ (M+1 N+1} ngo rI;O (t—ZO kzo k)

1 M-=1 m N N—

N+1 nZO (iZO kzobl k)+ 2 Z bik,

:OkO

M+l m=0 (igo kg() bl =

icm
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with

| (aﬁ)(x|

™ 1 (n+1)
shows that the convergence of the series (44) implies (47), ie. (47) is satisfied
under the assumptions of Lemma 5.

It remains to show that a suitable test for (C, («, f)) summability and
Lemmas 1-5 are applicable in cases ({}-{ix) of the Theorem. Since (vii), (viii)
and (ix) are analogous to (ii), (iii) and (v), respectively, we investigate (i{vi)
only.

In case (i), « > % and § > 1. By (13), we may apply Theorem J(iii), and
so the series (9) is a.e. (C, («, f)) summable to its L>-sum.

On the other hand, (13) implies (29), (36) and (39), which yields the
assertion of the Theorem.

In case (ii), « =4 and § >4%. Then (14) implies (13), so the (C. (x, )}
summability is obtained as in case (i). Furthermore, applying Lemma 2(ii),
we have (45). The conditions (36) and (40) follow from (14), which completes
the proof in this case.

In case (i), 0 < a <% and § > %, Then (15) implies (12) and {13), so the
(C, (2, §)) summability is obtained from Theorem J(ii),(iii). Here u =2, so
(15) gives (30), and applying Lemma 2(iii), we have (45). By (13), we may
apply Lemmas 3(i) and 4(i) to get (46) Finally, (41) follows from (15) and we
have the assertion.

In case (iv), « = B = . Then (16) implies {133, so the (C, (x, f)} summabi-
lity is obtained as in case (i); furthermore, applying Lemma 5(iv), we have
(47). The conditions (14) (see Lemma 2(ii)) and (19) (see Lemma 4(ii)) follow
from (16), which yields the assertion.

In case (v), 0< « <3 and B = 4. Then (17) implies (12) and (13), so the
(C, (2, B)) summability is obtained as in case (ili). Furthermore, for u =2,
(17) implies (42), and applying Lemma 5(v), we have (47), For p =2, (17)
implies (30), so we have (45). Since by (17) we may apply Lemmas 3(i}) and
4(ii), we get (46) and the assertion of the Theorem.

In case (vi), 0 <o <% and 0< B <3, Then (18) implies (10}{13), so
Theorems I and J yield the ae. (C, (2, §)) summability of the series (9) to its
L2-sum. For pu =2, (18) gives (43), and applying Lemma 5{vi), we have (47).
The conditions (22) and (30) follow from (18), so we get (45). By using
Lemmas 3 and 4, we get (46) in a similar way, which finishes the proof in the
case u = 2.

Part 2. Assume that p > 2. Our proof is based on Theorem H(i} with 1
=2 '

In part 1 we have shown that the series (9) is ae. [C, (&
to its L?-sum in each of the following cases:

, F1, summable
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@y @ F >4 and {13) bolds.
() =4, B >4 and (14) holds.
() 0< &< f>1% and
Y at i+ 1)t~ #[loglog(k+4)]* < .
LE=0
(IV) &= =4 and (16) holds.
(V) 0<a<3 =1 and

‘ioagk(wnl—m(mnwﬂ <0,
(VII) >3, B=,% and (19) holds.
(VII) @>3%, 0<f <% and
.gnafk [loglog (i+ 41 (k+1)' 2% < 0.
(IX) @ =4, 6<E<% and
éoaﬁk[}og(z’+2)](k+1).1‘2ﬁ< 0.
Writing |
a=d+i~1/p, B=pF+3-1/n

we observe that cases (D—{ix) of the Theorem give (I)-IX), respectively. Hence
we see that under the assumptions of the Theorem, the series (9) is a.e.
[C, (&, B)]> summable to its L*-sum. Applying Theorem H(i), we get the a.e.
[C, (2, BY], summability of (9) to the same sum.

Finally, replacing the pair ‘A, p by u v and applying Theorem A
complete the proof.
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FRRATUM

Linc 4 on p. 96 is missing. It should read:

{25) i‘(m——i+1)2"2(m+1)‘“‘1
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