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Locally analytically pseudo-convex topological vector spaces

by
JAAK PEETRE (Lund)

Abstract. A notion of (analytically) locally pseudo-convex topological vector
gpace is introduceed. In particular, wo show that an Oxlicz modular space Ly, is locally
peendo-eonvex in this seuse if and only if there exist a convex function ¢ and numbers
a and B such that fp(aw) < y(logw) < p(x).

0. Introduction. It appears that there is not yet in the literature
an adequate treatment of (analytic) pseudo-convexity(*) in the context
of general not necessarily locally convex topological vector spaces.

In this note wo thercefore propose (Sec. 1) two definitions of locally
preudo-vonvex topological vector spaces. In particular, we consider the
case of funetion spaces. More precisely, we find (Sec. 2) that a function
space iy locally pseudo-convex. essentially if and only if it is “locally
logarithmieally convex”. This corresponds to a classical 1esult for Rein-
hardt domains in several complex variables. In particular, our result
can be applied to the case of Orlicz modular spaces. It turns out (See. 3)
that such a space T, is locally psendo-convex if and only if there exists
a convex function v and positive numbers ¢ and § such that fp(aw)
< w(logw) < ¢(#). Moreover, as remarked by the referce, by virtue of
a result by Matuszewska and Orlicz [5] if I, is locally bounded then L, is
automatieally locally pseudo-convex. On the other hand, not all locally
bounded topological vector spaces are pseudo-convex as shows a Inosb
ingenious exwmple (See. 4) constructed by the referce. 7

Not surprisingly the author was led to the present investigation
from tho point of view of interpolation spaces. This connection is briefly
indicated in See, b.

My thanks ate due to Joran Bergh and to Michael Owikel for
precious aid in connection with this research. I also thank the referee for

() The word “psendo-convex” has already an established meaning in the
theory of fopological veetor gpaces. Therefore we have (following a suggestion of
the reforee) apponded in tho title the extra qualification “analytic”. However, for
simplicity we will not use it in the paper-proper, since in the present context no con-
fusion can atise. . ) ‘ ' : : : :
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most va.lua.ble eriticism which lead to a considerable expangion of an
earlier version of this not‘o, only dealing with the Orlicz situation. As we
have seen geveral of the mogt striking results of the note originate from
him, ' o

1. Locally pseudo-convex topelogical vector spaces. Let B be a se-
parated topological Vector space over C. If B is not locally convex it is
not clear what one should mean by a holomorphic function with values
in B. We argue that at’ ]ea,st for a function f, defined in an open subseb
(“domain”) D of C, whose ' Tange is contained in o finite dimensional
subspace L of F, fhere is no ambiguity: f is bolomorphic i and only if
all functions of the type Aof, 4 a linear functional on I, are holomorphic
in the usual sense. Such a’function f will be termed finite-holomorphic
for short. We therefore adopt the following point of view. We declare
a function f defined in D with values in B to be holomorphic if it is in
the closure of the finite-holomorphic functions in the compact open
topology, i.e. if U is any neighborhood of 0 in F and K any compact
subset of D there should exist a finite-holomorphic function i such that
fHit)—fty e U for teK.

A rea.l-valued upper semicontinuous function kb defined in an open
subset 4 of E can now be called plurisubharmonic if hof, is subharmonic
whenever f, is finitefllolomorphic with range contained in 4. For example,
convex funetiong are plurisubharmonic in this sensge.

It is éasy to see that then the maximum principle applies to hof
if f is holomorphic in the above sense.

Regarding pseudo- convexmy we shall work with the following two
conditions:

(I) For every neighborhood U of 0 in F there exists an open starghaped
neighborhood V of 0 contained in U and a plurisubharmonie function
defined in ¥ such that 7(0) < 1 and such that the closure of the seb
{z]| h(2) < 1} is contained in V.

(II) For every neighborhood U of 0 in H there exists a neighborhood
¥, of 0 with the following property. Let f be any function defined and
continuous in D and holomorphic in D, where .D is any relatively compact
open subSe‘o of ¢ with closure D fm(l boundary &D. Then f(6D) < V,
implies f(D) = T.

We sa.y that B is locally (I)-pseudo-conves it (X) is fulfilled and locally
(IT) -pseudo-conven it (IT) is fulfilled.

PROPOSITION. Every locally (L)-pseudo-convem space is locally (LT)-
pseudo-conves.

Proof. Let U be any neighborhood of 0 in our space B and pick

up V and & fulilling the requirements of condition (I). We ghall show that
the requlrements of condition (II) are fulfilled with V, = ={2| 2eV, h(z)
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< 1}. Qlearly, V, is o neighborhood of 0 such that V, = ¥V, c V< U.
Let f and I be as in condition (II). Assuming (D) « V, we have to
prove f(D) < U. For 0<< e+ 1, te D wo define f,(8) = ¢f(#). Then f, sa-
tigfies the same conditiony as f. Seb

8 ={s] 0Ke<1, f,(D)c V}.
Then we have:

(i) § is an interval containing 0: Obvious since V is starshaped.

(ii) 8 is open: Indeod, let g, e 8. Then every ty € D has a neighbor-
hood N such that for somoe » > 0 holds f,(t) € V for 1 e N and je—eo| < 7.
Sinece D is compuyct wo can cover D with gets N,, ..., N, corresponding
to nambers 1y, ..., 1, > 0. 8o woe get f,(D) = V fox |€-€ol < min(gy, ...

vy M)

(i) 8 is closed: This is really the point. Let ¢ & §. Then hof(0D) < L
Therefore by the maximum principle hof,(D) <1 so that f,(D)
c V,e V, = V. Noxt let &, be a sequence in § tending to &. Now ifie D
we have f, (1) e V,. Therefore f,(t) € ¥, and we have shown that f,(D) =« V
which again implies ¢ € 8.

Trom (i)-(iii) finally follows 1e 8 and f(D) =V <« U.

Rewmark. The above proof as well as the definition of pseudo-con-
vexity ave modelled on classical ideas in several complex variables (see
e.g. [2], Chap. 3).

We do not know if the converse of the proposition is true.

If B is locally convex (in the usual sense) it is clear that F is locally
(I)-pseudo-convex and thus also locally (II)-psendo-convex. Indeed, (T)
is fulfilled if we take for 7 an open starshaped neighborhood of 0 contained
in U and set h = 2pp, py the corresponding semi-norm.

In See. 3 we will see that there exist topological vector spaces which
are neither locally (I)-pseudo-convex nor locally (II)-pseudo-convex.

Asgame that 7 is locally bounded. Then the topology can be defined
by a quasi-morm which always can be assumed to be continuous. More
precisely, wo will then have a basis of neighborhoods of 0 of the type
U, = {z| 2 e, |¢|| < a}. The above conditions (I) and (II) now take
the formn:

(I'y There exists a pluxisubbarmonic function k defined in U s}uch
thati h(0) < 1 and such that the closure of the set {z| h(z) < 1} is contained
in U,.

(Il Lot f be any function defined and continuous in D and holo-
morphie in D with values in H. There exists a number a >0 such that
f(8D) = U, implies f(D) « U,. In other words, with ¢ =1/a holds the
inequality

sup [|If (4l < Osup [F ()]
teD i=aD>
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In Sec. 4 wo show that not all locally bounded spaces fulfil con.
dition (IT’). :

‘2. The case of general function spaces. Ior the sake of simplicity
we confine our atbention to the case when the underlying measure space
is the interval (0, o0), with the usual measure duw.

By a function space we now mean a topological vector space B the
eloments of which are complex-valued measurable functions on (0, oc)
with the usual definition of the algebraic strusture, possessing the foli
lowing property:

(T) Every neighborhood. U of 0 containg & nc:ighborho’od U’ such
that if z e 'U’n Bty w—a measurablo funetion with Jw| = 2, then we U.
(Here and in the sequel E™ denotes the set of positive clements in A.)

This corresponds fo the definition of Reinhardt domain in soveral
complex variables. ’ .

. For technical reasons we are also going to assume thab gimple fune-
tions are dense in H. : .
) The following results too oxtend to our situwation classieal rogults
in several complex variables. Wo bogin with

ProrositioN L. Let B be a function

space as ahove. If B is local
(IX)-pseudo-conven then ‘ T ‘ow”y

(>x‘<*) Every neighborhood U of 0 in Il containg o neighborhood U' such
(that if 2, we U'NnE" then 2 w' e U whenever A & (0, 1).

‘ (A space satisfying condition (xx) might be called “locally logarith-
mically convex”.) T

" Rz?majrllj. By iteration (xx) of course gives: If 2y ey 2y € UnBT
hen 2" ... #," € U whenever 4, 4-...4-4, = 1, 4, iy Ay 22 0.

) Proof. Let thus B be locally (IT)-pseudo-convex and consider arﬁ
nelg.k}borhood U of 0 in B. Let V, be the corresponding noighborhooi
prowdec} by con.(lition (II). Wo wish to show that eondition (k) ig Lul-
f.l]l(?d v_vfuh a ‘sm'hable choice of T, namely the same neighborhood U
which is qbtmned if we in condition (x) roplace U by V. With no loss
of gemerality we can also take U to ho closed hut U o{mn. Wo lot /)
={t| teC, |t‘[ <1} (unit disk) and take f ot the sp(mi.u;l form,

n

) = Doy,
Jpr=],
where each y, is thg charactorigtic set of an interval I, = (0, co) (80 that
Jic 1(lt)ﬂﬁor every teD is a simple function) and g, = wu,--iv, is holomorphic
e ordinary sense (g, is a scalar function!), Now the condition f(oD)
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c V, clearly (in view of (#)!) ig fulfilled if

n .
2 ey e U’

Jomnl

for all 0 &[0, 2x). Similarly if f(D) < U then follows in particular
" 1 arn
£(0) = lwzlexp (%of M,c(a*“)cw) 2,eU.

n n
Noxt consider tho simple functions 2 = 3 a,y, and w = Y b,y in T
Joma) k=1

where wo can agsume that ay, b, > 0. Wo define u, by the formula

loga, if
1Ogbln if

; 6el0,2m(1—2)
10 H ]

6') = ‘
wu(e") { 0 e [om(1—1), 2n)
where 0 < A < 1. The corresponding f is then not contintous on 9D but
uging an approximation argument we still can draw the conclusion allowed
by condition (IX). We conclude thatb ‘

w
£0) = N @y, = o~ Muf e U.

o=l

8o we have verified the property roguired in condition (#x), for simple
junctions z, w. However, since wo have assumed that simple functions
are dense in B and that U is closed and U’ open it is easy to see that it
holds in general. Thus B is “locally logarithmically convex” and the
proof is complete. m

In formulating the result in the opposite direction we are faced with
a slight complication, mainly on the notational level. Since we have
obtained a definite result only in the case of Orlicz modular spaces (Sec. 3) —
and in that cago there is no problem —we will not unduly stress on this
point now. The problem. is that we have to tale the logarithm of clements
in B*, thereby introducing measurable functions which in general also
tako tho valuo —oo on a goti of positive measnre. Thus log I cannob
be imbedded in a voetor space. Xowever, it is clear what wo shall mean
by the convex hull of logZi* or a subset thorcof. This is obtained by
taking functions of the form. 3 A loge, with 2, e Bt 4,20, Y4, =1
Tikewiso it is clear how to define the notion of convex function on log I
or a subset thereof. This is a function w such that u((l-l)a+,1b)<
(L —A) w (@) - Au () for 0 < A< L.

Weo can now formulate ‘

ProrostrioN 2. Let again B be a function space and assume that


GUEST


258 J. Peetre

(") For every neighborhood U of 0 in B there ewists an open siar-
shaped neighborhood V of 0 contained in U and a convex fumction u defined
in the convex hull of log|V| such that the composition wolog is upper sems-
continuous (in the topology of E) and such that the closure of the set
{z] u(logle]) < 1} is contained in V.

Then B s locally (I)-pseudo-convew (amd thus a fortiori, by the prop-
osition of Sec. 1, locally (II)-pseudo-convex).

Proof. We take of course b == nolog in condition (I). There remaing
to check that % is indeed plurisubharmonic. That is (ef. Sec. 1), we huve
to verify that w(log|f;]) is subharmonie provided f, is finite-holomorphie.
This follows of course from the classical fact that the logarithin of the
modulus of a holomorphic function ig subharmonic. m

Remark. The plausible thing to expeet is of course that 7 iy locally
pseudo-convex, in either sense, if and only if B iy “locally logarithmically
convex”, i.e. satisfies condition (xx) of Prop. 1. However we have not
been able to prove it so the present arrangement is a bad temporary (%)
compromise. What is of course eany to see is that condition (') entails
(+x). (Just take U’ = {u(logle]) <1} and use the convexity of w.) In
Sec. 3 we shall see that the converse is true at least in the case of Orlics
modular spaces. On the other hand, as for giving examples of spuces
satisfying condition () the following lemma is useful.

LeMMA. Assume that for some p e (0,1) holds:

(+') Bvery neighborhood U of 0 in B contains a netghborhood U’ such
that if

oI? < Ay JealP e Ay 2,

1="ly+...+2, where 2 e U" and 3,20 (i =1,...,n) then z¢ U.

Then B is “locally logarithmically conven™, i.e. satisfies condition (wx)
of Prop. 1.

Notice that such a space is locally bounded, in fact even p-normable.

3. The case of Orlicz modular space (for definitions see e.g. [6]or [8]).
Let ¢ be an increasing function on [0, co) with @(r) > 0if v 5 0, lime(r)

R Topf)
= @(0) = 0. L, is the space of measurablo complex-valued functions 2
on (0, o0) such that for gome a > 0 holds

fwrp(li(?—l) dw < oo,

Olearly, L, is a vector space and we get a natural structure of topological
vector space by taking as neighborhoods of 0 the sots

Uaﬁ=[z|fq:(|f—%@—l)dm<ﬂ} with o, 8> 0.
]
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(One readily verifies that U, Uy < Ugp, i By 228, ay>2a which
proves the continuity of addition.) Clearly condition (%) of Sec. 2 is ful-
filled so we have a function space in the sense of See. 2. Tt is possible
to prove that [, is complete (which by definition entails separated).
Since wo can obviously do with a denumerable subset of the Uy, We
thus also have a complete metrie topological vector space.

Lot @, bo another function satisfying the same assumptions as ¢.
One can show (see [H]) that onoe has a topological linear imbedding L, = Izq,1
if and only if for some a, f# holds ¢,(v) < fp(ar) for all v &[0, o). In
particular, L, snd I, coincide as topological vector spaces if and only
if for some a, f, o, f* holds p'o(a'7) < gy (v) < Pp(ar) for all v &[0, o).
Weo then say that ¢ and ¢ are equivalent functions.

Reeall (seo 0.8, [4]), that ¢ satisfies the 4,-condition if for some ¢ > 0
holds ¢(27) <% ¢p () for all z € [0, o). By iteration we then also have
(2"7) < op() (M =1,2,...) The following lemma i3 classical and will
not be proven hore.

YemMA. If o satisfies the Ay-condition then the set of simple functions
an L, is dense in L,. w

Wo can now gtate the main positive result of this paper.

Tumornm. Consider the Orlics modular space L,. Then L, is locally
‘pseudo-conven in either sense if and only if there ewists a convew function v
on R = (=00, ca) and nwmbers a, > 0 such that

() B (fo) < p(loga) < ¢(o).

That 18, ¢ i8 equivalent to the composition ypolog.
Proof. (i) Assume that L, is locally (II)-pseudo-convex. In con-
dition (%) of Sec. 2, Prop. 1 take U = Uy, U’ = U,,; (with the appro-

"
priate a, f)and z; = 3 ¢ty A =1/n(j =1,...,n) where g, (b =1, ...
kel
v ®) are the clisracteristio functions of & family of disjoint
intervals I, < (0, ), each of measure m > 0. Then clearly

0w
Ngp(ojaym < B (61M5) mn < 1.
Jeal

This gives upon olimination of m

1/’5((1/'”) ZWW) < (1/n) 211’1(0'1)
Jeal Jr=l

where we have defined w, and v, by the formulas (p(af) = y)l(logm) _an_d
Bylax) = y,(logw), respeotively. Using the fact that ¢ is increasing it is
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not ‘hard to see that then

%(Ezja) Zz,«,;l i
=1 .

n
Diy=1, 420

Je=1
n
Let finally y be the largest convex minorant of y,, i.e. p (o) = inf > 4,9, (o))
n de=1
where o = 2 Zj 0y L= 4, %2 0. Then we gob w,(0) < (o). Sinco
f 1

obviously w(a) < (o) we have thereby established ().

(ii) Assume that () is fulfilled. Indeed, without loss of generality
we may assume that we have equality, i.c. ¢(#) = y»(logw). We can algo
take U = U, in condition (x«') of Sec. 2, ]’rop 2. It is clear how to clioose

fqv( ())dx, ie.
fw10g1~('v)l)d% L]

Now we fix attention to the locally bounded cagse. Then one hag
the following rather surpriging result. ‘

ProposrrioN (due to the referce). Buery locally. bounded Orlics mo-
dular space is . locally pseudo-conves. ‘

- Proof. In fact due to a result by Matuszewska, and Orlicz [6] (compare
Turpin [9], p. 77) one can, upon passing to an equivalent function if
necessary, take ¢ of the form p(v) = w(7?) where w is & convex function
and p e (0, 1). Then we can apply our theorem with ¢ (2) = (e which
obviously is a convex function, too. Alternatively we could have used
the lemma of Sec. 2. w

Remark. The result of Matuszewska and Orlicz [5] 1efem,d to aliove
in the proof of the Proposition can be obtained. along the following lines:
It is easy to see that L, is locally bounded. if and only if Ior overy > @
there existy 1> 0 suoh that ¢(i7) < fo(z) for all v e [0, co). Using sub-
multiplicativity it then follows that Lhew exist a p > 0 such that qo(}Lr)
< O2p(z) for all T [0, oo). Introducing the function

w(r) = inf 3 L)

where v = 3J7, 1= 31, Ay 2 0, which plainly is convex, we see that
@ indeed is equivalont Lo a function of the desited type. (Regarding this
construction see [7].)

On the other hand, returning to the abstract smuammn (See. 1) not

all locally bounded topological vector spaces are locally pseudo-convex,
a8 we will see in Sec. 4. ‘

the function w. Na.mely, we just take u( the cor-

responding f.unetlon h in condition (T) is A( z)

4. Construction of a locally bounded space which is not locally pseudo-
convex (by the referee). Fix p e (0, 1). Consider tho class 2 of all P-noT-
mable . quasi-Banach spaces, i.e. quasi-Banach spaces with a 2 guasi-norm
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sabisfying [loy -+ 2ol” < leall® + lel?. Tf every B in #" is locally (IT)-pseudo-

‘convex then the 1neqm11ty of condition (TI') helds with a universal -

constant ¢. For if X, is a sequence in ”// with constants €, tending to oo
congider the 1, sum of the X,.

Now let F be a Banach spayce with normmhzed Dasis 6, (m=0,1,.. )
eg. B = will do. Denoté the unib mll of B by B. Define

)7 2—-ntn

nnw() .
Let 7 be tho (loﬁod p-convox hull of the set {f(f)| ¢ €0.D}. For each > 0
Tet || [, be tho quasi-norm on B whose unit ball is the closed absolutely
p-convex. hull of F'unB. Then ||f(0)||, = C for cach 5 > 0. Letting #->0
wo obtain f(0) € CF. Thus for each n there exist finite sequences {ank}mm
in ¢ and {t,, ;'™ such that -

N(n)

D) Il < 07,

fosal

(te]))

N(n)

H 2 e () —f [ 5

Consider finally the moasures u, on 8D given by w, =

Nm)
2 Oz O - Then

the sequence u, has a weak*-cluster point » and v is purely atomiec, in
fact » has finite p-variation < €. Also
=1, [ra=0 i
oD an
since f(0) = ¢,. By the F. and M. Ricsz theorem this is impossible.

nz=l1,

5. Interpolation of locally pseudo-convex spaces. We restrict attention
to the loeally boundoed cage. Lot thus 4 = (4,, 4,) be any quasi-Banach
couple (seo o.g. [L]). T 4, and 4, ave locally pseudo-convex (in some
sense) there wrises the question whether there oxist non-trivial inter-
polation spuces with respect to 4 which again are lecally pscudo-convex.,
To this end lot us make the following additional hypothesis:

() The K-funetional is psendo-convex in the gense that if f iz a holo-
morphie function with values in X(A) then we have

Sup i (v, £(6); A) =5 Csup K (s, f(2); 4)

#el) salll)
with ¢ depending on 4 and where D is the strip 0 < Res < 1. (Recall
that

for € (0, o0)

K (s, a; A) == int (“ao”_Au -+ H%\IA,)

a= oy ay
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when & & (0, co) and ae X (d) = d,+4,) Then it is casy to soe that
the (real) interpolation spaces Zoq (0<0<1, 0< g o) are locally
(IT)-pseudo-convex. Furthermore, regarding the complex interpolation
spaces Ay, (0 < 0<1) one can prove that Z[,,] < 4y, (The opposite
inclusion A4, = Ay, is always true, with some ¢ > 0 depending on the
moduli of coneavity of A, and 4,.) The hypothosis (h) is fulfilled e.g.
in the cases (I, L™) and (H™, H*'), as a consequence of the more or
less explicit expressions for the K-functional in these eases (see [L]).

Romark. Complex interpolation of p-convex spaces has been con-
sidered by Riviére [8].
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