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Ratio limit theorems and applications to ergodic theory
by -
RYOTARO SATO (Sakado)

Abstract. Let f be a strongly Lebesgue measurable function from the interva.
(0, 4 oo)tio a Banach space (X, [+|) and ¢ a non-negative extended real valued Lebesgue
meagurable function on (0, + oo). Theorem 1 states that if e—3f(f) is Bochner inte-
grable with respect to Lebesgue meagure on the interval (0, + oo) for all 0 < 4 < + oo,
and if the limit

lim f Fay) /( ofb gHad) ==

b-r-toa g

exists, then

m ([ e=HF(d) /([ e~g)d) = .
affo(afe I () )/(ofe (@) = o

Theorem 2 states that if fe‘“[f )@t < + o0 and fe“"tg(t)dt< + co for some
0 < i< + 00, and if the hm1t

ff(t)dt/(fgt)dt .

l)—>+0
exists, then

0 oo
lim e~ i) dt eMgt)dl) = w
Jim (f etg0ad /(] oot a)
‘We apply these theorems to ergodic theory and deduce pointwiée Abelian ergodic
theorems from the corresponding usual ergodie theorems of the Cesaro type.

Introduction. Let (2, Z, u) be a o-finite measure space with positive
measure u and (X, |-]) a Banach space. Let L,(u, X) = L,(2, X, u, X),
1<p < +oo, denote the space of all strongly measurable functions f
from £ to X for which the norm iy given by

Wl = ( [If@)Pau)’® < +oo;
2

and let Ly (u, X) = L (2,2, 4, X) denote the space of all strongly
meagurable functions f from 2 to X for which the norm is given by

I lle = ess sup [flw) < 4 o0.
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Many authors have discussed pointwise Abelian crgodic theorems
for bounded linear operators 7' on L,(u, X) or for one-parameter semi-
‘groups {T}ocicioo 0f bounded linear operators on ILy(y, X). See, for
exanmple, Baez-Duarte [1], Bdwards [5], [6], Hasegawa, Tsurumi and
the author [8], Kopp [9]-[11], McGrath [12]-[15], Rota [16], and the
author [171-[19]. In this paper, however, we shall observe that pointwise
Abelian ergodic theorems follow from the corresponding usual ergodic
theorems of the Cesdro type. For this purpose we shall first prove the
general ratio limit theorems mentioned in Abstract.

The author would like to express his thanks to the referce for helpful .

comments.

Ratio limit theorems.

TeEEOREM 1. Lét f be o sirongly Lebesque measurable function from
the interval (0, + oo) to & Banach space (X, |-|) and g a non-negative ewtended
real valwed ILebesque measurable function on (0, 4 oo). Suppose e *f(t)
is Bochner imtegrable with respect to Lebesque measure on (0, 4 oo) for

all 0< i< +oo, and [ g(t)dt> 0. If the limit
) _

b b
(1) blirf ([ a) [foma) =
> g 0
ewists, then
@) Ali’fo ( Of e-“f(t)dt)/( f e-“g(t)ozz) =

(We define #/+o00 = 0 for all z € X.)

Proof. By Fubini’s theorem and Tonelli’s theorem (cf. Theorems
1119 and ITT.11.14 in [4]),

o0 00 &
(3) [eimas =2 e [fs)asat (0 <A< +o0)
0
and ' '
(4) [ gt)dt—-).f -“fg(s dsdt (0 <A< +o0).
0

Case I. Let fe““g(t)dt < oo for all 0 <1< +oco. Then we have,
[}
for every comstant 0 < M < -+ oo,

10

M 1
(5) lim lzf e*“f‘f(s>dsdt|<nm foMif(s)ms =0
H 0 A>40 ° .
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and
o !

(6) | lim [ ¥ [g (s)dsds = 0.

At g h

Write o +e(t) = (ff s)ds) (fg )ds), and given an &> 0, choose a real

constant M > 0 so that M < 1 << + oo implies. |e(¢)| < &. Then we observe
that

0 i © ¢
[e* [f)asat = [ e *(a+e(t) [g(s)dsdt
ir i M ¢

and that
[} 4 o H
| ortatn famaal<e fo fooman
s 0 M ’

(6) implies that
12

lim ( “fg(s)dsdt)/(}c> e‘“fzg(s)dsdt) =0,

Jort0 H

and hence, by an easy computation together with (5) and with the bound-

edness of ,
) t oo
| [ o™ [fis)as cltl /([ e [g(s)asa),
M 0 M 0

we can see that there exists a real number o> 0 so that 0 <1< 2y
implies

[aa—(f eHfwa)/( [ e"“g(t)dt)‘ < 2.
0 0
(Here we used equations (3) and (4).) Since ¢ is arbitrary, this proves (2).

Case IL. Let fe“O‘ 1) dt =
fg t)dt < -+ oo for aJll 0 < b < 4 oco. It is then enough to show that # = 0.

+ oo for some 0<iy< oo, but

If this is not the case, then there would exist a real constant M > 0 such
that M <it< +oco implies |@-4-e(t)| > #]/2(> 0).. Then, for every
0 < i< Ay,

o0 ¢ 0 t
= (|o]/2 fe f s)dsdt < fe"“|m+e(t)[fg(s)dsdt
i b 0
-] i [
<[e? f s)ldsdt = (1/2) [ eI f()]dt < + o0,
0 0
which is a contradiction.
b
Case IIL. Let [ g(t)dt =
Q

the proof is frivial.

400 for some 0 < b < 4-co. In this case,
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»

The proof is complete.

TaEOREM 2. Lel f be a strongly Lebesgue measurable function from the
interval (0, 4o0) to a Banach space (X, |-]) and g & non- negati'ue ewtended

real valued Lebesgue measurable function on (0, -+ oo). Suppose f 6—;'0’5 [f(0)dt
< 400 and fe“°‘ §)dt < +oo for some 0 < Ay < oo, amd fg Yt > 0
for every 0 < b < +oo. If the limit

b b
(1) l}ililo ( Of £(t) dt) / ( of g(t)dt) =
ewists, then
(8) AETWU e (1) dt)/( f ey t)dt) = 2.

Proof. We shall first prove that, for all 0 < L < +oo» and all 0 < M
< oo,

=3 M
8 s ( Fersgoai/([ o) -
and
(10) T Lf eHg(tyat)/ ( f ey (t)dt) = 9.

To see this, we may and do assume without loss of generality that
0 < M <L < -+4occ. Then, since

| [ e )< [ o™ flat< o5 [ | f(1)]dt < +oo
L L L
for every A, with 4, <1< 4 o0, and sinece
M M :
[ eHgyar> e“Mf gyl (0 <A< -+ o),
0 0
it follows that

o0 M
1iix:i1:op| Lf el of o g () ai)

"“"If( I

< limsup | e~*E-Mghotl | _,
A-s400 1w
J g@wyar

This proves (9) and hence (10).
Let us write, for 0 <t < 4 oo,

i 3
foy = [fle)yas  amd  §(t) = [g(s)ds.
[} 0
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We then obtain, using (3) and (4) and applying (9) and (10) to f and §
instead of f and g, respectively, that, for every constant 0 < a < -+ oo,

(11) M]iil; ( fe"“f(t)dt) /| Of oG (1) dt) =0
and
(12) Alifi, ( fw e H(t)at) /| nf 6THG () at) = 0

Put x4t (ff(s ds)/( g(s)ds) for 0 <#< +oo, and given an

&> 0, choose a real constant a> 0 50 that 0 <i< a implies [e(f)] < e.
Then we have

t
[e* [f(s)dsdt = fe m+e(t)f()dsdt

and
a ¢ a t
Ue‘“e(t)fg(s)dsdt‘ < sfe‘“fg(s)dsdt.
[1] [ 0 0

Therefore, nusing (3) and (4) and applying (11) and (12), we see, as in
the proof of Theorem 1, that there exists a real number g > A, such that

e~Hf(tyat

—3g

< 2¢

So

g (t)db

s

for all 4, with f <A< + o0
This completes the proof.

Using essentially the same idea as in the proof of Theorem 1, the
following theorem can easily be proved, and we omit the details.

TuroreM 3. Let (x,} be a sequence in o Banach space (X, |-|) and
0
(an) a sequence of mon-negative real numbers, with J a,> 0. Suppose

n=0
2[%]’ < oo for all 0 <r< 1. If the limit

()

s s [ St)/[ She) =2

Ner-[-00

ewists, then

(14) lim (Zr m)/(z ) x.

r=>1—0 ‘30
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Applications to ergodic theory. In this section we shall apply the
general ratio limit theorems obtained in the preceding section to deduce
pointwise Abelian ergodic theorems from the corresponding usual ergodic
theorems of the Cesdro type.

Let 1< p< +oo and let Ly(u, X) be as in Introduction. Suppose
that {—f, is a strongly Lebesgue measurable function from the interval
(0, 4-o0) to Ly,(u, X) such that, for some non-negative real number i,

[ 1fdpde < 400 (A <A< +oo).
0

Then, by Theorem ITLIL.17 in [4], there exists a function g(¢, o) from
(0, +o0) x 2 to X, measurable with respect to the product of Lebesgue
measure and u, such that for almost all 0 < ¢ < 4o, g(¢, ), as a func-
tion of o e 0, belongs to the equivalence class of f, (e L, (u, X)). Fur-
thermore there exists a measurable subset B(f) of 2, with w (B (f )) =0,
sueh that if o ¢ H(f), then, for all 0 < b < +oco and all 4, <1< + o0,

b o

f]g(t, o)|di < +oo and fe-“{g(t, w)|dt < + o0,

0

and the Bochner integrals f g(t, )dt and f e t w)d¢, as functions

of w e £, belong to the eqmvevlence chsses of the Bochner integrals
ff,dt & L, (u, X)) and f e f,dt (e L,(u, X)), respectively.

In the sequel g(¢, w) will be denoted by fi(w).
The next theorem is a rather general result.

THBOREM 4. Lot 1 << p << +oo, let tisf; be a strongly Lebesque mea-
surable function from the interval (0, +o0) to L,(u, X), and let hy(w) be
a mon-negative ewiended real valued function on (0, 4 o0) X Q which s
assumed to be measurable with 'respect to the product of Lebesgue measure
and p.

’

) If 0f e\ fllp@t < +oo for all 0 < A< -+ oo, and if the limit

b

(15) lim (ff,(w)dz)/(fh,(m)dt)

b-»-00 ')

exists for u-almost all w in the set P(h) = {w: f by(w)dt > 0}, then the
Sfollowing limit

(16) lim ( f e Hfy(w)dt) / ( fw e‘“h,(m)dt)

A—4-0

exists and coincides with the limst (15) fbr p-almost . all o € P(h),
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ALy If f e fyll,dt < +oo for some 0 < iy < + oo, and if the limit
0
b b
17 lim dt By (o) dt
(17) lim, (off,(m )/(f (o) dt)

ewists for u~a,lmost all o in the set Q(h) = {w: f hi(o)dt > 0 for all 0<b

< 400 and fe‘“h, () dt < -o0 for some 0 < }. < oo}, then the follow-
ing limit  ° '

(18) iifi, ( fe“‘ft )/(f’g_uht )t

emists amd coincides with the limit (17) for u-almost all o €Q(h).
Proof. Immediate from Theorems 1 and 2.

Let us now consider a one-parameter semigroup {Tilocicic (i-€:
T,T, = Ty, for all positive real numbers ¢ and s) of bounded linear oper-
ators on Ly,(u, X), where 1 < p < + oo is fixed. {T}ocicy0o I8 said to be
strongly measuradle if, for each f e L,(u, X), the function {—T,f from the
interval (0, +o0) to L,(u, X) is strongly Lebesgue measurable. It is
known (cf. Lemma VIIL1.3 in [4]) that a strongly measurable semi-
group {Tilocicron 18 strongly comtinuous (ie., for each fel,(u, X) and
each positive real number s, we have lim [|T,f—T,fll, = 0). A linear

t—8

operator T on L,(u, X) is said to be a linear contraction it |T|, < 1.
The following theorem i§ & direct consequence of the ergodic theorem
obtained in Hasegawa and the author (7] and (I) of Theorem 4.

TasorEM 5. Let {T})cicic be a stvongly measurable one-parameter
semigroup of linear comiractions on IL,(u, K), where K denotes the field
of complew numbers. Suppose p,(w) is & non-negative ewtended real valued
function on (0, +00) X 2, measurable with respect to the product of Lebesgue
measure and p, such that felL,(p, K) and |f| < p, for some s u-almost
everywhere on 2 imply |T,f| < Pyye p-almost everywhere on Q for all 0 <
< 400, Then, for any fe Ly(u, K), the limit

(19) alffo (ofme‘“fl',f(w)dt) /1 fe‘”pg(w)dt)

ewists and is finite for p-almost all w in the set {w: f () &t > 0}.

The diserete analogue of Theorem 5, which was originally proved
by the author in [17], is also a direct consequence of Chacon’s general
ratio ergodic theorem ([2], [3]) and Theorem 3.
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A one-parameter semigroup {Ti}ocic.o Of bounded linear operators
on L,(u, X) is said to be strongly integrable over every finite interval if,
for each function f e L,(u, X), the mapping #—T,f is Bochner integrable
with respect to Lebesgue measure over every finite interval (a, b)
= (0, +o0).

THEOREM 6. Let 1 < p < +oo, and let {Ti}yciere D& @ ONE-parameter
semigroup of bounded linear operators on Ly(p, X) which is assumed to be
strongly integrable over every finite interval. Suppose f e Ly(u, X).

O If int (ITL,)* <1, and if the ergodic limit

t<i<too

(20) lim — T,f(m

b—>+oo

ewists for u-almost all w e Q, then the following Abelian ergodic limit

(21) lim 2 f e, f () db

A~>1-0 0
exisls and coincides with the ergodic limit (20) for u-almost all w e Q.-
(IT) If the local ergodic limit

b
1
(22) lim — | T,f(w)dt
b—>+0 b ht

exists for u-almost all w e 2, then the following Abelian local ergodic limit

(23) lim 2 f M, f () dt

A=s+400 0
exisls and coineides with the local ergodic limit (22) for u-almost all w e 2.
Proof. Let us write d = inf{(||Z,,)": 0 <t < +oo}. Then, since
log Ty qll, < log 1Tyl +1og || T, fox all positive real numbers ¢ and 8, and
sinee sup{iTl,: 6 <t< b} < +oo for all 0 < a<b< +oo, by tho uni-
form boundedness principle (cf. Corollary IL.3.21 in [4]), it follows from

a slight modification of the proof of Lemma VIIL1.4 in [4] that
lim (IT)" = d. Hence we have
t>+00

[ e ITfllyds < + o0
1] .

for all 0 <A< oo satisfying d < exp(A), and therefore Theorem 4
completes the proof of the theorem.
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