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Resolving Banach spaces
by
RICHARD EVANS (Berlin)

Abstract. In this paper we define a property of a projection algebra on a Banach
space which we show to be necessary and sufficient for the existence of a resolution
of the space taking values in a Banach lattice with order-continuous norm (proper
L-space;.

0. Introduction. If K is a compact Hausdortf space and fr—T; an iso-
metric embedding of C(K) into B(X) for some Banach space X, the ques-
tion ariges whether it is possible to find a norm resolution for X over
K, i.e. a mapping z—[2] of X into some Banach function space over K
with the properties (a) [[2]l] = || for all  in X, (b) [z+y]< [x]+4[¥]
for 2,y in X, (¢) |f] [#] = [T;@]forall fin C(K), z in X.

In [4] Cunningham showed the existence of such a resolution in
the case where the operators I, have a lattice property similar to that in
M-spaces. He also showed how X can then be represented as a space of
vector-valued functions over K, the function module representation, in
such a way that the operators T; on X correspond to multiplication by f
in the representation. In his doctoral thesis [5] the author showed how
to construct a representation of an analogous type, the iniegral module
representation, in the case where the embedded copy of C(X) is a strongly
cloged algebra generated by LP-projections, that is projections E which
have the norm decomposing property

2P = |Bo|” + |z —Bz|® for all x, some p e [1, oo).

Attempts to extend the concept of L?-projections by introducing
projections with a more general decomposition property have failed,
since it turns out that in all but trivial cases the only projections with the
apparently more general property arve the LP-projections themselves
(e.g. [3]). In this paper we define a decomposition property, not of indi-
vidual projections, but of a complete projection algebra and show that
this is general enough to completely describe the case where X has a resol-
ution taking values in a Banach lattice with order-continuous norm.

1. Projection algebras. A (linear) projection on a Banach space X is
a linear mapping B: XX such that B* = B. It follows that (I —B)
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=I—F and, it B and I are two commuting projections, that (EF)
= EF and (B4 F— BT = I+ T —EF, so that I — B, BEF and B4 F—
— BT are also projections.

1.1. DErmNITIoN. A Boolean algebra of projections (projection alqoba a,
abbrev.) is w set % of eommuting projections with the propertios:

(i) 0,Te¥, (i) PeAI—N e, (i) B, FeA=BF 9.

Ais o Boolcan algebra with the lattice opemmions

IAF = BF  and  BVP = - F—BF (=1~ (I—B)(I—F)e).

We sny that a projection algebra 2 on a Banach space X is comgplete
if it s complete as a Boolean algebra and, in addition, for each monotone
decreasing net {#,},ep, lllf]' L)@ = hmE x.

Let K Dbe the &L()nvmn space of 1he projection algebra 9, then there
is o natioal coorespondence between the elements of % and the clopen
subsety of IC. If f is in C(K) and f* = f, then f is the characteristic function
of some subset of K which, by continuity, must be clopen. Thus there is
a natural correspondence between the projections in % and. the idempo-
tent functions in C(X), a projection corresponding to the chwracterlstlc
function of the relevant clopen set.

1.2. DEFINITION. A projection B on a Banach space X is said to
be bicontractive if for all & in X, |lo|l > max {| B, ||z — Belj}, ie. if both
E and I —F are bounded with norm < 1. )

A. projection algebra is clearly made up of bicontractive projections
if and only if all the projections in it are bounded with norm < 1. In this
case the correspondence between the algebra % and the idempotent fune-
tions in C(K) is norm-preserving. This correspondence can he .extended
by linearity to an algebra isomorphism between lin% and the step functions
in C(K). Even it the projection. algebra consists only of bicontractive
projections, this algebra isomorphism need not necessarily be an isomet]:y,
however we have the following result:

1.3. LeMMmA. Let A be a projection algebm on the Bmach space X
consisting solely of bicontractive projections. Let f«T, be the algebra iso-
morphism between the siep fumctions in CO(X) and the operators in lin%l
(K the Stonean space of A). Then ||| < T, < M ||f|| for all step functions
J in O(K), whereby M = sEu£}12E~—1|].

6!

Note. Since all B’z are bicontractive, we have 1 < M < 2.
Proof. Let f be a positive ?step function. Then we can write f in
the form f = Zl i Xp, Whereby all 2.y are posmlve and @ < D, Da
.cD,.In tlus case we clearly have ||f|| = Z'}. T is then equal to TA,E“
whereby the projections H; correspond to the clopen sets D, in K Since
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all the s have norm <1, we have immediately |7 <

21 = |ifll.
Now suppose that f is an arbitrary step funection. Then there IS a clopen
set D in K such that (2y,—1)-f is positive. Let E Dbe the eonespondmg
projection in A, We then have
IT)ll = H2E—-I) (2B —-I) T}
< N@RE-DI- (28 — DTy < M- (2B 1) Tyl
= M| Loy -ny | < M- Cyp—1)fil = MISY.

n
For the other inequality, let f = }'4,xp, bethe representation of a conti-
- .

nuous step function in which the D,’s are disjoint and non empty. In
this case [f] is clearly the maximum of the |1’s, say |4|. Let B; be the
projection in U corresponding to D;. Then for » € B, X,z # 0 we have
IT,2 = |1%8;2] = %|lel so that [Ty > (4] = If].

Note that the bounds in this lemma are the best possible since the
functions corresponding to 2EH—1I, B e, all have unit norm.

The result of Lemma 1.3 motivates the following definition:

1.4. DEFINITION. A projection B on a Banach space X is said to be
a mirror-projection it 2F — I is an igometry. Since we have (28 —I)* = 4B* —
—4B +I = I, this is equivalent to |2E—1I} = 1.

A mirror-projection is clearly bi-contractive, since

2||Bs|| < llell + 2Bz — ol = |lz|| + (28 — I)al = 2|
and similarly for (I —E)ax. Also, if B is a mirror-projection, so is I —F.
However, the product of commuting mirror-projections need not be one.
It has been shown ([2], Sect. 2) that in the classical Banach spaces (L?-
spaces, C(K)-spaces, Lindenstrauss spaces) all bicontractive projections
are mirror-projections. As an immediate corollary of Lemma 1.3 we now
obtain:

1.5. CorOLLARY. Let A be a projection algebra on the Banach space X
and K the Stonean space of N. The natural correspondence between the conti-
nuous step fumctions on K and the operators in Un is an isometry if and
only if all projections in A are mirror-projections.

In this case we can extend the isometry to the closure of Linfl in
B(X)and that of the step functions in C(K). Since K is totally disconnected,
the step functions are dense in O(K). We thus have:

1.6. ProposxTION. Let A be a projection algebra on the Banach space
X and K the Stonean space of . Then LnA is isometrically algebra-iso-
morphic to C(K) if and only if all projections in W are mirror-projections.

Proof. Smce an algebra-isomorphism maps idempotent elements
into idempotent elements, it is the natural correspondence of Corollary
1.5 (except perhaps for a homeomorphism of K).
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In view of the above results, when 9 consists of mirror-projections,

we shall identify Tin 9 and O(K) and write fa for the action of the operator
corresponding to the function f on the element ¢ in X.

2. Decompesition properties. Having in the last section obtained an
embedding of ¢(X) in B(X) for the case where I is the Stonean space
of & Boolean algebra of mirror-projections, we now wish to obtain
a norm resolution for X over K. In general, such a resolution need not
exigt since the projections in A need not decompose the norms of elements
in X in a consistent manner. Thus we shall need to demand. some further
property of 9 which, will guarantee a consistent decomposition. A seemingly
weak property of this nature i3 contained in the following definition:

2.1. DEFINITION. A projection algebra % on a Banach space X is
said to be monotone, if the following condition holds:

It By, B, ..., I, are pairwise orthogonal elements of 9 with \/ B,
=1 and for some «,y in X, we have |H;z|| > |H,y| for all i, then also
llalt = Tyl
i.e. if all parts of # are larger (in norm) than the respective parts of y, then
o itgelf is larger than y.

Unfortunately this property is far too stringent for our purpose.
Indeed, the author has shown ([6]) that in all but trivial cases a monotone
algebra consists only of LP-projections for some fixed p. We can weaken
Definition 2.1 by requiring only that || = |ly| when |Bx| > |By| for
a larger number of projections than merely a single resolution of the
identity. Since I itself is in ¥, it is clearly vacuous to demand ||Bx| > || By]
for all B in . The required modification is the subject of the following
definition:

2.2. DEFINITION. A subset 4 of a Boolean algebra 2 is said to be
co-final in A if, for all F e A, F' 5 0, there is an F in 4 with 0 < B < F.

A projection algebra on a Banach space X is said to be wniformly
‘decomposing if and only if |z} > |ly| whenevm the set {B| |E=| = |By|}
is co-final in A, z,y e X.

Note. It then follows that |[Bx| > || By for all B in 9.

In the case of complete projection algebras there is another formu-

lation. of the uniformly decomposing property which turng out to be more
useful for the construction of a norm, regolution.

2.3. Lmwvma. Let A be a complete projection algebra on the Bamach
space X. The following two  statements are equivalent :

(a) A 48 uniformly decomposing;

(b). For all =, y in X there is an B in A such that

F<E=>|Fo|z|Fyl and F | E=|Fa|<|Fy| for F in .
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Proof. (a)=(b) Let , y be given. Set B = \/{F| F e, ||Fm|| > ]llf’yll
for F < < F}. Since U ig uniformly decomposing, we clearly have [|Fa|
= [|[Fy|| for all F < H. Suppose FJ_E and # 9, F +#0. Then either
there is an F < F'F with |zl < ]|Fy |lor we have FF < F which then meang
FF =0 since F | E. In the latter case set # = F. Hither way we now
have I < #, ' # 0 with [[FFw| < |FFy|. Thus the set of all F €% with
]Iﬁlf’w” < \jﬁFy[] is co-final in A Since A is uniformly decomposing, we
have | Fz| < ||[Fy|| as required.

(b) =(a) Suppose that |z} < {lyll for some pair z, y in X. Choose & > 0
with [jz]] < (L—¢)|ly|| and use (b) to find an F in A with F < B =|Fz|
= |F(1—e)y| and F L H=|Fo|< |F(1—e)yl. Let E be the carrier
projection of x, that is the smallest projection which maps # onto itself. Then
Fnon > since [g]] < (1— &) |yll. Thus BA (I—F) = 0. Let F< Ba(I—F),
F # 0. Then |[Fzj # 0 and F < I—F so that |Fz|| < |F (1 —&)y] < | Fyl.
Thus the set {F| F A, |[Fz| > |[Fy|} is not co-final in A.

Thus a complete uniformly decomposing projection algebra contains,
for each pair 2, 9, a projection which divides the space into the part where
2 ig larger (in norm) than ¥ and the part where it is smaller. This is clearly
2 necessary condition for the existence of a norm resolution whose values
lie in a lattice with order-continuons norm. We shall see in the next sec-
tion that it is also sufficient.

Since Proposition 1.6 refers to projection algebras consisting only
of mirror-projections, it would seem that we must in future demand of
A that it is complete, uniformly decomposing and consists only of mirror-
projections. The following simple lemma shows that the latter is redundant.

2.4. LevmA. Tet Whe o (not necessarily complete) uniformly decom~
posing projection algebra on the Banach space X. Then U consists solely of
mirror-projections.

I
Proof. Let & be a projection in A and x an element in X, For 2 and
(2B —I)» we have:
for F< B, - |Fz| = |2Fz—Fx|

= |2FBz —Fa| = |F (28 —I)z|,

for 7 1 H, |Bz)| = | —2F%| = |Fz—2F(I —1)n|

= [|[F(28 D)=,

and since the set {F| F< F or F 1 H} is co-final in U, we have |||
= |(2E —I)z|. Since & was arbitrary, 2F —1I is an isometry.

Note that although a sub-algebra of an algebra consisting solely of
mirror-projections naturally also consists solely of mirror-projections,
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a sub-algebra of an uniformly decomposing algehra need not be uniformly -

decomposing. Indeed we have the following proposition.

2.5. PrOPOSITION. If U is an uniformly decomposing projection algebra
on & Banach space X such that every sub-algebra of W is also uniformly
decomposing, then N is monotone.

Proof. Let Hy, H,, ..., H, be pairwise orthogonal projections in
A with VB, = I. Let U; be the sub-algebra of % generated by the B,'s.
A, is atomic and its atoms are the B, ’s. Suppose that for some #,y in X
1B, 2| = 1Byl fox all . Then {B| B in N, |Bz| > |By|} is co-final in A,
which is supposed uniformly decomposing. Thus |l#|| = {ly[, which implies
that % is monotone.

As already noted, in all but trivial eages a monotone algebra consistsy
golely of IP-projections for some fixed p and for these algebras the
problem of congtructing a norm resolution hag already been solved.

3. A norm resolution. We now turn to the construction of a norm
resolution for the case where 2 is a complete uniformly decomposing pro-
jection algebra. The first step in this direetion is the following proposition,
which relics heavily on Lemma 2.3.

3.1. ProrosrrioN. Let A be a complete uniformly decomposing projec-
tion algebra on the Banach space X. For each x,y in X, y + 0, the quotient
1B || Byl converges (possibly to oo) along each ultrafilier U containing the
carrier projection of y !

Proof. Let 2, y be elements of X and U an ultrafilter in U containing
the carrier projection of y. Then ||By|| 5= 0 for all ¥ in U so that the quo-
tient B /| Dyl is defined. Let us assume that | Ez| /By does not converge
along U so that we can find two co-final nets {B}verys {By}yer, in U with
B2\ Byl 45 IWB,el/1Byl A Whereby 4> 4y (4 possibly = oco),
Let 1 be a finite number with 4, > 4> 4,. Then by Lemma 2.3 there is
a projection B, in U such that | Fz|| > |F(Ay)) for F < B, and |[Fa)| < |F ()
for F' | E,. There are now two possibilities:

(a) B, lies in U, but then ¥, < H, co-finally for y e I'; so that

18, 2| [|\B,yil = AE,all/|lB, (Ay)l = 2 co-finally.
{b) B, does not lie in U, but then B, | B, co-tinally in I', so that
I, all/ B,y = AIB,2l|/|B,()] < 4 co-finally.

In either case we have a contradiction, so that we may conclude
that our assumption that the quotient does not converge was false.

Note. If K is the Stonean space of 9 the points of K are strictly

speaking the ultrafilters in 9, nevertheless we shall write &k for a point -

in K and U, for the corresponding ultrafilter, in the interest of clarity.
For 2 in X, supps will denote the clopen set in K corresponding to the
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carrier projection of », this is the same as {k| U, contains the carrier
projection of x}.

The above proposition now allows us to make the following definition:

3.2. DEFINITION. Let W be a complete uniformly decomposing pros
jection algebra on the Banach space X and K the Stonean space of %Y. For
@,y in X,y # 0 ofy: suppy — [0, +oc] is the function defined by z/y(k):
: = lim || Bx|l /|| By| for % in suppy.

U;

Tkhe most important elementary properties of these functions are
summed up in the following lemma.

3.3. . LoMmA. Let A, X, K be as in 3.2,y € X,y 0, then x ]y is continuous
and finite almost everywhere for all @ € X and the mapping x>y from X
into Og(suppy) is sub-linear and gbsolulely homogemeous with respect to
O(K) (=< lin?A). )

Proof. Suppose #/y(k) =4, with 0 < 1< co. Let & be arbitrary
between 0 and A. Then by 2.3 there is a projection F, in A such that

F < By = |Fal| = [F(A+-e)yl  and F | E=|Fs| < |F(1+8)y|-
and a projection B, in ¥ with )
F < By=|Fall = |F(A—s)yl and F L B,=|Fa| < |F(A—-e)yl.

For all points 1 for which U, contains H,(I —F,) we now have 1—e < afy (1)
< A--e. These I form a clopen set containing %. For 4 = 0 or co, an an-
alogous argument with one projection suffices. In either case we have that
@y is continuous at k. .

Now let D Dbe the clopen set int{k| % e suppy, #/y(k) = co}. Then
for each natural number n, {E| |Bypzl = nllEypyll} is co-final in A since
|1 B2}l /| By~ oo along each ultrafilter U, with % € D. Since U is uniformly
decomposing, it follows that ||y, #!|> nllx, ¥l for all » and thus that x5y = 0.
Since D < suppy it follows that D = @. Thus «/y is finite almost every-
where.

That the mapping #—>x/y is sub-linear follows immediately from the
sub-linearity of the norm. To check absolute homogeneity let  be an ele-
ment in X and f a function in O(X). We must show that for all & € suppy
(fofy) (%) = |f(B)|(@/y)(k) whenever x/y(k) is finite. Let k be a point in
suppy and a = f(k).

| 1Bfa] — llaB2|| < |Bfe — oBz| = |B(f— ol) Bol| < B (f— o) |Ba]

since the operator f lies in Lin% and therefore commutes with Z. If D
is the clopen set in I corresponding to K, we have

|1B(f — D)l = llxp(f— o)l = sup 1f(0) —ol.
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Since o = f(k) and f is continuousat &, we have | B (f— ol )HEO. It follows
that

U8l _ JaBolf o W]
T T et Al

at each point %k wheve o/y(%) (= lim||Bz|/|Hy]) is finite. Since
Ug

Il Ef]| . et ‘
= (42 /) (1 i S0 g fy (k) = |
gkl Ty (fufy)(k)  and b’c T lalwfy () !f<70)1(w/y?(/6)

this is the required identity.

The mappings a—w/y for each y thus have the properties of a norm
resolution except for the norm preserving property since the range space
Oz (suppy) is not normed and in general not even normable (as a lattice).
‘We can however construct a Banach function lattice in O (suppy) which
is large enough to contain the functions @fy. This iy the purpose of the
following definitions and results.

3.4. DErFINITIONS. Let X be a Banach gpace and U a Boolean algebra
of projections on X. We define the ordering > (or >.if U iy clear) by

o Zyy<there is an H in U with Bz =y,

i.e. o is larger than y if and only if it iy an extensgion of it. This is clearly
a partial order on X.

Let X be a Banach space and 9 a complete uniformly decomposing
Boolean algebra of projections on X with Stonean space K. Suppose
I's X is a subset which is directed by >y The support of I' iy the seb
supp I':= (U suppy)‘ a clopen subset of K. We define the mapping

mpfrom ¢ (ﬁfppl’) into [0, o] by virtue of
mp(f) 1= sup 171l

and Cpc C(suppl’) by

Or:=|f| fe C(suppT), {fy}yer is Cauchy}.
Finally we define M, = Cx(suppl’) as the set

{fi f e Cg(supp I'), the increasing net of positive ¢ functions
which are majorised by |f| is m,-Cauchy}

and extend my to M, by means of

mp(f) = sup{mp(g)l 0<g<Ifl, g &0}

If T consists solely of one element y, we shall write M, and m, instead
of My and mp,
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3.5, PROPOSITION. M - is an order ideal in Cx(suppl’), mp is an order-
continuous lattice norm for My and My is complete in mp. Thus My with
mp is @ Banach lattice with order-continuous norm.
Proof. It is elear from the definitions that M is an order ideal in
Jw(suppl”) and that m, is a lattice norm. It remains to show that mp
is order-continuous and that M, is complete. Let {f,} be a downwards
directed net in M, whose infimum is 0. We may suppose without loss
of generality that {f,} hag a largest clement, say f. Sinece f lies in M,
there is an f, in Op with 0 < f, < f and mp(f—f,) < /5 for a given ¢ > 0.
Tor cach a wo define Dy, 1 == {k] f.(k) < efy (k) [5mp (fo)}~ and D := (I D,)™
We then have &(fo— xnfo) /By (fo) < f, for all a. Since the net converges
in orvder to 0 and f,— x5, o 1% positive, we have fo— xpfo = 0. As fy lies in
¢y, thereis an y, e I'such that [|fy(y —yo)i < efsfory, <y el. (1 — an¥fo¥o
is 0, therefore by the completeness of U there is an e, with

0z ay=|[(1— XJ)a)nyOH <efb

and then for y = 4, we have

(L — X{)a)fuy” < (= xp oy —yol + i —X.Ua)fn?/o”

< foy =yl + (L= xp, ) foyol < &[5 +¢/5 = 28[5.
We thus have mp((L— xp,)fo) < 2¢/5. But then
mp(f) < mp((t = xp,) o) +mr(p fo)
< My ((1 —%p,) (fa "fo)) -+ ((1 - Zpu)fo) + E”"uz’(,"CDufo) [8mr(fo)
< mp(f—fo) + 265+ /5 < 425 < & for a> .

Thus {mp(f,)}—0. This shows that m, is order-continuous. )

In order to show that M is complete, let (f,) be a monotone in-
creaging Cauchy sequence of positive functions in M. Letfhe the supremurm
of (f,) in Cg(supp I'); if we show that f is in M, we shall be finished since
the order-continuity of my, implies that (f,) converges to f Let e>0
be given. Since (f,) is Cauchy, there is an n such 13]}&1: Mp(fr—T0) < /2
for m = n. Since f, is in My, there is a g, in O with My (fr— ) < €/2.
But then for g in Op, g, < g < f we have

My (g — ) < M (9 = G Fu) + M0 (A =)
< ml‘(g—g/\fm)'{""nl‘(fm_gm) < 'm’l"(g_g/\fm) +e.

As g <[, we'have (g—gAf,)—>0n order and thus ale) i.n norm. So mp(g—
— ¢,) < & which implies (since & was arbitrary) that f is in Mr.

Since the M 's are Banach lattices with order-continuous norm,
an M, with suppl” = K is clearly a prime candidate for the range space
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of a norm resolution for JX. Iowever, we must first check that the I,’s
are large enough to contain the functions »/y.

3.6. DEFINITION. If I' ¢ X is directed and supp .’ # @, then for non-
ZCr0 Y1, Yy € T’y y1 2 ¥, the functions @y, #/y, for @ in X are clearly equal
on their common domain of definition. Thus we can define /I suppl‘
—+[0, o] as the unique continuous extension to supp [ of the functions
zfy on suppy,y el '

Note. If I' containg a maximal element y, then @/I” = w/y; this iy in
particular the ease when I” only containg one y.

3.7. LmvmA. With X, %, K, I' as above we have:

() w+e/I' /T +2/I" for all », 2z in X;

(i) fa/I' = |f|(x/I) for oll @ in X, f in O(K).

Fwthefrmow, Jor every w in X, o/T" Uies in M, and mp(a/I") = |||
whereby H is the projection in A corresponding to supp I

Proof. (i) and (ii) follow obviously from the corresponding relations
for w/y. o

Let @ be an element in X for which x/I" is finite. We write f =/l
€ O(supp I). Then fy [y = flyp, = @/y for y in I'. If I, denotes the carrier

rojection of an el = i
C%]nis element y, then we have y, = By, yoforyy, y. in T, y; = ys.

Wy —Tyall = 1By, fy2— By, fysll = (B, — By,) fyal-

S;ns}(ls B, < 1?”1, we have (B, — B, )yl = II(EV1 —n,,)o| asa eonsequence
ol the equaliby fy,/y, = #/y;. That {E,s},. is Cauchy follows from the
completeness of A, thus {fy},., is also Cauchy and f therefore lies in Op-
mp(f) = sup]]fy}l = sup|B,z| = [|[Bz| by the completeness of A. Now
suppose & i3 an arbitrary element in X. We write f = x|y D, ;= {k}
kesupp I, f(k) < n}~ clopen in K, E, the corresponding I)roject?on and
Ta m‘x,)nf. Then yp f = Z,2/I" so that tp,f lies in Oy for all n. Since
/I is qlc.zarly the supremum of the f,’s, it suffices to show that (f) is
Cauchy in. M. But Jo=Tn =(XDn~XDm)f = (B, —8,)z/]' and thus
M (fo—Fn) = |(B,—B,)Bzl|. The sequence (8, Bx) is Cauchy by the
completeness of A. So #/I"is in M, and

mr(@/I') = supmp(f,) = sup |B, Bo| = || Baf.

‘We are now ready to prove our main the ¢
' orem except :
the existence of I"s with supp I’ = K. oDk thab we meed
with 38.8. LEMMA. Witth ],c U, K as above let T, be any finite subset of X
UPPLOSUPPY = or x,y ey, w % y. Then there i irect
I' = X containing Iy with supp,f‘ = .?K, Y ot divected et

In particular, there are dirvected sets I' wi x
th suppl’ = K
Iy = {w} for some non-zero ). » (ssmpty se
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Proof. By Zorn’s Lemma there is a maximal set I, € X containing

I, such that the supports of distinet elements of I'y are disjoint. Let

D=(U suppy)”. I D # K, then there is a non-zero element z in X
e

1 i

with suppe < K\D. This would contradict the maximality of I';. Thus
(U suppy)” == K. Let I be the seb of all finite sums of elements in 1.
I

Silllce the sum of two elements with disjoint support majorises both el-
ements in the order =y, I ig a divected set containing Iy for which supp I’
= I,

3.9, Munorwy. Let X be o Banach space and A a complete uniformly
decomposing projeciion algebra on X with Stonean space K. Then there ]
a norm resolution for X with respect to Lin9 = O(K) taking values in a Ba-
nach lattice of continuous numerical funciions on I with order-continuous
NOTMs ,

Proof. Let I'be a directed set in X with supp I" = K. Then by Lemma
3.7, the mapping w—»e/I" is & norm resolution (since F =T in this case)
taking values in the Banach lattice M which is a lattice of continuous
numerical functions on K with the order-continuous norm ;.

4. Cycles and ideals. With the help of the norm resolutions defined
in the lagt section wo can show that the -cycles and ideals have several
nice propertics. The reader is reminded of the following definitions.

4.1. DurINTEION. Let X Dbe a Banach space and A a commutative
subset of B(X). A closed subspace J of X is called an A-cycle if J is an
invariant subspace for every operator in 4 and an A-ideal if it is invariant
for every operator in [Aluomm -

Since A itself is commutative, an A-ideal is an A-cycle. Also if J, is
a family of A-cycles (resp. A-ideals), then'()J, and (3 J,) are also 4-
cyeles (vesp. A-ideals). In particular, we can define the A-eycle(vesp. A-ideal)
generated by a subset of X as the intersection of all A-cycles (A-ideals)
containing it. In our context we are naturally interested in the A-cycles
and ideals where 9 is a complete uniformly decomposing projection al-
gebra on X. The cycles generated by divected sets turn out to have a very
simple form.

4.2, PROPOSINION. Let 9 be o complete uniformly decomposing projection
algebra on o Banach space X and I' o divected subset of X. S(A:T), the
W-cydle generated by I'yis isometrically isomorphic to the Banach space Mp.

Proof. A simple caleulation shows thab SU:T) = {fy| feCX),
y e I'}™. Consider the mapping fy—Zsuwpy for f in C(K), y in I. This is
well-defined and since for g2y in I' we have [iuppy¥1= s fAanpoy
lies in € and has norm [ifyll- Furthermore, since fy --gy, = ( Frwapnyy +
+ 9%euppy,) ¥ Tor a0Y Y = Y1, Yo the mapping is linear. This mapping then
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extends to an isometry between S(U:I") and the closure in M r of the
funetions of the form fy,,,, f€ O(K), y e I'. Inspection of the definitions
of Or and My shows that this closwre is all of M. Observe that this map-
ping maps an element  onto a function whose absolute value is a /I

One of the most interesting problems in the general theory of cycles
is the question of the existence of a projection in [A ]y PLO jéectihg !onto
an A-cycle J. The positive answer for cyeles of the form S(i{ :I') is & simple
corollary of the preceding proposition.

4.3. OOROLLARY. Let A be a complete uwiformly decomposing projection
algebra on a Banach space X and I' a direcied subset of X, There is @ con-
tractive projection from X onto S(N:I") which commates with .

Proof. Let § be the isometry between S(N: I') and M, whicﬁ was
constructed in the preceding proposition. We have j(u) < 1§ (®)] = a/T"
forall win §(A: I'). Since M i order-complete, we can apply the Hahn-Ba-
nach theorem to obtain a linear mapping 7': XM, which extends J
and for which T'% < #/I"for all # in X. Since also —T = T'(—u) < (— w) I
= /I, we have |T%|< a/I". Consider the mapping §'7. Thié clearly
maps X into §(A: I') and for  in §(A: I') we have j72 T (x) = j~Y%(x) = o
This is thus a projection onto S(UA: I'). Since

I T @) = mp(Ta) = mp(1Twl) < mp(@/T) = |Bal,

it i also contractive (E as in 3.7). Let F be a projection in Y. Then for
all # in X we have

BT -F)a/T = gp (i T(I— Py < 1o ((I—F)a/T)
= xp(L—yp)(x/I) =0,

where D is t]l‘e tlzlopen set in K corresponding to F. Since B0 ([ —F)ax
e S(QI: .I’), this implies that Fj~*T(I —F)a = 0. Since this holds for all
projections in Y and ‘

Fj~ To—j TFe = Fj " T(I — F)o — (I — F)j~\TFa,

the projection j~T' commutes with 9.

i In our conerete case the other subspaces, the Y-ideals, have an even
simpler form. ’

4.4. PROPOSITION. Let U be a complete um‘fohnl i jecti
Y decomposing projection
algeb;ta on a Bamnach space X. A closed subspace J of X is am Ql-gdlo?aljif and
only if it is the range of a projection in 9.
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Proof. Clearly the range of a projection in 9 is an f-ideal. Now sup-
pose J iy an A-ideal and let 7 be the supremum in 9 of the earrier projections
B, of elements yind. Clearly J < BX; we shall show the reverse inclusion.
Take 2 in JIX and e > 0. Since B = \/B,, there is a y in J with |jz — B, ||
< ¢/2. For each n in Nlet D, 1= {k| 2/y(k) < n}~ clopen in K, the Stonean
space of A, and B, the corresponding projection in A. Since B, = \/ B,
there ig an 17, with |o—H, 2| < & Set ¢ = E,x/y. Consider the mapping
fyrr fH,m for fe O(K). Since B, < B, it is well-defined, is clearly linear
and commutes with C(K) and thus with %. Also fH,zly = fg = foyly
go that |IfH, 20 == Ifoyl =< llglllfyl. The mapping therefore extends to
a continuous linear mapping from §(A: y) into S(WA: ). Let F be a pro-
jeetion in [Wemm Mmapping X onto §(A:y), then TF lies in [Wleomy and
TRy = Ty = W, Since y is in J and J is an A-ideal, B, is also in J.
But [l —H, 2| < & and & was arbitrary, so o itself lies in J. '

The results of this section generalize 2.10-2.12 of [5] which also form
4.2, 4.4 and 4.5 of [1].

5. A characterization and a representation theorem. This section is
devoted to the proot of two theorems. The first is an application of the
results of the last section to obtain a Banach space characterization of
Banach lattices with order-continuous norm. The second is a represen-
tation theorem analogous to the function module representation of Cun-
ningham [4] and our own integral module representation [5], [1].

5.1. Murormy. Let X be a Banach space. Then the following properties
of a complete uniformly decomposing projection algebra A on X are equivalent:

(i) [Q[]comm = 11]19'[;

(ii) U 45 & mawimal Boolean algebra of bounded projections;

(iil) Bvery U-cycle is an W-ideal.

Moreover, there is such an algebra on X if and only if X is isometricolly
isomorphic to & Banach lattice with order-continuous norm.

Proof. Clearly (i) =(ii) and by 4.3, (i) =(iii).

Assume (iii) and let I" be a directed. set in X with supp " = K, the
Stonean space of %, By 4.2 S@: I is isometrically isomorphic to My
o Banach lattice with order-continuous norm. However, §8(U:TI') is an
-oyclo and therefore also an A-ideal. By 4.4 8(2: I') is the range of a pro-
jeation in . Since suppl” = K, this must be the identity, iie. S(U: T
= X. Thug X is isometrically isomorphic to & Banach lattice with order-
continuous norm. Note that the projections in % eorrespond to the pro-
jections fifyp for clopen D and these are exactly the band projections
in M. .

]§0W suppose that X iy isometrically isomorphic to a Banach lattice
M with order-continuous norm. Then X ig itself a Banach lattice with
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order-continnous norm in the induced ordering. Let 2 be the Boolean
algebra of band projections on X. Since X has order-continuous norm,
A is a complete projection algebra. Also a simple calculation shows that
1in% is the centre of X (i.e. all operators T’ for which —al < T < oI for
some « € R). It follows from Lemima 2.3 that % is uniformly deeomposmg
since the band projection onto the band generated by (|o]~ |y])* clearly
satisfies (b) of the lemma. Let 7' be an operator in [eymm and 2 an. element
of X. Set z:.= (|To}—(|T+1)lz])* and let B be the band projection
onto the principal band generated by 2. Then

\TBal| = |B|Ta| | > |[BL)+1)lo]| = (ITI+1)|Ee].

It follows that Bz = 0 and so also #z = 0. Thus |T#| < (|T]-+1)|#| for
all'w and T belonging to the centre of X whichis lin9(. Thus 9 satisfies (i)
and this completes the proof of the theorem.

The representation theorem is a direct generalisation of the author’s
integral module representation and shows that a Banach space X can be
congidered as a space of vector-valued functions on the Stonean space of
any complete uniformly decomposing projection algebra on X. The fol-

lowing definition defines the appropriate type of vector-valued function

space.

5.2. DerINITION. Let M be a Banach lattice with order-continuous
norm consisting of continuous numerical functions on the extremally
disconnected compact Hausdorff space K. Let {X,} be a family of Banach
spaces indexed by the points of K.

By M (K; {X,}) we denote the set of all funetions z from K into the
disjoint union of the Banach spaces X, Wlth each other and with a distinet
element oo, such that:

(i) #(k) € X}, U{oo} for each % and

(ii) |2| € M whereby [e|(k):= le(®)lz;, (With [ooflg, := ~o0).
A lattice module in M (K ; {X,}) is a subset ¥ for which :
() @, y in ¥ =3Jzin ¥ with (k) = e(k) +y (k) where x(k), y(k) # oo}

(i) win ¥, fin C(K) =3Iz in ¥ with 2(k) = f(k)x (k) where z(k) % oo;

(ili) X, = {w(k)| in ¥, a(k) % oo} for each k.

Since the equations in (i) and (ii) determine the element z uniquely,
a lattice module carries the structure of a C(K)-module and |2 : = m(|])
is a norm for the lattice module whereby m is the norm of the lattice M
‘We shall say that a normed C(K)-module kas a representation in M (K
{X}) if it is isometrically isomorphic (as a C(K)-module) to a lattlee
module in M (K; {X,}).

Note. In the same way as in [5] or [1] one can show that if Y ig
a lattice module in M (K ;{X,}) which is cqraplete i in the norm, then Y ig
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maximal amongst those subsets of M (XK ;{X,}) for which (i) holds, and
that we have equality in (iii) without taking the closure, i.e. if o, is in X,
then there is an # in Y with « (k) = .

5.3. THREOREM. Let X be a Banach space and W o complete uniformly
decomposing projection algebra on X with Stonean space K. Then there
s & Banach function lattice M on K and Banach spaces X, indexed by the
points of K such that X has o representation in M (K ;{X,}).

Furthermore, if X also has a representation in N (K ; {¥,}), then M == N
as Bamach lattices and X, ~ ¥, whenever both spaces are non-trivial.

Note. X is a ¢ (K)-module by virtue of 0(K) = linl.

Proof. By 3.9 X has a norm resolution with respect to O(K) = lin%A
taking values in a lattice M of continuous numerieal functions on K whose
norm m is order-continuous. Let z+>[z] be such a norm resolution. For
each k, x—>[2](k) is a semi-norm on the subspace of X where it takes finite
values. Let X, be the Banach space obtained by factorising out the kernel
of the semi-norm and completing the space in the resulting norm. The
mapping e><(z) from X into M (K;{X,}) is defined as follows:

(ad(k) i = oo if [x)(k) = H

(x>(k) := the equivalence class of # in X, if [#}(%) is finite.

*Since [<&) (k)llx, is simply [#1(k), the functions (z) all lie in M (K;
{X.}. It is easily verified that {<z>| @ in X} is a lattice module in M (K;
{X.}) and that () is an isometric isomorphism.

Suppose now that X has a representation in M (K; {X,}) and also
in N(K:{Y,}). Bach # in X is represented as <{#)y in M (K; {X,}) and
a8 (ady in N(K;{¥,}). Writing [@]s := <@ (k)| x, and similarly [#]y:
1= |[K@> (k)| g, We have two norm resolutions for X taking values in M
and ¥, respectively. Suppose that for a point % there is an » in X with
[#]3:(%) and [z]y(k) both finite and non-zero. Then the identity

[YTar (B} [[@]ae (B) = hm B[/ Be] = [yly (k) /21y (k)

implies that the quotient [m]M(k) [[#]x (k) is independent of the choice
of . Set 1, equal to this quotient. Then the 1,’s are defined on a dense
open subset of K and the mapping k>, is continuous since we can retain.
the same element # in a neighbourhood of & and the two norm resolutions
are continuouns. Let f be the unique continuous numerical function with
f(k) = A, wherever this is defined. Then [#]; = f[x]y for all  in X.
Note algo that f is invertible since the 4,’s are all non-zero. We claim that
g—>fy is a Banach lattice isometry of N onto M. Clearly the mapping is
linear and positive. Also, if m and # are the norms of M and N, respectively,
then n([zly) = |#ll = m([#]y) = m(flrly) so that the mapping is an
isometry for elements of the form [#]y. However, these elements are
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order-dense in N, and thus, by the order-continuity of , also norm-dense.
Since the norm in a lattice is determined by the norm on the positive
cone, g—>fg is anisometry. That it is surjective follows from the invertibility
of f.

fTo show that X, and Y, are isometric if they are non-trivial let
% be a point with f(k) finite and X, = {0}. Since either f or f~! is always
finite and the situation is symmetrical, this does not involve any loss of
generality. Let D be a clopen neighbourhood of & on which f is finite, then
fxp is in O(K). For each ®, in X, there is an » in X with {#)y (k) = u,.
Set Tay, = {fypadn(k). T is well-defined since <xd,, (%) = 0 implies that
[@]y (k) = 0 and thus that [fypuly(k) = f(k)[@]y(k) = [@ly (k) = 0. T
is clearly linear and the identity [#]y, (%) = f(k)[#]y(k) shows that it
ig an isometry. It remaing to show that T is surjective. Let 4, be in ¥,
with |lgily, = 1. Choose an x in X with suppa < D and [@]y, (k) =2
(since X is non-trivial there is such an element), then [fyp2]y(k) = 2.
Let y be in X with. ydy (k)= v, and [y]y < [fyp2]y. Let & be the directed
set of those clopen subsets of D on which f~! is finite, ordered by inclusion.
For B in & we have [f7'ypyly = fIf ' xsyly = 1sUly < xnlfapaly
= xp[#]y- Thus {f yzY}zes is @ Canchy net in X. Let ¢ be the limit
of this net. Then yzz =f"'yzy for B in &. In particular, {fypzdy(l)
= {fanf M asydnl) = yiy(l) for Lin B, B in &. Since (UB)“ = D, We

have by continuity {fypedy (k). = ydy(k),Le. T({ey (k) = YDy (k)
Thus T is surjective.

It is straightforward to show that the points of K for which the compo-
nent spaces are trivial in all representations are those points of K any
neighbourhood of which contains uncountably many pairwise disjoint
open sets (the so-called intrinsic null points, see [1], 3.11). Let us denote
the set of these points by K,. Note that K, is determined by the topology
of K and thus by the Boolean algebra strueture.of % and not by its action
on X. Theorem 5.3 now shows that X and % together define an unique
non-trivial Banach space X, for each point k in K\X,.

= Yk

6. Conclusion. In this paper we have generalised the integral module
representation of [5] to apply to a fairly large class of projection algebras.
In particular, given a Banach space X and an embedding ¢ (K)c—.B (X)

we have a eriterion for deciding whether X has a norm resolution over
K taking values in a lattice with order-continuous norm and a method
for constructing such a regolution and the associated representation.
The key to this was the definition of uniform decomposition, A re-formu-
lation of this property in terms of € (K) rather than the projection algebra U
would seem like a sound starting point for a general criterion to decide
whether a space X has a norm resolution with respect to a given embedding
O (K)=—B(X). This general criterion would of course have to contain both
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the present theory and the M-structure of Cunningham as special cases.

Theorem 5.3 raises another interesting point. Namely, suppose
that X and Y are two Banach spaces with isomorphic complete uniformly
decomposing projection algebras Ay and Ay, respectively. Then we have two
uniquely determined Banach function lattices My and M5 on the common
Stonean space K and two families X, and ¥, of non-trivial Banach spaces
indexed by the points of K \XK,. This raises the following question:

It X, == Y, forjeach & and My = My (with tespect to the common
representation on K), does it follow that X ~ ¥, i.e. do the function
lattice and the component spaces determine the space itself?

This problem and other allied ones, such as the sense in which the
mapping k—X, is ‘continuous’ seemn almost insoluble even in fairly simple
cases.
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