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Method of orthogonal projections and approximation
of the spectrum of a bounded operator IT

by
ANDRZEJ POKRZYWA (Warsaw)

Abstract. A necessary and sufficient condition is given in order that a compact
subset of the complex plane be a limit of spectra of operators 4, = P, 4| P, H> Where A
is a given bounded operator on a Hilbert space H and {P,} — a sequence of orthogonal
projections converging strongly to the identity operator on H.

This paper is a continuation of the study of asymptotical behaviour
of spectra of operators 4, =P, A|p 5z, where P, is a sequence of orthog-
onal projections in Hilbert space H converging strongly to the identity
operator and 4 is a bounded operator in H. We use the same notations
as in the first authors paper [4] on this subject.

The main result is the following theorem, which completes Theorem 1
in paper [4].

TEEOREM. If A is a bounded operator on a separable Hilbert space H
and its essential numerical range W,(A) contains an interior point, then
for any sequence {8,} of finite nonvoid subsels of the interior of W,(A) there
ewists a sequence {P,} of orthogonal projections of finite rank such that P, — 1
strongly and i

8, = Z(4,) c 8,V (Z;{A)\W,(4)),
where

n ZPnAIP,,H EL(PWH)'

Before proving this theorem, we need some auxiliary lemmas. The
idea of conformal mapping in the proof of Lemma 1 is taken from Herre-
ro’s paper [3].

We start with the following simple example.

ExAvpLE. Let H stand for & separable Hilbert space, the operator §
satisfying the relations Se, = e,,, (where {¢,}7 _. is a fixed orthonormal
basis in H) is called the Inlateml shift. It is known that § is a normal oper-
ator and that its spectrum X(8) is a unit circle §(0, 1). Define a sequence

U
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2 A. Po‘krzywa

{P,}>_, of orthogonal projections in H by the formulas

n—1 n

-Pznw == 2 {@, 66, —Pzn+1w == Z {x,ee;

_— i=—n
and the operators S, = P,8|p gz € L(P,H). It is easy to verify that
Z(8,) = {0}, W(8,) =« W(8) = K(0,1) (the open disc) and since P, —1
strongly, we have dist{W(8,), W(8)} -> 0 with % — co.

LeMMA 1. If s, is an interior point of the open, convexr and bounded

set Q < C, then there ewists a mormal operator N € L(H) with Z(N) = 08
such that for the operators A, =P, Nlp y the following relations hold:

Z(Ay) ={s}, W(4,) <@,
dist{W (4,), Q) >0 with

N—>r X.

Proof. By Riemann’s theorem there exists a conformal mapping f
of the open disec K (0, 1) on the set 2 such that f(0) = s,. By the Osgood-—
Caratheodory theorem, f may be assumed to be a continuous function
on the closed disc K(O 1) and f(8(0, 1)) = 00Q. Theorem 10.14 of [7]

implies that f(2) = V 8,2" and the series 2 18, is convergent.

‘We shall show that the operator N = f(S ) satisfies our lemma. By
the spectral mapping theorem for mormial operators Z(N) = f(Z(8))
=f(8(0,1)) = 0. Note that § is a unitary power dilation of any ope-
rator §,, i.e. 8¢ =P, 8% k =0,1,2, ... This implies that

4, = nf(’g”PnE =f(PnS|P,LH) = f(8,).
Therefore

S(4,) = F(E(8,)) = F{O}) = {so}-

As N is a normal operator, W(N) = convZ(N) = £, now the rest of
the lemma follows from the convergence P, — 1 strongly. m
If 2 is a convex polygon with extremal points {u;}j-, indexed in

m
such a way that U [y Hipad = 0Q (fpyr = &

the operator N mto a direct sum N == @Nj, where N; »Nl,,j,
j=1

) then we can decompose

H; = H([py, #;.1), N)H. For each j the operator
N;—
T, = e L(Hy)
Hiv1 "l-‘.: .
is & selfadjoint positive contraection, and so the operator matrix
T, VI;~T?
By=|
VI, -1,  1-T,
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is a selfadjoint projection in H; X H;. This shows that N = QElomxm),
where

B = Blut i) e 2E <, @ = &[im 7]

o1 =0 0
Note that B is a normal operator with Z,(R) = Z(R) = {u;}jz,, and all
normal operators which satisfy this relations arve unitary equivalent,
note also that the operators P,Q are orthogonal projections of the rank n.

In this way we have proved the following lemma.

LEMMA 2. Let s, be an interior point of & convex polygon 2 with extremal
points {1, . If R & L(H) s a normal operator with Z,(R) = X(R) = {u;}j1,
then there emsts a sequence {P,} of orthogonal projections in H such that:

= {80},

with

dimP, =n, X(P,Rlpx)

dist{ W (P, Blp,a), Q) -0, n—> 0.

LEMMA 3. Let H stand for o Hilbert space with orthonormal basis
{632y Let s, be an interior point of the triangle {go, 1, o). Define the oper-
ator A e L(H) by the relations Aey, ; = W;€spisy ¢ =0,1,2,n =0,1,2,

Then for any & > 0 there exisis a projection P € Py(H ) suah that

2

Pe,
60—————-—0 l <

Z(PA|py) [1Peoll

= {80},

Proof. By Lemma 2 there exists a @ € P,(H) such that Z(Q4|gx)
= {s;} and dist(W(QAlgn), W(A)) < &b/, where h = d{so, [us; #a])
(> 0), so there emsts a unit vector o € QH such that |y, — (A, )| < e*h/4.

Note that @ —Z ;Y where ly;ll ——1, Ay, =y, 4,20, 0 =0,1,2.

Hence 1 = ll.f)(:ll2 = 2 o, {dz,a) = 2 o’y because y; are orthogonal.
Therefore

a3 pa+0f pha

i'azh > ]l‘o'—<Aw5 o] = (1 a§+a§

—a3) | po— = (1 —ap)h;
g0 l—aj<e?/4 and

—9%

1-+a

g2
lle — ‘.'lo“2 = ”(ao"‘l)yo“f‘alyrj'az?/z”g = 2 2

=

Let U stand for the unitary operator satisfying the relations Uz =2
for 2 orthogonal to e, and ¥y, Uts = Yo, UYo = &- It is obvious that U? =1
and 4 = UAU, let P = UQU € P;(H). The operators QA|gy and PAlpg
are unitary equivalent, and Z(PA|pg) = {So}. Now the lemma follows
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from the inequali‘ﬁy

Pe,

0 P < 21ley —Peoll = 21U (%,

—Quoll = 2lyo —QY,ll

=2 inf lyo—zl <2y —oli<s
asQH

LevwA 4. If Q is a convex subset of C, K (s, 8) = @, d(p, 2) < &4,
0<e<l, then (L—e)utesel :
Proof. There exists a 4 € 2 such that |u—4} < &d. Let

1—e

2 = (B—2);

then |2|<< 6 and s-+2zec®Q, this implies (I—e)u-tses =(1l—si+
+e(st2)el. m

Levma 5. If projections P, Q in H are defined by the formulas

Py = 2 (@, oy, Qu =2 {8y YD Yiy
1 1

where {z)7, {y)3 are two orthonormal seis such that {wg y;> =0 for
i ond oy —yl<eg j=1,2,...,m then |P—@Q| < e.
. Proof. Note that there exists an orthonormal set {x;};j7, such that
Yy = &+ By §=1,2,-00 hence
B2 < (X — )t — Byl = lly —

The following identity holds:

2

yif <&

(P—Q)z= Zﬁ,«z By — 8y @y < YD)

d=1
80
el

P —@)2lF < e ) (I8, Braty — @y )+ <3, Y2 F) <

J=1
which follows from the Bessel inequality since the vectors {B;®; —&;%; s,
¥;}j form an orthonormal set.

LEMMA 6. IfP,QeL(H),P =P Q =@, PQ = QPcmd 1P —Ql< 1,
then P = Q.

Proof. Note that (P —Q) = (P --~Q)2 and. |[|(P—@)*| << 1. Therefore
(P —Q)* is a projection with a norm strictly less than 1; hence 0 = (P—@)
= P+Q —2P@. Multiplying this identity first on @, and then on P, we
obtain P =PQ =Q. m .
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Proof of the Theorem. 1. It follows from Lemma 7 of [4] that it
is enough to prove the theorem in the case where 8, are one-point sets,
therefore in the sequel we assume that {sn} = §, . Then there exists a se-
quence {8,}%_, of positive numbers such that: K (sn, 8,) N IntW, (4), 6, >0,
0< 6,<1 and 8G,NZ(4) =0, where G, = W,(4)+(§ 2).

2. Let @, = B(C\G,, 4), and {P,}2, = P;(H) be a sequence stron-
¢ly convergent to the identity operator. Let P, stand for the orthog-
onal projection on the subspace PH+Q H+ Q,,,H Ag P, ,— 1 strongly
with # — oo, it follows from Theorem 1 of [6] that there exists a sequence
{7351 such that

Ile'—E(C\Gk7Pk,nkA‘Pkn BPpn, <1, m>k.

For simplicity assume that .Pk = Py, - Since @, commutes with Aand P,
so it commutes also with P, A and therefore @, commutes also with
(C\Gn,PnAlP H)P Lemma 6 shows that @, = H(C\G,, P, AIPnH)P

3. Now we fix n. Let Qn stand for the orthogonal projection with.
range Q,H; then Q,Q, =Q,, @ .2, =@, and Q,<P,. The following
identity holds:

fJnAl—Jn, = QnAQn +Qn‘A (Pn —Qn) +(‘Z’5n_"Qn)A (Pn '_Qn) H

so the operator P, A4| 5,z May be represented by the operator matrix

[Q,.Aéu AP, -0, ]
0 (Pn_Qn)A(Pn—'Qn)
By a theorem on a triangular matrix form ([1], p. 107) there exists an
orthonormal set {&_,, ..., &, &y, -.., &} such that
o -
= 2 < 7ﬁj>517 *Qn Z < imi>wj
J=—3 j=1

and
(Ady, B> = 0 for i <j.

Let fi; = (A&, &>; 50 {A—s = Z(P,Al5,z)-
= Alg m, We have

Since 0,4Q,l6, =

{B}ms = Z(Algm) = Z(AN\E,.
Since Q, = B(C\G,, P, A|s »)P,, we have
{ijor = Z(Podls,m)NGhs
therefore
(1) (s,

W(4)< 8 (@A<j<r).


GUEST


6 A. Pokrzywa

Now let
. ﬁj: -8 Sj < 0
H ~{(1~5n)ﬁ;+ 0,8 1<j<r.
It follows from Lemma 4 and (1) that u, € IntW,(4), whence 1 <j<r

Lemma 7 of [4] implies that there exist vectors & (j = r+1,742,...

., 27) such that {#,};"_, is an orthonormal set in H and

<Amj7 &> = <A*‘Zj7 @ =0, for j>7r,j #14,

LA®;, By =8, (r<j<2r).
Now put
@]J -8 <j<0,
@ = Ty Ry
Vl 5“&7 + 6nmj\ﬂ 1<\]<T
and note that:
(2)  Lmgyom) =08y, {Amy,a) =, {do,ed> =0 Ifor i<y,

Let an orthogonal projection P, be defined by the formula P, = 2 ( T«
It follows from (2) that
E(P‘nAIF.,,H) = {P‘j};=~s and {‘lu.'l};=-s = Z(A)\Gwn
(Ui = Wo(4).

From the definition of a; we see that |z —&|f < 2

®3) W, —P, Il <V28,.

4. There exist complex numbers u; (r<<j<3r) such that: u
€ Int W,(4) and s, is an interior point of the triangle [u;, ps.ys tisarls
1<j< r (in the case where u; = 8, we pub y;p, = W0, = 8)-

Lot phyg = p;y b =1,2,.. By Lemma 7 of [4] there exist unit

“wvechors ; (r<<j<< oo) such 'bh‘l:t

d,; hence by Lemma 5

{m}72 _, is an orthonormal set in H,

<A (R 1> = M

{Aw;, 3y = (A*m,, @y =0 for

Now define orthogonal projections B; (0 < j <y

B = Z <y Byoond B

k=0

(—8<j< o0),
Jj>r, j #i.
) by the formulas:
By = @y,
Note that:
(i) R;R; =0 for 7 5 j;
(i) B;dw;,; = 2(4991441“ BB = Bigra@ym T j2 LT =

1<j<n.
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0,1,..., therefore the operator R;AIR]};( is normal for j>=>1 and

E(leﬂajtz) Rj-AIRjH) 1<j<ry
(iii) if ¢>j>1, then

{445 HBitrs .’-‘j+2r}

o0
R Awy, g = Z ARy Digrt) Cigrt = (A gy @@ = 03

1=20

hence R;AR: = 0 also B;AR, = R;R,Q, AR, = 0, and so

R AR; =0 i 0<j<is
5. By Lemma 3 there exists a projection S;eP,(H) (1<j<7)
such that 8§ < RBj, Z(8;4lszm) = {su}s |2 — S;2;/185ll| < 8, Put also
8y = Ry (=@Q,). Note that:
(i) 8,8, = 8,R;B,8; =0 for i + j; hence if we define P, — 3 &,
=0

then P, € Py(H);
(i) if 0<j<i<r, then 8;48; = §;R;AR;S; = 0.

This shows that the operator 4, =P,Adp y may be represented
in an upper triangular matrix form

8048, 8,48, 8,48,
0 8,48, 8,48, ®
A, =
0 0 S8, A8,
Therefore
Z(4,) = HE(SJ-MS,H) = (Ed(-A)\Gn)U{sn}'

It remains to prove that P, - 1 strongly. Let

\

o . 8;2; \ Sz S
P = o hav Eht .
=2 (o) i+ 2 <o
By Lemma 5 ||P, —P il << 6, this, with (3), glves uP — n11—>0 Since
B, -1 strongly, P, 1 strongly; since P, > P, also P,->1 strongly.
This ends the proof.
Remark 1. If A e L(H) is a selfadjoint operator, then the operators

4, =P Alp g are also selfadjoint. Using the identity

(4, Z(4)) = inf{|(4 ~Dall: el =1},

which is valid for any normal operator, we see that if P, — 1 strongly,
P, e Py(H), then for any &> 0 and n large enough X(4) = X(4,)+(s).
In such a case the assumption of our Theorem that W,(4) contains an
interior point is not satisfied; W,(4) is an interval.
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However, the asymptotical behaviour of spectra of the operators 4,
is not clear in the case where A differs from a selfadjoint operator by
a compact one.

Remark 2. If W,(4) is a one-point set, then ([6]) 4 is of the form
A+ K where K is compact. Then for any sequence {P,} of projections in H
(not necessarily orthogonal) converging strongly to identity dist (Z(4)
Z(P,Alp,g)) 0.

The case of not necessarily orthogonal projections i easy to settle.
Remark 2 and the corollary of Lemma 7 give a characterization of the
asymptotical behaviour of spectra of the operators P, 4| Pyt -

Levma 7. If A e L(H) and W,(4) is not a one-point set, then for any
bounded set Q < C there exisis an operator 0 e L(H) with ¢~ e L(H) such
that 2 =« W, (0140).

Proof. I a,beW,(4), a b, then there exists a number 7> 0
such that ‘

H

’ -

QcK(a+b rxa__._b.l_)

2 7 9

it follows from Lemma 7 of [4] that there exists an orthonormal set {w,,, 9,1
such that: (da,,z,>—+a {4y,,9,>—>b, Ay Yo = {AYy, 2,> = 0.
Leb @ stand for the orthogonal projection on the subspace spanned by
{Z,s Yo Yoer . Define operator ¢ e Z(H) by the formula

Oz = (1=Q)2+ D' (<2 B+ 19,51, <2, Y0 ,)5

n=1

o

then

07 eL(H) and  (07Y)'e = (1—Q)e+ D (<2, B0+ <2, Y, —10,5Y,)-

n

Let v, = v, (1) =71§~(w,,—|~ ¢ty,) where t e R. {v,(t)}2, is an orthonor-
mal sequence in H and

(0-144.0‘17”, vn> = <AO’U,” (0—1)*1)“)

= B+ 7%y, 2+ (L —rd) Ay, g 31> TE0 gt @V 85

This shows that A(f) e W,(C™1AQ). Since W,(0~*4C) is a convex set
and ' ‘

‘ oq[@FY la—Db|
vy =822, ),
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we see that i
a-+b a—Db
.QCK( ;- "3 )CWQ(O"IAO’).-

COROLLARY. Suppose A e L(H) is not of the form s+ K where K is
a compact operator on H, then for each bounded set 2@ < C there exists a se-
quence {P,} of projections in H of finite rank (we do not assume P, = Py)
such that:

P,—1 strongly, Pi-»1 strongly

and

dist{Z(4,), 2) >0, where A, =P, Alpp.

Proof. By the previous lemma there exists a ¢ € L(H) with ¢7' e L(H)
such that QUZX(A) = W,(CAC™?). Theorem implies that there exists
a sequence {@,}n.; = P,(H) such that @, - 1 strongly and

(4) dist(Z((Q,- CAC™)lg,m)> ) 0.

Let P, = 079, 0, s0 P, = P} and it is easy to verity that P, — 1 strongly,
P} -1 strongly.

Moreover, 4, =P, A|p p = 071Q,0407" 1) (C\P,H), ie. A, is
similar to @,0407%|g . Therefore Z(4,) = 2(Q,0AC |y z), this and (4)
end the proof. .
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