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Abstract. A series expansion for Fourier transforms of integrable functions in
terms of simple invertible functions is obtained. Essential use of Mikusinski’s series
expansion of Lebesgue functions is made and a type of nonorthogonal “Fourier series™
of such functions is obtained.

Mikusifiski [2] has defined Lebesgue integrable functions as limits
of series of brick functions (i.e., characteristic functions of bounded inter-
vals) with a special type of convergence. This definition is equivalent
to the original one and the integral of an integrable function is obtained
simply upon adding the term by term integrals of the series. Specifically,
if fe% (the class of Lebesgue integrable functions of one variable),
then there exist numbers a, and characteristic functions of bounded
intervals g, such that

(i) Dlagl [ < o0

and
(ii) J= Z‘“an (almost everywhere, a.e.).

Because of (i) and the dominated convergence theorem, the convergence
in (ii) can be stipulated as being absolute and

(i) [f=2 ]t

Mikusinski uses (i) and (ii) to define the £ class, and (ili) as the definition
of the integral for this class; he calls the x, brick functions, a term sug-
gested Dby their rectangularly shaped graphs.

We shall employ an analogous expansion using, however, functions
whose graphs are isoceles triangles. These will be called tent functions
or gimply tents. They turn out to be somewhat more appropriate for purposes
of the Fourier transform than are the bricks. Actually, bricks can be
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expanded in terms of tents, as the following theorem shows, henee they
are equivalent collections for purposes of integration since, of course,
tents can be expanded in terms of bricks by Mikusiski’s theorem.
TuroreM 1. Let y be a brick funciion. Then there ewist nonmegative
tent functions =, such that '

§ = ZT" (absolutely a.e.).

Proof. Choose the tent 7, so that its graph is the largest isoceles
triangle (with horizontal bage) lying within the brick yx. The area of 7,
is then one-half that of the brick. Next choose the two tents v, and 7y 8o
that their graphs are the largest isoceles triangles which when translated
vertically lie within the two disjoint triangular regiony between the brick
and the tent 7;. The combined area of these two tents i3 then equal to
one-quarter of that of the two disjoint regions. Next choose the tents
Ty +eey T10 so that their graphs are the largest isoceles triangles which
when translated vertically lie within the six disjoint triangular regions
between the brick and the three (translated) triangles obtained from the
tents 7,, 75, 75. The combined area of these six tents is again equal to
one-quarter of that of the six disjoint regions. In a similar manner, choose
the tents successively so that at each step, suitable vertical translates
of their triangular graphs cover as much of the brick area remaining as
possible. This process leads to a disjoint covering by isoceles triangles
of the region inside the brick with a combined area equal to that of the
brick. Indeed, the area of each =, (n >1) is equal to exaclly one-quarter
of the area of the corresponding triangular region in which ity vertical
translation lies, and exactly three-quarters of the area of this triangular
area remains to be covered by subsequently chosen isoceles triangles.
Thus the total area of the covering is given as the fraction

PHEH(E G +)
of that of the brick. But this fraction is equal to
2
SRS ) =

This proves the theorem since y and the 7, are nonnegalive functions
and IIX'I"Z T/nl = 0.

Using this theorem and Mikusitiski’s expansion we obtain the desived
tent expansion theorem.

TuEoREM 2. Let fe . Then there ewist tent functions v, such thot
(iv) D [ el < oo
and

v) f= E 7, (absolutely a.e.).
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Proof. First use the Mikusirigki expansion theorem to obtain
=23 a,x, (absolutely a.e.), with 3 (4, [ x, < co. Then use Theorem 1
to obtain for each m, x, = > 7,; (absolutely a.e.), with z,, nonnegative

k

tents. It follows that f = 3 3 @,7,, = > 7, (absolutely a.e.), with z,
= a,T,;, some linear reordering of the square array. Moreover, 2 [ 1wl
= 3 Y 1an) [ Twr = 3 || [ %, < co, which proves the theorem.

Hereafter if f € &£, then #f will denote the Fourier transform of f
given by

oo
#iw) = [ éfw)da.

—co
Also f will denote the reflected function given by f(#) = f(—wx). The
following Fourier inversion result for tents is well known [1]. The proof
is omitted ; the Fourier transforms of tents will be displayed subsequently.
THEOREM 3. Let v be a tent function. Then its Fourier transform Fz
is continuous, is bounded (by f [z|) and is integrable. Moreover, it tends to

vero at - oco and satisfies the Fourier inversion formula

T = ZL.”/T (F1) (everywhere).
3

Tn the next theorem we give new proofs of some standard results

THEOREM 4. Let f € £. Then its Fourier transform Ff is CONTENUOUS,
is bounded and it tends to zero at & oo. If Ff € £, then [ satisfies the Fourier
inwversion formula

N 1
I =Er—f(Jf) (a.e.).

In particular, if Ff =0 (everywhere), then f =0 (a.c.).

Proof. Using Theorem 2, let f = Y7, (absolutely a.e.) be a tent
expansion of f, where 2 f |7,] < oo. By the deminated convergence the-
orem it follows that

(vi) Ff = D Fa,

|#f] < [ 1f] and, because of Theorem 3, that the seri.es converges a,bsc.)-
lutely and uniformly on the real line. Hence the Fourier transform :ﬂ-'f is
continuous, is bounded by [ |f| and it tends to zero at -4-oo. Again by
Theorem 3, it follows that the series of integrals

(vii) 2% f Vg, () dy = Z -2—1,;? (Fa) (@) = 2 (@)
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is convergent absolutely almost everywhere and that the sum is f(—a).
If in addition #f € %, then the integral of the sum is the sum of the inte-

v 1 .
grals in (vii) so that f = E—ﬁ (#f) (a.e.), which completes the proof.
™
The above proof embodies a new characterization of Fourier transforms
of Lebesgue funetions.
THEOREM 5. A function [ is integrable if and only if there ewist real

sequonces b, and @, >0, and a complex sequence ¢, with ' |¢,| <. oo, such
that

(viii) FHy) = 3 20 gtw. L=08DI)

holds for all real y.

Proof. The “only if” proof congists of computing the Fourier trang-
forms of tent functions z,,, which turn out to be terms of the type displayed
in (viii). Specifically, if

‘ 9

(ix) 7, (@) = ;_f_(l__ lm;bn[)

for |#—b,| <d, and zero otherwise, then f [z,] = le,] and the Fourier
transform of =, is given in (viii). Thus (viil) is merely the expansion (vi)
encountered in the proof of Theorem 4. For the “if” proof we simply
note that under the conditions on the b,, 4, and ¢, stated in the present
theorem, the right-hand side of (viii) defines a function which is the Fourier
transform of a Lebesgue integrable function f determined almost every-
where by the termwise Fourier inversion of the series. (See Theorems
2, 3, and 4.) .

Because of the expansion (viii) of #f in Theorem 5, the original tent
expansion (v) of f in Theorem 2 takes on a more significant meaning;
it ‘is a type of nonorthogonal Fourier series representation of f, where
thé 7, are the Fourier inverses of the expansion terms of the series in
(viii). Moreover, the expansion (vii) in the proof of Theorem 4 yields
a new Fourier inversion theorem which we now state explicitly for greater
emphasis.

TamorEM 6. Let f € L. Then its Tourier transform FT can be expressed
in the form of an absolutely and wniformly convergent series 2 Fr, of func-
tions each term of which is continuous, is bounded and tends to zero at <= co
(see (viii)) and which has a classical Fourier inverse

1 ca
Tn(w) = 3'7: f e—‘{a;y.g,:.rn(y)dy.
—00
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The latter im turn is continuous and has compact support (see (ix)) and is
such that the equation
f= ZTn

Tolds (with absolute convergence) almost everywhere. This last equation can
be regarded as a “Fourier series” representation of the Lebesgue integrable
function f.

We conclude with a few observations and a final theorem.

(a) The convolution of two brick functions can be expressed as the
difference of two tent functions. This leads to an elementary proof of
the eonvolution theorem, a proof which avoids the use of Fubini’s theorem,
but uses instead Mikusinski’s expansion (ii) as well as the Fourier expan-
gion (v) and its transform (vi).

(b) Since the Fourier transforms of tent functions and their Fourier
inverse transforms ean be computed as Riemann type integrals, if the
series expansions (v) and (viii) themselves are used to identify the classes
of functions involved, the Lebesgue theory can effectively be avoided
altogether, simply by operating termwise on the series.

(¢) Normalizations of tent functions (ix) converge to delta-functions
as d, —0 and to constant functions as d, — oo. Exactly the opposite
holds true for the nonperiodic parts g,(y) = (1 —cosd,y)/(d,y) of their
Fourier transforms. Since each collection consists of integrable functions,
their roles can be, and offen are interchanged. (See [1].) We now know
that one collection generates % while the other generates the #-transforms.

(@) Since [ lg,| = J gn = 7/dy, it follows that it 310n1/d, < o0 in
Theorem 5, then #f e #. This holds iff the “gltitudes” of the tents (ix)
are summable. In particular, this holds if the bases 2d, of the tents em-
ployed are not arbitrarily small. The condition Y)|e,|/d, < oo, of course, guar-
antees the uniform econvergence of the temt expansion (v) and is the
most obvious condition insuring the (uniform) continuity a.e. of f.

This last obgervation is, perhaps, of sufficient interest to state as
a theorem, in an equivalent form.

TemorEM 7. Letf € &, and let f = 3 v, be a tent expansion of f according

to Theorem 2, where 3, [ Iz, < oo and where 1, is the length of the support

e 1
of the tent =, for each n. Then the quantities T, =7 f |z, are “average”

walues of the tent functions, and if these averages are summable, ¢.e. if D) Tn < 00,
then it follows that the Fourier lransform %, f is integrable and f satisfies the

.1 .
Fourier inversion formula f = ~2;97 (Ff) (@.e.).

Since brick functions of several variables can be expressed as pointwise
products of brick functions of one variable at a time, all the results given
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in this paper may be extended to functions of several variables in a straight-
.for?vard manner, upon replacing the various series by corresponding
series of products representing each variable one at a time. Many quan-
tities merely require a vector interpretation of the indices of summatioﬁ.
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oz
(F~1oF)f(w) = f(z) for © e RY, where Ff and F~'f denote the Fourier integral and
the inversion Fourier integral of f.

Abstract. It is shown that if z#

feIL*(R9) for |u+v|<k, &> g¢/2 then

Tt is well known that the operation of differentiation of functions
corresponds to the operation of multiplication by the argument of their
Fourier transforms. This makes it possible to look for solutions of differ-
ential equations by means of the Fourier fransformation. However,
this method of solving differential equations is useful provided the in-
vergion formula for the Fourier transform can be applied.

The Fourier transform of a function of the class S(R?) of rapidly
decreasing smooth functions is defined by means of the formula

Ff(&) = @m)™" [ §=Of(2)da,
(1) P

(@, £ = mb+... a2,  ®, R

Then, the inversion formula is expressed in the form:
(2) FI(8) = @m) [ wOf (@) do.
R4

For f in & (R?), we have
(3) (F o) flw) = (FoF 1)f(w) for each ze R

We can ask for what other functions formula (3) holds, wjghere the
Fourier iransform and the inversion Fourier transform are given by

Pourier integrals (1) and (2), respectively. The author knows only the
following
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