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in I'. That is, {8"x,} i8 a basis for I' which, as our proof shows, is similar
to {¢,}.

Using essentially the same ideas we can prove:

THEEOREM 4.2. If &y = (1, @y, dy, ...) € " and f(2) = 1-F a2+ @22 ..,
with f(z) % 0 for all 2 in the undt dise o] < 1, then {8"w,} is a basis for I*
which is similar to {e,}.

Proof. As in the proof of Theorem 4.2, our assumptbions imply that
(@) = 142+ ... for {2, in I*. Therefore the operator @ = I 0,8 -
+038°+ ... is & bounded linear operator on I and clearly QT = TQ = I,
That is, 7 is invertible on I* and since Te, = 8", the theorem is proved.

COROLIARY 4.3. I oy €1}, the following are equivalent:

(i) {8"wo} is a basis for U similar to {e,}.

(i) {8"w,} is a basis for I.

(iii) The function f(z) = L-+a,2--a,22-- ... has no zero on the diso
l#l < 1. -

Finally we state without proof a more general version of Theorem
3.1 (for the case X = I') which settles the question of similarity of {82}
and {e,} in 1.

THEOREM 4.4. Let @y = (L, @yy g, ...) € and f(2) = L+ a,2--age? ...
Then {8™w} is a basic sequence in I* which is similar to {e,} if and only
if f(2) % O for all z on the unit cirdle 2| = 1.

The proof uses essentially the same ideas outlined above along with
certain estimates on the norms of linear combinations of {S"a,} and will

be given in a subsequent paper devoted to more general problems in this
area,
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A rvefivement of the Helson-Szegd theorem and
ihe determination of the extremal measures

by
RODRIGO AROCENA (Caracas)

Absteact. Lot Byr bo tho set of measures on the unit circle which satisfy the
M. Riesz inequality for the Wilbort transform with constant M. By is determined
by an associatod class Iz of analytic funetions. Wo give a geometric charactorization
of the elanents of Iz and devive a refinement of the Helson—-Szegd theorem. The
oxtremal measures in the cono Ry are determined. OQur basie result is tho construetion
of aosubret of extromal measures by moeans of which every elemoent in By can be nat-
urally ohtained.

I. Introduction. Lot I' denote the unib cirele, f the Fourier transform
of fe Ly (T) and f its conjugate function. Xt M > 1 is a fixed constant
and g =2 0 ameasure on T, the Xilbert transform, we shall write x4 € B, if:

(L.1) [1fPdu =< o [1firdu, VfeI*(unIt.
a r

Set R == |J Ry, Helson and Szegd proved [3] that ue R iff u is
M1
absolntely continuwous with respect to Lebesgue measure, du = w(w)dw,
and
(X.2) w = exp(u--7v),

u, vel™, e < =/2.

Consequently, from now on we ghall write w e By, iff u4 € By, Cotlar and
Sadosky proved [2] thut w e Ky, iff there exists b e H*(T) such that:
(L.8) w4 MWt -2 (M +1)Re(h)w—h|2 = 0, a.e.

Tn this paper we study first those funetions h that, by (L.3), eharac-
terize Ry, Then we statie o version of elsou-3zegd theorem for each Ry,
wnd, in particular, a simple proof of (1.2), deduced from (I.3), Finally we
determine the oxtremal yays of the cone Ry, Our basie result is:

TLORIM L Liet g = gy 419, # 0 be @ function of H*(T') with g (0) = 0
and v(g) = (0yy Uy), where
(1.4) vy = ot {(M 1) g [[(M -+1) g3 +4 Mg T},

M A1
g = axch YT (Ligo>0r— Higg<o)-

7 = §ludia Mathoematica 71,2
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Then w = Cexp(u,+D,), where ¢ is any positive constant, belongs to am
eatremal vay in Ryr. Let By be the set of rays obtained in this way: if we Ry,
logw is a weak star limit, in the dual of

Hyy = {feLi: fe I, f(0) = 0},

of convew ecombinations of logarithms of elements of Xy, .

II. The class H;; of analytic functions. Let H,, be the set of all func-
tions b e H'(T) that verify (I.3), that is,

Hy = {heBT): 3wz 0, we LNT) and h, w verify (L.3)}.
(IL.a) LEMMA. We have
Hyp = {h = hy+ihy € BN (T): by <0, [h) < (M —1)[hy) 22, ae.}.

Proof. It h e Hy, and b = 0, (1.3) says that for almost every » there

exists a positive solution of
—4Mwt—2 (M +1)why (8) — |k (2)]2 = 0,
80 hy(2) < 0 and
(M —1Y°8 (2) [ = B ().

Reciprocally, if h = hy+ih, e H(T) and h, <0, (B —1)%h3/4M > i
setting w = — (M +1)h, /4 M, it is clear that h e H ary thus proving (ILa)
and consequently that H,, is a convex cone.

Given h € Hy;, we set:
(TL1)  wy = (AM)7 {~ (M +1) Ry + (—1) [(M —1)*h3 — 4 AT},

j=1,2.

w, and w; ave the solutions of the second degree equation considered
above, so we have

(ILb) COROLLARY. Given h € Hy, w and h verify (1.3) iff w, <w<w,. In
partioular (—ReHy) « Ry,

So each heH, defines a “band” of functions belonging to R,.
‘We denote this band with W, = {w, measurable function, w, < w0 < w,},
‘where w,, w, are given by (IL.1). Therefore € By <30 e Hy, such that
we Wy, Now we consider the angle:

Sy={lz,9) e B 2 <0, |y < (M ~1)w|/2M"}, 5o
Hy= {h e H(T): W(T) <« Sy}
(ILc) PrROPOSITION. h e Hy ond h 5 0 4ff b is given by the boundary

volues of f, am amalytic function on the unit dise D, such that f(D) = 8.
Proof. If h e Hy, h e HY(T). Set

(I1.2)

f&) = @) [ Plryu—t)h(t)di, 2 =re™, r<1,

icm®
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where I is the Poisson kernel; then

h(e™) = lmf(re™) a.e.
r~»1
Being P’ > 0, (IL. a) implies that f(D) = 8.
Reciprocally, let f be analytic on D and f(D) = 8y, Set:

(IL.3) a (M) = arvtg[(M —1) /21",

s0 the measure of the angle Sy equals 2a(M), and f e H?(D), Vp e (0, =/
2a(M)). (See [1].) Sinee 2a(M) < =, fe H*(D); then k(e™) = limf(ré™)
exists a.0. and b e HY(T). Clearly h e Hyy. ol

In the above proof we have shown that ke H, implies h e H?,
Vp e (0, ©/2a(M)).

Sinee w, < |h|/2, (TLD) says that
(AL.d) CorROLLARY. If w e Ry, then weLP(T), Vp € (0, n/2a(M)), a(M)
given by (IL.3).

Also, since |hy| << 2Mw,, it i3 evident that

Wy = LP(T) < hy € LP(T)
<=Jw € Wy, ; such that w e LP(T).

JE w e By, there oxists ¢ e H?(T), Vpe (0 y 7 2a(M )), such that
w == lg|; in fact, it we Ry Ihe H, such that we Wy, =w> Ol 0
a constant, and loglh| e I' because h e H' = logw € L'; then o e H'
such that w = |p|; since w e I?, ¢ & H?, Yp € (0, m/2a(M)).

(ILe) COROLLARY. If h & Hyr k™t e Hy and (Wypp)™t = 4M Wiy, If
we Ry, w'ely.

Proof. If h(D) < Sy, then A™Y(D) c Sy It is eagy to see that,
with obvious notation, wi} = 4Mw,,[|h2 = 4Mw, ,-130d wy; = 4Mw, 41,
8O (Warp)™t == (™ we Wyppt = &M Wy p-t.

e (1 +2)*

BExamprng., (i) Let ke [0, 2a(M) /=], f(2) = — T Then f(D)
< 8y and wy(u) = lcotgu/2|® cos (kr/2) {( M +1L) +( —1Y[(M —1)2 —4 M tg?
(T [2) Y2} A, § == 1L, 2.

(i) T¢ Ay o0 2y hy
able funetion sueh that 0 < e < w =

If g D o 1) iy analytic and
B(2) = -a{[L+g@)I/IL-g (=)}

a >0, 0 k< 2a(M)/m, then f(D) < 8. By subordination, this is the
general form of the functions in Hy,.

We shall say that h e Hy is o “boundary funetion” in H,, if h(T)
< 08 <> (M = 1)203 [AM == hi w.e.

S0, then wy == MY w, == 1, so if w i & measur-
b, with bja < M, thon w e By.
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If F: D —+ {Rez < 0} is analytie, then

;AT
P = —F0es (5 [ 5 o

(TL.4) -

with |[f() <1, t € [0, 2x], so arg T (%) = =f(¢)/2. Then every F' e H,, has
a representation (II.4) with

fely ={g: T — R, lg()| < 2a(M)/x},

convex and compact with the weak star topology of L*. The Krein~-Milman
theorem states that every g e Ly, can be approximated, in that topology,
by convex combinations of extremal points of Ly, Now, f is extremal
in Ly £ |f(#)] = 2a(M) /= a.e., that is, iff the I associated to f by (IL.4) is
a “boundary function” in H,. In this sense, going from X e H,, to the
associated fe Ly, we can say that the “boundary functions” determine H ,,.

III. Propositions related to the Helson-Szegé theorem.
(ITLa) Levwa. Let heHy and we Wy, Then w = Cexp(u--5), with

(i) v =m—argh, solpl, < a(M);

(i) O = |R(0)] /2]

(iii) % =log(2.M 2w /|h)).

Let Ugy(v) = arch [(M +1)cosw /2], Then |u| << Uy(v), Upp(v) +
+u = log(w/w,), Uy(v)—u =log(w,/w).

Proof. Bince A(D) c Sy, logh =loglh|+targh can be defined,
with [w—argh| < a(M). Set (in 1) » = n—argh = v, < a(M) and
P = 10g|h/ﬁ(0)|. From the definition (II.1) of w,, w, get

w41 o [(M+1)2
WM 4

.

1
cos™ ——1] } —log 2 M,

log (e /1) =1og{

I +1 (M +-1)2 )
1 Al =1 ‘ B 42 ~] o o 7rl/2
og (w,/lh]) %8 oL co8Y +[ L o8t 1] 1 log 2.2,
80

log (2.M™ 4, [|h) = —Up (), log(2M*aw,([R) = U,y (v).

Then, setting w = log(2M**w/|k|), the result follows.

Note. Helson-Szegt’s proof of (I.2) uses speciul properties of analytic
outer functions. The characterization (I.3) has been proved in a direct
and elementary way; moreover, it is imnediate that (I.2) implies (1.3)
for some BI[2]. (IILa) states the reciprocal. So (IILa) with (I.3) givos
a new proof of Helson-Szegd theorem. (See also (IIL. ©) below.) As (ITL.x)
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rests only on (ILb), this proof is a simpler and more elementary one,
because it does not use refined properties of H.

(TILb) LeMMA. Let w = Jexp(u+5), C o positive constant, |u)| < Uy (0),
folle < a(M). Set
112 X A 1 -z
h(z) = 230 exp {i[x—b (0)]+ f-——_ v (6)dt).
AT e [
Then )

(i) h e Hy and (on T) argh = m—wv;

(i) w/wy = exp(Up(v)-+u), 1wy 0 = exp(Upe(v) — s
(iii) we WM,IL'
Proof. (i) From the definition of h it follows that

& fenhf_ v dt}

g0, on T, argh = n—5 (0)+0 = n—v = h e Hy..

(i) On T, [b] = 2M 06 s0 w = ¢¥|h)/2M** In the last proof we
saw that w; = oMU (v)h| 2 M2, § =1, 2.

(iif) Since Uy (v)4u >0, (i) says that w, < w << w, 50 we Warn-
(ITX.c) PrOPOSITION. w € Ry iff w = Coxp(u+9) with ¢ a posmve oon-
stant, |[u| < Up(v) and |0, < a(H).

. Proof. If w e By, Ih e Hy, such that w € Wy, ;5 (IILa) says that w
is as stated. (IIL.b) proves the reciprocal.
(IIL.d) CoroLLARY (Helson—Szegd theorema for R,,).
= exp(u+9), with [Pl < a(M), lw+0]< Uy(v)
stant 0. )

Proof. (IILc), with », ¢ instead of (#-log(),—logC.
(IIX.e) CorOLLARY (Ilelson—Szegd theorem). We have

wekR =) {By: M>1} »w =exp(u+d), ,vel”,
[olloe < /2. :

Proof. I w = exp(u-+45), [vle<mn/2, wel”, then M such
that cosv 2 MY /(M +1), and |u] < arch(M™), so ||, < arcos(2M™?/
HM 1)) = a(M) and ju| < Uy(v); the result follows by (EIL.d4), which
algo states the reciprocal.

argh = Im {i[n—

wekRy iff w
for some real. con-

IV. Characterization of the extremal rays of R, in terms of H,.
w e Ry defines an extremal ray of By iff w = (w’+w")/2, w’ and w'’' e Ry,
imply w’ = 0w, w"” = 0"w, 0’ and C'' positive constants. Set

ExtRy, = {w e]ﬂM; w belongs to an extremal ray in R,}.
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(IV.a) PrOPOSITION. Lot h e Hy, w € Wy ;. If there cwists A< T, |A| > 0,
such that, in 4, w, < w < w,, then w ¢ BxtRy;.

Proof. 36> 0 such that in a set 4, =T, |4,] >0, 'w1<w-e,
W+ << Wy

Seting W’ = wyp..a, +(W—8)xa,,
sult follows.
(IV.b) COROLLARY. If w e BExtRy, then Ib = hy+ih,c Hy and A< T
such that

W’ =Wy 4+ (W &) L4,y the re-

W= WY g+ Wikg—a :
= { (M +1)hy ~ (4 — 2 a) (M — 1R — 4 MBGT P} A M.
(IV.c) ProrosITION. If heHy and M' > M, then wyp < Wy, Way
< Wy, omd the inequalities are strict in the set (of positive measure) {h, # 0},
{h, # 0}, respectively. In particular Warn2 Wi
Proof. Let —f, (w) be the first member of (I1.3), that is, fy (w)
= 4Mw?+ 2 (M +1)hyw + |h|2. Then fy. (w)—Ffu(w) = 2(M — M)w (2w -+
+hy). Now, 2wy o+ by < 0; moreover, 2wy ,+hy < 0 l:ff hy 5 0. Conse-
quently, i (war,) < 0, the inequality being striet iff k, 5 0. Since fy. (w)
is a second degree polynomial with two real roots, wpp, < Wpp,, it
follows that war, < Wy, With strict inequality iff b, # 0. In the. sameo
way we oan prove the result concerning wyy; and wyy,.
(IV.d) OoROLLARY. Ext Ry, = Ry — |J Ry

I<M<M S
(IVie) ProPORITION. If R/, B e Hy, 0<t<<1l, and h =th’' (L —1)h",
then

Sty + (L —twy', g+ (1 — 1wy < wy3

equalities hold iff h'[h" is real. So Wy, o twyy o+ (L —12) Wyg .
Proof. We want to compare Wy, , with
TWarne+(1—1) War e = {0’ +(L—=8)w'": w' & Wy 0" € Wy g
Set
= (P [(M —1)"hiF —A MR+ (1 — 0)2 (M —Ry'® —1)2 4 MR?] +

+28(L —)[(M —1)2hhy —4 MAghs T2,
B = t[(M —1)%® —4 MAP 12 4 (L — ) [(M —1)%h' — 4 MRY5]2
Then
wy— [ty + (L—t)wy'] = (4 — B) /4 M,
B> 0. Set
0 = (M —1)2hihy — 4 MBhY > 0
D = [(M~1)%? —4 MR [(M —1)2052 — 4 MA2T = 0.

with 4,
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Then
. A*—B* = 24(1—1)(C — D)
and
O —D* = AM (M —1)2 (Kb~ B2, ‘
Consequently w, > tw;--{(1—t)w, and equality holds only when hihy —
—hi'h; = 0. Analogously,

wy — [ty - (1 — )y ] = —(4—B)4M.

Now suppose k' /R’ i8 real a.e. (on T). Consider the analytie function
(on D) f = h'Jh"'; then f(D) < § = {z: largz| < b} for some b < © becanse
W, b ey, Set F(z) = (iiz) t such that F(D) = 8; by subordi-
nation, f = . g, g: D — D, analytic. Now f(¢™) e R a.e. on T < g(e™)
e Ba.c. on I = g is constant. So we have the following
(IV.L) Lmmma If b’y k' € Hy and B [B'' is real a.e., then B’ [L'' is constant
(and positive).

Note. The above lemma implies that if A is a “boundary function”
of Hy, then it belongs to an extremal ray. of the cone H,. In fact, if
h =1 - (1—-t)k", b',h'" € Hy, it is clear that, on T, argh = argh’
= argh'’, so W[k is real (a.e.). (IV.e) and (IV.L) state:

(IV.g) ProrosrrioN. Let W, h" e Hyy 0 <t <1 and b =th'4(L—1t)h".
If " = Ch', O a positive constant, then

() Warn # Warp -+ (2 —18) Warpes

(i) w, < twy+ (L—1)w)’, tw, + (1 —t)w, < w, in & set of positive measure
in T

(IV.h) CoroLLARY. Under the hypothesis of (IV.g), if w = way 4 —]—wle_ A
then w ¢ Wy 5+ (L —1) Wy e

(IV.i) LeMMA. If w eRM-—]xtRM, dheHy and AT such that we
Warwld] >0 and wy < w < wy on A.

Proof. Since w ¢ BxtRy, Jw’, w" € Ry, not belonging to the same
ray that w and such that w = (w'4-w’')/2.

Let k', h'' € Hpr be such that w' e Wyep, " €Wy yn; then we
W+ Warge) Set b= (W 1")/2; (IV.e) says that w e Wy, ,. Sup-
pose b’ (k' == 0, a positive constant; (IV.o) implies that w, = (w}+w,’)/2,

= (wywy) /2, X w = wyp-twiyp.p for some Bc T, then w’
= Wykp -+ Wikp-z; W = W) gp W) ta_p; since wy/wy = wijw)’ = 0, then
w'jw” = O, a contradiction. But if »'/h" is not a real constant, (IV.g)
states that w == wyxp -+ Wixy.p 18 impossible. The result follows.

The lagt lemma and (IV.a) prove the following
(IV.j) ProposITION. Let w el?M Then w e BExt Ry iff we Wy, implies
W =Wy X4+ Wk -
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That is, w belongs to an extremal ray if and only if it belongs to
a “band?”, it equals the “upper” function of the band in gome subset of T'
and, in its complement, it equals the “lower” function.

DurINITION. For every w e Ry let
(IV.1) By = {heHyp: we Wyt
If 0 < t<1, then _
[th' (L — )R % = t(h*+ h’2)+(1-—t)(h;’2+h;‘2) +
+28(L — 1) [k — (B2 + Ty ®) [2 -+ Bohy” — (he -+ n't 21,
- W+ (L— )R < A (L= DR, 0<i< L,
and equality holds only when &' = h’’, (IV.2). This relation shows thai;:

(IV.k) PROPOSITION. The set H,ye, 98 comves.

(IV.]) ProposrrioN. Let heHy and w =wigs+Wikrq- Then b is an
ewtremal point of the convexw set Hy,,.

Proof. Suppose b = (b +h"")[2, W'; b’ € Hyr oy, B # B'". The hypoth-
esis on w says that 0 = —4 Mw? —2 (M +1)hgw — |h|?, a.e. (IV.2) ensures
that 34 < T, |4| > 0, such that in 4,

—-4M'w2 ~2(M+1)h1'w —Ih2 > —4Mw?—

=0 > —4Mw?—
which contradicts 2', h'' € Hyy,,-
(IV.m). COROLLARY. If w € Bt Ry, then Hy,, contains only one elemmt

Proof. (IV.j) and (IV.]) state that every element in H,,, is an ex-
tremal point. In this way we get a first characterization of the extremal
rays of Ryr.

(TV.n) TeporeM 2. The following conditions are equivalens:
(i) w e ExtRy;
(ii) there exists one and. only one heHy such that we Wy, and

2(M +1) g — (B [24- |B'[3) 2
2(M 41 (b + 1) 2 — (0|2 -+ 1B7'[2) 2,

W = Wi+ Wakr—a '
= { (M +1) by +(g = Yr-) (M —1) 1§~ MBGT P} AW, ace.
Proof. (IV.m) and (IV.j) say that (i) implies (ii); (IV.j) proves the
reciprocal.

V. Characterization of the extremal rays of B, by means of Helson—
Szegé theorem.

(V.a) LeMMA. Let w e BxtRy. Then there ewists only one v such that
0 Il < a(M);
(i) w —*03"*", with € a positive oonsta/n,t and |u] <

Uy (w).
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Proof. There exists at least one such v becaunse of (ITI.c). Lemma
(IIL.b) says that w € Wy, with v = m—argh. Since w e ExtRy;, (IV.n)
shows that &, and consequently o, is well determined.

(V:bY LimvmA. Under the same hypothesis and with the same motation that
n (V.a), 4t must be |[u| = Uy(v). :

Proof. (LV.n) shows that w = w, or.w = w; a.e., o (ITL.Db.ii) 1mp11es,
respectively, Uy (v)-+u =0 or Upy(v)—u = 0.

(V.e) LommA. Under the same hypothesis and wilh the same notation that
in (V.a), u is also unique.

Proof. It w = 0,06xp (4 -+ 5) == Cpoxp (15, -+ 5), 1;]1011' Uy = U+ Ty To
a real congtont. Considering ( (V.h), we can sec that |ug] == juy| = u, is
congtant = |v] equn.lﬁ a.e. & congbant i

Suppose ¢ < a(M) = artg[(M —1)/2H' ] = AU, 1< M < M, such
that ¢ a(M’); then w = ¢, exp(u;+5) = Oexp(u-+45) with =0, C
= (jexpu, and loll, < o(M'). (IILc) says that we Rpp and (IV.d).
that w would not belong to ExtR,. Then, it must he ¢ = a(M) l'vl
= a(M) a.6. = Uy(v) =0 a.e. = Uy = Us.

(V.d) DmpINizioN. A (measurable) function has property (Ey) if the fol—
lowing conditions are satistied.

(H )y There exists one and only one pcur (v, u) such that

(1) Wl < a(HM);
(i) Ju < Upe(0); ‘
(iii) w = O0¢“"?, for rl (well determined) positive constant €.

(Byp)a lul = Uy (0)-

‘What we have proved up to now is that w € BxtRy,, = w has prop-
erty (Hyy).

Reciprocally :

(V.o) Lmmvwa. If w has property (Hy), then w e BxtiRy.

Proof. w e By becanse of (ILL.c). Lemma (ITLDb) says that w e Warns
with h defined there. Suppose h' e Hy, i such thayt w € Wy 3 then (XIL.a)
states that w = 0'e"*¥, with v = n—argh', |h’(0)|/2M”’ a.nd
10" o << (M), W] < Upe(v'). 80, DY (Barhs, © ~~v, w=u =>0=
From mgh = - == w0 = argh’ we see that A'[h is real a.e. on .’Z’
then (IV.L) shows that A’ =lkh, % a positive constant. Oonsequently
b = [B'(0)/h(0)] = C'J0 =L = k' = h. So there I8 only one heHy
guch that w e Wy y,-

(By), ways that |u| = Up(v); by (TIL.a) w = w; Or W =W, ..
Congidering (IV.n), the result follows.

. Summing up we have
(V1) TemormM 3. w & BxtRy < w has property (B a)e
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VI. The set P,,.
(VI.a) DEFINITIONS. Set G (v, 4) = u -7,
Py = {v, ) e IP —LP: |wll, < a(M), lul < Uy (o)},
(VLYV) Limyva. Uy, 98 a strictly concave fumetion.

From the lemma, considering that U, is a decreasing function in
[0, a(M)], the following result follows.

(VL. ¢) PROPOSITION. Py, is convew, symmetric and absorbent. In the morm
topology of LY x LY, Py is the same as the closure of its interior.
(VL. d) DeriNirions. Let Py, and Ly, be the “cylinders” given by

Py = {{v, ) +(0, )] e I X I¥: (v, u) € Py, 0 € R},

Ly = @(Py) = Ly +R.

Let ns consider the sets ExtP,, and ExtL,, of extremal gonerators
of these cylinders and the space L = {o+u-+5: ¢ e R, u,v e I°], where
functions that differ in a congtant are identified. Then Extf 18 just
the set of extreme points of L,,, a convex subset of L.

(VL.e) PROPOSITION. L, is a weak star compact and convex subset of L.

Proof. Listhe dual of H, , with a norm equivalent to the one given by

ol = int{lully, +ollo: ¢ = ¢+u-td, c e B, u, v e LT},

In this norm I, is bounded, because @ € Ly, implies llelly, < Upe(0) + a ().

Let us prove now that L, is closed. If ¢ belongs to the norm closure
of Ly, for each natural number e may be written as ¢ = ¢, + wu, -5, +
+ 2, +6,, With ¢, € R, (v,,4,) € Py, [0, [0]l~> 0. Considering even-
tually subsequences, we may assume that ¥y, 5 %y, cONVerge — in the weak star
topology of L, — to v, u, respectively. Set Py = w+4; clearly, g(n) = @, (n),
V % #0, 50 ¢ and ¢, represent the same element of I,

Obviously, |jv]l., < a(M); moreover, in a set 4 = T such that | T'—A|=0
the following inequalities hold: [v] <lim 0], Ju| < ﬁx—xl—lunl. Now, since
Uy is a decreasing function with a continuous inverse on [0, a(M)],
in _every point of A4 we have: Uy(v)> Upr(lim [v,]) == Lim Uy (v,)
= lim fu,| > |u|. Consequently (v, u)e Py, and so ¢ el,. Considering
the theorem of Bourbaki-Alaoglu, the proof is over.

(VLE) LevmA. Let (v, ) € Pyy; then (v, u) is an exiremal point of the
conver set Py iff |ul = Uy (v), a.e. ‘

Proof. If |u| < Uy (v) in a set of positive measure it is easy to con-
struet wy, 4, such that u = (u, +u,) 2, (w—u;) and (¥—wu,) are not con-
stant — and a fortiori not zero — and [usly |oy| < Upp(w). Then (v, u)
= }(v, %)+ %(v, uy) in Py, so (v, w) is not an extremal point of Py
This proves also that (v, u) ¢ BxtPy,.

Ly = G(Pyy).

icm
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Reciprocally, suppose |u| = Uy (v) a.e. and (v, u) = (o', w')-+-}(v",
") in Py, Then fu] = Upr(v) 2 3Up(v') + 305 (0"") = (0] - [0”]) 2220’ +
+u''l/2 = |u| a.e. Bince Uy, is strietly concave, we must havev =o' = v’
to get equality in the first inequality, hence |u| a.e., |u''| < Uy (v) = |u| 8.0,
and we must have w = 4’ = 4" a.e. to get equality in all the inequalities.
(VL.g) PROPOSITION. Let (v,u) € Py; then the following conditions (a)
and (b) are eqm‘valmft:

(a) (v, w) e BxtL,,.

(b) |u] = Uy (v) and at least one of the following conditions is satisfied :
(by) w changes its sign, (by) Wi, = a(). )

Proof. (a) = (b): We saw at the beginning of the proof of (VL)
that (a) implies |u] == Uy (v). Suppose that (b,) and (b,) are both false;
then we may assume that 4> 0 and that IM’, 1L < M’ < M, such that

oo < a(M') < a(M) = u = Upy(v) 2 Upe(lvll) 2 Upela(M)] > 0.
Set uy = wu— U, [a(M")]; then u, =0 and uy <wu, 80 (v, u,) e Py and
(v, ) is not an extremal point of Py = (v, u,) ¢ Bxt P, The result
follows.

(b) = (a): Let (v, w'), (v'',u")ePy and O a constant such that
v o= (0 +0")2, u = (w+u’)2+C. In the set 4 = {u >0} we have

w = Up(v) 2 §Up(0')+ U (v) 2 Jl0' |+ F00"] = u > (w'+u")(2;
go, if [4| >0, 0> 0. Analogously, if [{# < 0}| > 0, 0 < 0. Then, if (by)
holds, ¢ =0 and v =o' =", u = u' =u", because |u| = Ujy(v) ensures
that (v, %) is an extremal point of P,,. If (b,) does not hold, then [|l,
= ¢(M); for each natural » 3B, < T such that |B,| >0 and, in B,,

ol = a(M)~1fn = |[v'|, p"| > a(M)—2/n

= o — (v’ +u"’) 2] < 2Uy[a( M) -2 n];
congequently (0| < 2U y[a(M)—2/n] -0, and the result fol}()ws.
(VLL) Cororrawy, Let (v,u)ePy be such that exp(u-+v) eBxt Ry, .
Then (v, u) € BxpP ;.

Proof. Suppose the statement is false. Sinee (V.b) says that |u|
= Uy (v), both (b,) and (b,), in (VL.g), must be false. So we may assunlxe
that %> 0 and [l < a(M) =AM’ & (L, M) such that [l < a(M’).
Sot wy = 4 — Uy la(M")] = u; 32 0; wo shall see that [u,| < Uy (v) which
ig equivalent to

U (v) = Upela (M) < Uppe(v) < aveh [(M+1) cosv/2MM] —

ML 2;@’)
WM M1

@ = (M-F1)2 M B2 (M +1) > 1

y

— azch [(M +1)cosv/2M"™*] < arch (

gotting
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the last inegquality 'is true because arch(at)—arch :¢< arch a, Vi > 1. So
[U1]- << Upge (v) and N ‘ ’

(IV.Q)  folle < (M) = (v, %) € Py = 6¥4% = Qp™1t¥ e Ry,
- = 6“0 ¢ Bxt Ry,

Nowl ‘we can state the relation between the extremal generators of
these eylinders and the extremal rays of By. o : :
(lVI‘.‘i) ProposITION. The following conditions are equivalent:

(8) f & Bxt Ly o '

(b) ¢ € Ext Ry ‘

(e) q:"(f)nPM contains only one element that belongs to ‘Ext'lf’M.

Proof. (a) = (b): Let f = @(vy; uy+0), (vy, Uy) € Py, 0 'a constants;
(IIL.b) says that w = ¢’ e B,;. Suppose w ¢ ExtR,,; then (IV.j) ensures
that Ih € Hyand A < T such that w € Wy, 14> 0 and, in 4, w, < w

g;.og;‘ 50 3B < T and a > I such that |B| >0 and; in B, aw, < w < w,/d.
o :

1
LA
S W =wyp_p+ 'a‘wa, W' = Wyg_p+ owyg;

the;l w’, 'w”‘e WM,,,’and w?* = w'w". Then (IIX.a) shows that

- w=Cexp(utd), w =COexp(w+7), w” =Cexp(u’+37),

(v, u?; (0: %), (2, u'’) € Py From w? = w'w' we get u—l—f = (W +8)2+
—|~— (W' +8)/2; since w'jw is not a constant, (- 5)—(u'+5) is not one
either, so (u-+%) ¢ ExtLy = f ¢ Bxt Ly,

(b) = (c): Suppose (v, u), (v, u’) e Pyyandf = k+u—+v = 4w+, %
and &' real constants; then w = o = Qg% = (/g¥+¥ 1 ¢’ iti
and i real H i , ¢ and O’ positive

Let k be defined in terms of » and ¢ as.in (IIL.b) and, in \

[, the same wa;
construct %' by means of v’ and ¢'; then we Wy, ,,n’WM, we Since wyc;
eExt{EM, (IV.n) ftates that b =2/, 80 v =0, 0 = o and, éonsequently,
'u,mz w’. fThus @7 (f)NPy contains only one element, (v, w-- k);  since
“** = ¢/[0 € Bxt Ry, (VL) shows that (v, u+1k) e BxtB,.

o (o) = (@): Let J= 2 = bt (') 2+ (0 +0") [2;

since ((u .+u_}/2, (o' +w .’)/2) € Py (k4 (w' +u')/2, (o' +0")/2) is the only
t_alex.nent in @7} (f)NPy; in order that it belong to an extremal generator,
:‘t)tvéi necessary that ¢’ =o', w =", so feBxtL,, and the proof is

Let N be the kernel of ¢. Then following i agi s g
section. . ing is the basic result of this

(VLj) TmOREM 4, Let w € Ryy; then (a) and (b) are equivalent.
(a) w e Bxt Ry oo ;
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(b) w = Oexp(up+8o), O @ positive consiant, (vgy ) € Py, 1thg] =

Up(ve)y {(00y o)+ NPy = {(v5, o)} and at loast one of the following

conditions is satisfied: (b,) w chamges ils sign, (b,) [l = a(M).

Proof. (a) = (b): (YILc) says that w = Cexp(uy+To), With (o, %)
€ Py Let = ao-+150; (VLi) states that {(vy, %) +N }nP,, contains only
one element, evidently (v,, %,). Since (v,, %) € BxtPy, (VI.g): finishes
this part of the proof.

(b) = (a): (VL.g) Shows that (v, u,) € ExtPy, so the result follows
from (VLi). : ‘ . ‘ o

VII. Proof of the main theorem. The preceeding characterizations
of the extremal rays are not constructive; now we shall construet explicitely
a subset H,, < WxtR, such that, in the sense specified in Theorem 1,
every w & R, can be obtained by means of elemerits of Hy,. ,

Tet J, be the interior of Py, in the norm topology of L XI and
K, = (05, )+, where (v,,%,) is as in (VLj) and N = {(v, —%): v,
# e I}, Considering (VI.c), & well known corollary of the Hahn —Banach
theorem endures the existence of an hyperplane H that separates K, and
XK,. Since K, is open, K,nH = @, so H. is not dense; -consequently, it
is not difficult to prove the following result.

(VILa) PROPORITION. Let (vo, Uo) be as in (VLj)§ Then; there ewists' p, v,
belonging to the topological dual of LY such that: '

(i) [ ep(@ptids) =0, ¥ =0,
P

(if) 1= [ (vodu-+usdv) > [ wap+ud), V(v,u)ePy.
' T T

Tt ‘seems readonable to suppose that (ve, %) will have some special
propertios when the funetional can be represented by functions. So we
set the following.
(VILb) DEBINITION. (Vq, %) &8 in (VI.j) belongs to the set P, if there
oxists fi,f, € Lt such that du = fidi,dv = fadt satisty the assertion of
Proposition (VILa) :

In the way to prove the first part of the main theorem, it will be
ghown that (v, u) € BPy, iff (v, %) ev({g e Hy,: llgll > 0), where v is as
defined. in Seetion I. (VILa) and (VILD) say that:
(VILc) ProrosteroN. Let (v, o) Pa as in (VLj). Then If = (fi,fa)
suoh that (—fi--ifs) € HY, f1(0) = f2(0) = 0,

(VIL1) [fo+ [fau< [foot [fan, YV, w) ePo.
@ @ g &
Proof. Since P, is convex and absorbent, N a closed subspace

and —by (VL) — {(9o, te) = N3N Par = (vo, o), the Hahn-Banach the-
orem states that 3f e (L® x L™)’ such that f(N) =0 and f(vo, %o) = F(8),
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Vs e P, If (v, w) € Py and ¢ is any real constant (v, %-+C) ePy, 50 it

is necegsary that fa(O) = 0; the result follows. From now on (9, #,) and

f = (f1,fs) shall be as in (VILe). Gonsequently [ol == Upe(wy)y 80 2,
= Upg(96) (At~ Xr— )

(VILd) PROPOSITION. With the above notation, the following relations are

true, except for sets of measure 0:

{f2 >0 n {lvg] < a(M)} = 4y,
{fa <0} {lve] < a(M)} = T'—4,.

Proof. Set v = vy, u = Upn(®) (¥4 —xr-4); then (v, %) e Py and
Jfo = f f1vy 80 (VIL1) says that
T

@) ffaUM (20)— f F2Un(v0) <

(VIL2)

f fo2Uu (@) — [ faUx(vo)-

-4y
If the first statement of (VIL.2) is false, setting
A = {fy> 0} {|vo] < a(M)} = {fy > 03N {Uy(vo) > 0}

it follows that [4— 4, > 0 and 4,— 4 = {fUy{v,) < 0}. Then
f FeUse(ve) — f F2Use(w0)— f FaUn(w) + f F102¢(v,)
T~4q
=2 [ fZUM(vo)az [ £2Uu@)= [ faUs(v) >0
A—dy Adg—4 A—dy

which contradicts ().
The second statement of (VIL.2) can be proved in the same way.

(VIL.e) PrOPOSITION. With the same notation, the following relation is
true, except for a set of measure zero:

(VIL3) 88V = 8gfy.
Proof. Let [v| = |vyl, ¥ = uy, s0 (v, %) e Py and (VILL) says that
iflg:fflvo. Set B = {fy <0}, v = vyp_p—voxp; then it is clear that:
T
1) {fiwe< 0} =0.
Now set € = {f; =0}, v =0 gp.0y % = UoXp_g -+ Up(0) (3¢fs) xe; thon

(VIL1) shows that
[I51Tx0) < f Fathos
o

and [{f; = 0}N0| =0 because (—f,--ify) e H*; 80 |u,| =
¢ =9, = 0 a.e. in €. Consequently

(if) Hfs = 0} —{v, = 0} =0.

Let D' = {w, = 0}—{f, = 0}; suppose |D|>0; then 3D, = D, &, &, posi-

ol < Tye(0)

Upe(0) a0, in
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tive numbers such that |Dy| > 0 and, 1n Dy, IfHl =
such that

(i) Uy(0) - Uyld) <
such a d exists because Uy (0) = 0.

Now set v = Voxg_p, +4(88f1)xp,, % = vokr—p,+Un(d)(3gfs) xp, -
Then (VII.1) says that

f fuld+ f \fal Une(d

a, |fa <k Let d be

ad|2k;

ffozu(O) = ad|Dy| < k[T (0) — Use(d)] [ D4l

}u.oh con’nmdlcts (iif), so
(iv) {vo = 0} —{fy = 0}| = 0.
From (i), (i) and (iv) the result follows.

DEFINITION. Let J 3 (v) = — U7 (v), 9| < a(M). Then
M41L . [(MA+LY
lelz o N3
80 J 5 i8 0dd, J;,(0) = 0, J,, is positive and increasing in (0, a(M)), and
J g (w) = oo when v = a(HM).

(VILt) ProrosizioN. Let (vy, ), f = (f1,fs) be as in (VILe). Then
(VIL4) [falfsl = T (1%]) 2.

Proof. Let v be such that sgv = sgv, and [, < a(M); set u =

Une(0) (g4 — Xay); then (v, u) € Py (VIL1) shows that

[fo+ [fHUn@) = [ fuTu)
T Ay =4y
sffx'vo'{“ ffl’ul)"{" ffoM(”o)""
T A Ay

= sgwv, it follows that

—1/3
Iy (v) = cos?v —1] ’

f FaUp(vo).
-4y

Since 8g f; = 8gv, =

(i) f fal Lo+ f FUw(®)~ {1 £ (®)
'~ Ag
f‘fﬂ [vol + ffoM('"u T£fﬂUM(”o)

Assune that [vy] < a(M) < |v| < a(M). Then (i) and (VIL.2) show that
(i) [0S 01+ £l Tag 1< [ 11l 190l 4 1Fal Tne(20)]
7 7

for dvery v such that
(i)  8gY = 8gy, v] < a(M) and |v] = a(M) iff vl = a(M).

Set 0, =, if v, =0 or |v| = a(M), and 2, = py(L—1/n) if 0 <|v,
< a(M).
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Theh, for every natural. n, v, verifies (iii) and |o,]'<< [vp} in {0 < |v,.

< a(M)}. Given any interval J, set v = VoY J—Hznx,, 80 v verifies (iii)|
Then (ii) states that :

f (Il |«:,.|+|levM(vn>]< f [1fal ol + meM(vo ), VI

if1l 1ol -+ lleUm(vn) < Ifll Wol + 1Sl Upe (o) ae.

Oonsequeritly, ‘ x
UM(]’DnI) Uar(190]) f1
[vo] — [0l fz
holds a.e. in {0 < |vy| < a(M} So we have
(iv) Tu(loo) < fulfal ae. in {0< o] < (B}

Now set v, = 0, if 0 =0 or |v| = a(H),

(M) 1ol ]sg%

) ,,, —~[|® H— in {0<iml< a(M)}.

Then v,, verifies (iii) and |v,]| > |vg] in {0 < [vy] < (M)} 80, in the smme
way a8 above, we see that ‘

(v |falfel < T3 (0o}) @i, in ‘ {0°< vyl < a(M)}.

Since (—fy+f) € HY, (VIL3) shows that, except for a seb of meagure 0,
Tullvel) = 0} = {v, = 0} = {fy = 0} = {|fs/fal = 0}, so (VIL.4) is proved
in {v, = 0}. In order to finish the proof it iy thus enough to show that
fo=0a.e.in B = {jv} = a(U)}. Set

—”o[xz'—- +(@ =1/ xpl, Uy = Uetp-p+ Uy(vn). (88 f2) 25;
then (v,, 4,) € Py and s8gv, = sgv,, so (VIL1) and (VIL.3) show that
J1fal loal + f FALZYICARS f VANCAE
3 .

JAl _ Uy e () (L—1/)]
f Ifel (1/n)a(M)

—> 00 when - oo,

The result follows.
(VILg) CororrARY. The following relations kold except for sets oj measure 0:

{fa > 0} = Ao {[vy] < a(M)},
{fa<0} = (T—4)n{{vy) < a(M)}.
Proof. (VILf) says that |{f, # 0}A{lv,| < a(M)}| = 0. So, except

(VIL35)
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for sets of meagsure 0, (VIL.2) shows that
{fa >0} = {f2 > 0} {{vo| < a(M)} = 43N {lvy| < a(M)},
{2 < 0} {Ivg] < (M)} & (T —Ag) N {|vol < a(M)}.
ince {f, > 0}U {fa < 0} = {{vo| < a(H)}, the result follows.

Now we easily see that f determines (v,, %,); let J37 be the inverse
function to Jy, and remember that wy = Uy(|v,l). (x4, — ¥r-4,)- Then
(VIL3), (VIL4) and (VILB) state that:

(VIL6) (o) to)
= ((sg ) I3 (fulfal) s UM[JEII(Ifx/le)]~(Zu2>0}""l(/2>o)))-
Set b = (M -+1)/2VI; then Uy (o) = arch(beosa); if
- Y1)
y=JIy@), o=J501) = Mtg[m]
and
cosw = [(B2+y2)/(b*+ Dby ]/

Consequently, (VIL.6) can be written in the following way:

vy = vt (I — 1), /(M +1)f+ AMFEPH),
(VILT7) . - N
wy == aveh ([(M +1)2f} -+ 4 MAT? (4 M (f +11) 1)
. . (l{f2>0) - Z(f2<o}) .
So we have proved that )
(VILL) PRrOPOSITION. Let (0q, to) be as in (VLj). Then 3 f::(f]? £a)
# 0 such that (—f,-+ifs) e H', F1(0) = £,(0) = 0, and (vo, %) are given
by (VILT).
(VILi) LeMMA. If fy, fo € LNT) and (vo, %) are defined by (VILT), then
(Vo %) € Py o
Proof. Olearly [oy] < artg[(M——l)/l/eiM] = a(M); also

21 [(M+1>zﬁ + 4=Mff]””
ML AM (T ’

CORBYV, ==

80

1 GOS’UO) = Uy(0o).

i
|t4g| = arch oYL

(VILj) Lmyma. In the same hypothesis of (VILi), f(v,u)< f(vgy o)
holds for every (v, u) € Par— {(voto)}-

8 — Studia Mathematica 71.2
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Proof. Since |u] < Upe(0), u = hlUa(v), with |h] < 1. Then

) | flo, 0 < [TAl lol+ sl U (o).
: : T .

(VILT) shows that

(ii), . . . 880 = 88 [,

and also that

(i) tg(lvol) = (M~ /LM +1)2F34-4HfTR = |fi/fal = T ar(vo)).
Also

(iv) ' ‘ U = Uyt (90) - (ggy 03— Hry<op) -

(ii) and (iv) show =~ P

(v) L flogy w) = [TUl tool + Ifel Ue (00)]-
) r

Suppose first that [v] = [v,| a.e. If sg f; = sgv does not hold a.e., (v) states
that f(v, w) < f(vy, o). If 8gf, = sgv a.e,, (i) shows that v = v, 8o

F(®o, tg) —f(v, ) = f(vy, u,) '*f(”o; hUm(”‘o))

= [ 1ol Uneo) = [ F2hT ny(wo) > 0
T r

except b = sg f, 8.e. in {|vo] < a(M)}, which would imply % = u,. Suppose
that 4 = {|v| 5% |v,{} has positive measure. Congider,in 4, ¢ = —[Uylv)—
= Un (o) 1/[Io] = ool1; it 0] > [wgl, O > —Use(Iwa]) = Tye([0yl), and, it |o]
< |voly O < —Tpe([vol)y 80, in A, Ups(v) = Upe() > I e (I0g])- (0] — ) -

Then (iil) shows that, in A, |fal Usr(ve) + |fsl 2ol > |fal Une(0) 4+ I£i] [0}
Since |4| >0,

Tf LUl ool ++ 152l Une(00)1 > [ LISl o]+ e Une(00)1;
r

considering (i) and (v), the result follows.

(VILk) ProPOSITION. Inm the same hypothesis of (VILi), exp[Gor(g)]
= X (% -+0,) € Bxt By and z(g) € BPy,.

Proof. (VIL j) shows that (v, u,) e ExtP,,. Suppose
(v, ut0) € {(vg, up) ‘}‘N}npui
since N « Kerf, it is clear that

G (g +50) 0Py = {(v,, Ug)+ N}nPBy
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containg only one element and that it belongs to BxtP,,. So exp(u,-+7,)
e Ext R, because of (VLi). Consequently (v,, #,) is as in (VILj); set du
= gdt, dv = §dt. Then, theresult follows from (VILj) and Definition (VILb).

Remark that the first part of Theorem 1 has been proved. In order
to prove the second we shall give a geometrical interpretation of Ej,.
We saiy that ¢ € L, belongs to the set ExpL,, of exposed points of L, if
there exists a linear functional F, continuous in the weak star topology
of L, such that F(p) > F(y), Yy € Ly — {p}.

Proposition (VI.i) shows that there exists a bijection between ExtR,,
and. Ex‘uf}M, given by f—¢’. We shall show that the same relation holds
between Hy and BxpLy,.

(VILk) PrROPOSIIION. ¢ € Bxply, < ¢% e By, .

Proof. It ¢ eExply, cearly ¢eBxtL,, 0 ¢® e BxtR,;. Then ¢
= ¢-FUqg-+Dy, With (g, %) a8 in (VLj). Moreover, there exists geH,,
such that

f(y'uo-l—juo) = f(g'u+§u) for every (v, u)eDPy.

7 7
Thus (vg, %) € BPy. Proposition (VILh) and the definition of H,, finish
this part of the proof. Reciprocally, if €* € By, ¢ = ¢+ 1y +0,, With (v,, U,)
a8 in (VILi). By (VIL]), ¢ € BxpLy,.

‘We know that L,, is a weak star compact and convex subset of L. So
we may refer to the following theorem of V. Klee ([4]): Let E be a separable
Banach space and H* its topological dual. Let ¢ be a weak star compact
and convex subset of B*. Then O is the weak star closure of the convex hull
of the set of exposed points of C.

This theorem, with B = H,, ¢ = Ly, says that the proof of Theorem
1 is over.
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