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On the sum of two Brownian paths

by
R. KAUFMAN (Bloomington, Ind.)

) Abstract. We study a mapping property of the random function of two variables
given by X (s) + X (2). This process has a complicated dependence structure, and a com-
binatorial estimation of produet measures is used, in place of martingales. The property

is suggested by the Peano curve and the known modulus of continuity of Brownian
motion. .

Let X denote Brownian muhon on the half-line ¢ >0, let Z(s, t)
= X (s)+X(?) on the quadrant s > 0, 1 = 0, and let F be a compact seb
in this quadrant.

THEEOREM. If the Hausdorff dimension of F exceeds 1/2, then Jor almost
all paths X . Z(F) has an interior point.

Before entering upon the proof, we point out how the present theorem
differs from previous results, including [3]. From the viewpoint of prob-
ability theory, we observe that the process Z has a complicated dependence
structure, for example an identity Z(a, b)+Z(c, d) = Z(a, &) +-Z(b, ¢).
We did not succeed in finding a proof based on martingale inequalities,
but rely on a direct estimation of moments; the obstacle to a proof following
[3] is precisely the presence of relations like the one cited. In the calen-
lation of moments we require a new estimate for the product measures
of certain sets in #x ... X F, which may be of interest for Gaussian pro-
cesses in general. Finally, the process Z seems to be intractable by the
method of caleulating individual Fourier coefficients, e.g. [1]. If, for
example F = F; x F; wherein dim#, = dimF, = 0, then the sets
X(F,) and X (F,) are subject to no workable restriction; indeed we can
find 7, and F; so that the additive groups generated by X (#,) and X (#F3)
have Hausdorff dimension 0 for almost all paths X.

1. In this paragraph we make a few preliminary reductions and
write down the integrals whose estimation is the main burden of the
proof. The quadrant s > 0, t > 0 is covered by its subsets s =14, 0< s < ¢,
0 < ¢ < s. Then F meets one of these sets in a subset of the same dimension
as I itself, say F,, Fy;, F;. In case dimF, = dim¥ > 1/2, we observe
that Z(s, 1) =2X(s) on F,, and this possibility is easily included in the
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remaining ones. If dimF#, = dim# > 1/2, then F, (being a countable
union of closed sets) contains a compact set of the same dimension, in-
cluded in a product set [, &3] X [&5, &, With 0 < e, < ... < g. After
a harmless change of variable, we assume F < [1,2]x [3, 4]

F carries a probability measure x with a Lipschitz condition u(S)
< O(diam 8)* for all open sets S, and a certain a>1/2 [2]. We ghall
prove that the transtorm of x4 by Z, i.e. A(8) = u(Z7(8)}, admits a con-
. tinuous density. In doing so we follow a method from Fouriér analysis
used in [3].

‘We choose and fix a function @ of class €%, vanishing off (
and equal to 1 on (—1,1) and write y(z) = O (23)—
for real #, and B > 1,

I(R,w)

—2,2)
& (). Then we set,

= [ RY(RZ (s, 1) —u) u(dsdt).

Ag explained in [3] it will be sufficient to obtain the following inequalities
(R, w)i5 < B,R™, '

in which > 0, and B, depends on 7 but not on « or R. The 2r-th power
of |I(r, w)| is the integral over F®) of

(1) By (RZ('S'U t1) —u)‘@ (RZ(S‘E, ) —

Here there are 2r factors 9 or ~, whose argunments are RZ (85, &) —u.

Let n > 0, to be chosen later; then the product is exceedingly small
unless we have |[RZ(s;, ;) —u| < R 1 <i< 2r. Ouwr plan is to estimate
the probability of this event as a funection of (s, %), ..., (S, &,). Integra-
tion of this function, with the factor R, yields an estlmate R*, To improve
this, we caleulate the expected value of the product (1) by different means,
and find a negligible value except on a certain set Hy < F®7), Then we inte-
grate the probability found before over H, and improve the estimate
to R™". Of these steps, the calculation of the expected value, and the
estimation of the product measure of Hy are the keys to the theorem.
It is the nnusual form of Hy that distinguishes this result from its simpler
version in one dimension.

X ...

2. In this paragraph we consider the events 4;: |RZ(s,, t,) —u| < R".
‘We introduce the functions d,(s, ) = 1 and d;(s,?) = min(|s;—s;, L <j
<dé)4min(lt;—t,), 1<k <<d) for 2 i< 2r. Then Z(s;, %) = 4;+B,,

where. 4, is a Gaussian variable in the span of Z (s, 5y )y 1< <4, and B;
is orthogonal to that space (and hence independent of it). We claim that

o*(B;) > ¢d,, an evident assertion for i = 1. In the verification of this
we use the formalism of stochastic integrals, an isometry of IL*(0, 4 )
onto a Hilbert space of Gaussian variables. Writing Q(u) = 1 for u > 0,
Q(u) = 0 for u < 0, we observe that Z(s,t) corresponds to the funetion,

icm
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of >0, Q(t—u)+Q(s—u). I now f in L*0, + o) is constaut on an
interval of length p, 0 < p < 1, around ¢,, then | (¢; — %) +Q (s; — u) — F(w)[2
> p. The same is true for s; in place of #;, and this proves the claim. Using
conditional probabilities in succession we find that

P(IRZ(s;, 1) —ul < BY, 1< < 2r) < ORU-D"(d,d, ... d,,)"".

We write d(8, T')~** for the factor on the right, and observe that (8, Ty~
belorigs to L'(x™), by Fubini’s theorem and the Lipschitz econdition
on u. In fact A(S, Ty~ isin L7 (u*") provided 1 < p < 20, again by Fubini’s
theorem; this observation will be important later.

3. In this paragraph we give a direct estimation of the expected
value of the random function (1). We define the functions

ai(s, 1) = min (jg;—sl, j i) -Fmin(lt,—4], & #9).

Then Z(s;, t;) = A*—'—B,, where A} is a Gaussian variable in the span
of Z(s;,%),] 5 4, and B} is orthogoml to that space. As before, 02(B}) > ed;-
The eondmonal expectation of p (RZ(s;, 1) — u), given the field of 4(s;, %),
j 4 is then

@7)7" [$(Roy +o)exp(—y*/2)dy = [p(s)e*Fexp(—1 2R *)sds.

Inasmuch as (s) =0 for [s| < 1/2, the integral is exceedingly small,
wniformly with respect to o, if Ro > R" In different terms, the expected
valued of the entire product (1) is exceedingly small unless (s, ), ...

<5 (8, 1) belongs to the set Hy defined by the inequality d; < R*"*
1<i<<2n).

4. Recalling the definition of the functions 4y, ..., d;, Wwe shall prove
that the product measure of a set of the type df <hb (1 <i < 2r) is O(F*7).
To apply this to the main theorem we take h = R 2%

Since @ < &, for each element in our set, we can find 4,> 2 and
j1= 2 so that |81 —s; | <h and h—t i< h. From the sequence (sy,%),
(835 Ta)y vy (Sap; T} We discard (s, 1), (Sz‘ly iil) and (Sjlx tjl)' Among the
remaining elements of the sequence, we repeat this process, using 2k
in place of 7. That is, we find (s, 1,), ( )s (8my T}y With ¢ 5% D, m # p,
and [s,—s,| < 2h, [t,—1,] < 2h. If ﬂns 1& possﬂole, we discard the terms
involved, and cont-i;nue with 2k, ete. Suppose that this process can be
continued for N > 1 steps; the elements so chosen form a set of product
measure < Y. Thus we can suppose that N < r/2. The elements already
chosen we label (s;,?;), ¢€I;, and the remainder we label with I,. We
consider elements (s;, %), ¢ € I, for which we can find j eI, and kel,,
80 that |s;—s;| <k and [f,—%] < k. Since the sets I, and I, are disjoint,
we obtain a set of measure < A", if we assume that the number of indices 4,
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with this property, is ab least /2. Thus we assume the opposite situation
prevails.

: To recapitulate, I, has more than 3#/2 elements. To each element 5
in I, there are indices j, & such that |s;—s;| < & and [t,—%,] < h. At least
one of j, % belongs to I,, by the construction of I,. For at least # elements 4
of I, (we call these Iz) ati least one of j, k belongs to I,. We write I, if § e I,
and % e I,, and I,” otherwise. Then one of the sets I2 , I.” has at least »/2
members.

Assuming that I," has at least 7 /2 members, we finally attain a contra-
diction. For I, has fewer than #/2 members, so that I, containg two el-
ements 4,and 4o, such that for some 7, we have |s; — 8 < hand is ~sj] < h,
whenee |s; —s; | < 2h. Also, [t ip Uil < I, With some % in T,. Thus (85,9 1)
is included in the firgt method of selection, a contradiction.

5. To complete our estimation of |I(R, u)[3r, we recall that this wwas
expressed as an integral over F®), and that the integral over FEINH,
was found to be negligible. The measure of Hj was ]ust found to have
order (R*%)# — RU=)*. The integrand, moreover, is in L?(4), for
1<'p<2a and its norm in T? has oxder R™". The integral over Hy,
therefore has order R™-RU1¢ wherein ¢ = (p—1)p~'> 0. As 17
decreases to 0, the exponent approaches —arg, so that ||I(r, )i has
magnitude B, R~ Ior any ¢ << ag. The number was subject to the in-
equality ¢ < 1—(2a)7" so that ¢ is subject to the mequahty c<a—1/2.
This allows us to conclude that the density of the meagure A belongs to
a certain Holder class, depending on a.
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Singular integrals on generalized Lipschitz and Hardy spaces
by
ROBERTO A, MACTAS and CARLOS SEGOVIA (Campinas, Brasil)

Abstract. Let d(z, y) be a quasi-distance and z a measure, both deﬁnec% on X,
such that (X, d, u) is a normalized space of homogeneous type. Singular fntegml
kernels are defined on (X, d, u). Norm inequalities are given for the singunlar m’segr{sl
operators, associated with these kernels, acting on atomic Hardy spaces and their
duals.

Introduction. Let X be a topological space and d(x, y) 2 non-negative
function defined on X x X satisfying:

(i) d{z,y) =0 if and only if # = y.
(i) d(@,y) = d(y, »).
(iii) There exists a constant k such that

d(w: RS k(d(.’l}, 2) "‘,d(z: ’/))
(iv) The balls with eenter at # and radius r > 0,

B(wy‘r) = {y: iz, y) < 7'}7

are a basis of neighbourhoods of 2.

Moreover, we shall assume that there is a regular Borel measure
such that for every ball B(z,r), # € X, r> 0, there exist two positive
and finite constants ¢;, ¢, such that

(1) e < p{Blw, 7)) < oor-

This property of the measure u implies that if b> 0 and &> 0, then,

@) [ a@, 7 du(o) <™

a(x,2)>b>0 ‘
The triple (X, d, ), satisfying the requirements above, shall be called
a normalized homogeneous space {see [3]). )

Let p(x) be a real or complex valued function on X, square inte-
grable on bounded subsets of X. The mean value of g(2), on & }:fall B,
#(BY"*f ¢(x)dp (=), shall be denoted by mp(p). We shall say that this fun-

B . .
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