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A Holsztynski theorem for spaces
of continuous vector-valued functions

by
MICHAEL CAMBFERN (Santa Barbara, Calif.)

Abstract. W. Holsztyhski has shown that if X and ¥ are compact Hausdorff
spaces, and if 4 is any isometry of O(X) into O(Y), then there exists a closed subset
B(4) = T, a continuous function z mapping B(4) onto X, and an element a e O(F)
with llafic = 1, and la(y)] =1 for y e B(4), such that (A(f))(y) = a(®)f(vly)) for
all y e B(A) and fe0(X).

Here we obtain a formulation of this theorem for spaces of vector-valued fune-
tions. It is shown that if B, B, are normed linear spaces with B strictly convex, and 4
is an isometry of O(X, E) into C(X, E;), then there exists a subset B(4d)c ¥, a
continuous function y->/, from ¥ into the space of bounded operators on E into By,
when this latter space is given its strong operator topology, with llafyll < 1 for all
y € ¥ and ||&l| = 1 for y € B(4), and there exists a continuous funetion = from B(4)
onto X such that (4(F))(y) = AyF(z(y)) for FeC(X,E) and yeB(4). If ¥ is
finite dimensional, then B(4) is a closed subset of Y.

Throughout this paper X and Y will denote compact Hausdorff
spaces, F a normed linear space, and C(X, E) the space of all continuous
functions from X into E. We will denote by C(X) the space of continuous
functions from X into the scalar field associated with E.

The Banach-Stone theorem states that

(L) if 4 is an isometry of C{X) onte C(X), there exists & homeomorphism
v of ¥ onto X an{l a function a(y) € C(Y), with |a(y)] =1 for all
ye¥, such that (A())(y) = a@)flely)) for feC(X) ye¥ (1],
p. 442).

This theorem has been generalized by W. Holsztyniski, who considered
isometries A of ¢(X) into C(¥Y) which are not necessarily surjective, [3].
What Holsztyiiski showed i, essentially, that the image of C(X) under
such an isometry behaves well at least on a subset of ¥. More precisely,
if we modify the statement of (1) by changing = from a homeomorphism
of ¥ onto X to a continuous function from a closed subset B(d)s ¥
onto X, and require only that [al. =1 and la(y)] =1 for y e B(4),
then the modified statement of (1) is valid in the case of an arbitrary
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isometry A of ¢(X) into O(X). (A concise proof of Holsztyiski’s theorem
may be found in [5]. A similar result had previously been obtained by
K. Geba and Z. Semadeni for spaces of real-valued funetions and iso-
metries that are isofonic, [2].)

Tn [4] M. Jerison showed that if B is a strietly convex Banach space,
then the exact vector analogue of (1) can be established. He found that

(2) if A is an isometry of C(X,E) onto C(Y, B), there ewists & homeo-
morphism 7 of ¥ onto X and a continuous function y—of, from ¥
into the space of bounded operators on B, when this latter space is given
its strong operator topology, such that for all y € Y, o, is an isometry
of B onto itself, and such that (A (1)) (y) = o, F (v(y)) for F e C(X, H),
yeY ([4] p. 317). ‘

The object of this article is to show that Holsztyniski’s theorem has
a natural formulation in the vector case. We prove the following

TrEOREM. Let B, B, be normed linear spaces with B, stricily conves,
and let A be an isometry of C(X, B) into C(XY, E). Then there exists a sub-
set B(4) < ¥, a continuous function y—o£, from Y into the space of bounded
operators on B into E;, when this latter space is given its sirong operator
topology, with L, | <1 for all y € Y and ||o,}| = 1 for y € B(4), and there
ewists @ continuous function t from B(A) onto X such that (A (17’)) ()
=, F (-r(y ) for FeCO(X,B), yeB(A). If B is finite dimensional, then

(A) is @ closed subset of Y.

The proof of the theorem will be established by 2 sequence of lemmag
and corollaries. The author is indebted to the referee, Dr T. Figiel, for
his contribution in simplifying the proof of the theorem as it appeared
in the original version of the article.

The following notational conventions will be used throughout the
article. We denote elements of C(X, E), for the most part, by F, and
those of 0(X) by f or g. For ¢ € B, we let ¢ stand for that element of C(X, B)
which is constantly equal to e. The norms in ¥, E, and #(#, E,), the
space of bounded linear operators on ¥ into F,, will be denoted by |||,
while norms in C(X), C(X, E) and C(Y, E,) are denoted by [|-|l,. The
letter 8 will stand for the surface of the unit ball in E.

Given ¢ e 8 and v e X, we let #,, = {FeC(X, E): F(z) =
and then set B(e, x)
We let B{x) =

[0 6}
={ye¥: [[A@)@)] = 1Pl for all Few,,}
UB (6, v} and B(4) = UB (1). We denote by B that
subsetofoXx Y defined by B = {e,m,y) ¢el, v eX and y e B(e, z)}.
Pinally, for y € ¥, we define a map o: B-FE, by &, (¢) =
¢ e B. o, is a linear operator from & mto E, with ||
then eleacrly eyl = 1.

LevuA 1. For each pair (6,2) € 8 X X, B(e, x) is nonempty.

A, <1 Ity e B(A),

(A(0) ), _

icm
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Proof. Since B(e, ) is the intersection of the family of closed sets
My ={yeX: |[[A@E) @) = P}, for F e #, , it suffices to show thab
this family has the finite-intersection property. Thus suppose that {F,, ...
F,} is a finite subset of #,, , and define F, e C(X, E) by F, = _g’Fi.

2==]1

Choose & ye¥ with [[{4(F))@)|| = |Folle- We have [A(Fy))(y)
= DA(F)))(y), and hence

=1
@ DlA@E)w) = [[4E)w)] = Fls

IFo(@)] = || 2 Filee | = Z (12

Since for each ¢ we have ||{ A(Fl) W<
out in (3 ), and thus |HA

for 1<

Fille, equality must hold through-
J| = 1P, 1<i<<m. That is, ye My,

< » and hence ﬂJI 7 # .

LEMMA 2. If y e B( .z:), then for each F e C(X, B) we have (A(F))(y)
= of (F ().

Proof. If y € B(x), then y € B(x, ¢) for some ¢ € §. We first assume
that ¥ vanishes on some neighborhood U of & and prove that (A (F))(y)
= 0. Choose a fumetion fe C(X) with f(») = [fll, > |Fl., and such
that the support of f is contained in U. Define F, e C(X, E) by F,(2)
= f(2)6, ze X. Then let F, = F+F, and F; = §(F;+F,). Then for
), and F(z) = f(z)-e, so that F,e#,,. Since
y € Blo, x), we have A (F))(y “ = f(#), 1<{< 3. Since B, is strictly
comvex and (4 (Fy)(y) = (4 (F))(9) -4 (F.)w)], we have (4(F))(y)

= (A (F)) () —(A(F))(y) =0 as claimed. :

Now let F be an arbitrary element of C(X, E). Given &> 0, pick
an element ¢ € C(X) such that |igll, =1, g(2) = 1 for 2z belonging to a
neighborhood of @, and such that the support of g is contained in the
set {ze X: |F(2)—F ()]l < e}. Let F, be that element of ((X, B) which
is constantly equal to F(z), and define F,eC(X,E) by F,(2)
= g(2)[F(2) —F(x)], 2 € X. Then let F; be defined by F = F,+F,-F,.
Now ¥, vanishes in a neighborhood of #, so that, by what we have
proved in the previous paragraph, (A(Fy))(y)=0. Also [[Fuf,<sz, S0
tim A F)) )] < & Since (A(F))(H) = #,(F(e) and .(A(F)(y) =

2 (A(F))), we have |[(A(F))(y) —,(F (@) = A (F)) @) < e And as

=
& is an arbitrary positive number, the proof of the lemma is complete.

CoROLLARY 1. The set I' = {(y, %): # € X and y e B(w)} is the graph
of a continuous function = mapping B(4) onto X.
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Proof. Let (y,a) e I', and let U be a neighborhood of # in X. Since
g € B{4), |#,] =1, and we can thus choose an F e C(X, E) with support
contained in Usuch{tha.t.szt (F(z)) 0. Let V = {we ¥: (A (F))(w) =+ 0}.
Since (4 (7)) (y) = o, (F(v)), V is aneighborhoodof y in Y. Ify" e VNB(4)
and if (y',a') T, then o' € U sinee o, (F(#') = (4(F))(y") # 0. And
as ¥ can be an arbitrary element of B(4), this completes the proof of
the corollary.

Levma 3. B is a closed subset of S x X x Y.

Proof. Suppose that (€, ., ¥.) i 2 net in B which converges to
(6, 4, 9) e § x X X ¥. We will show that y e B(e, 2). Fix a nonzero F e #,
and, for each a, define ¥, F, (X, ) by

F(z) = F(2)+ |Flloo " 6a— F(22),
Fo(z) = F,()/max {1, |F, () /1F].}

for # € X. We have F, (z,) = |Fll, ¢, and HFan . Hence ¥, e #, .

and [[A(F,)) ()| = IF],. Thus
lwwmm=mﬂmwwmu
hmmﬂn (Fa)) ol — A (F ~ F) @[] > 1o —lirasup | — Fles-

Noting that sinee Pl € — F(,)—>0 we have lm[F—F,|, =0, it

follows that ||(4(F)))| = (¥l and we are done.

COROLLARY 2. If B is finite dimensional, then B(A) is closed in Y.

Proof. I ¥ is finite dimensional; then §x X x ¥ is compact. -By
Lemma 3; B is & closed subset of Sx X x ¥ ‘and is thus compact. The
result mow- follows since B(A) is-the image of B under the continuous
ection of 8 xX x ¥ onto ¥.

o Dhe: pmoi of the theorem is now eompleted by. the followmg easily
emhhshed lemma )
~Timwia 4. The map y->sf,, is a continuous fundtion from Y into B(E, E,)
whm the latter space is given ils sirong operator topology.

Remarks Basy examples show that o, need not be isometric ab
any point of B{4d). We conclude with an exa.mple to show that if B is
infinite dimensional, then not only is it true that B(4) need not be closed,
but also it may be impossible fo extend v to a continuous map defined
on the closure of B(4) to X.

Tet B be a separable, infinite-dimensional Hilbett space, with ortho-
normal basis {¢,, 6;,...}. Let X be the digerete space consisting of two
points, X = {1, 2}, and let ¥ be the one-point eompactification of the

1 ©
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positive integers, with the point at infinify denoted by oo. Define 4:
(X, B)—-0(X, E) by
CAE)) = F),
(A(F) @) =F (@),
F(1), e,>e,
(@) = | T oo
{F(2); 00 6n,
(A () )(oo) =0.
Then for each positive integer n, 21 € B(6s,, 2) 80 that 7(2n) = 2, whlle
2n-+1 € B(6yn41, 1) 50 that 7(2n-+1) = 1. Here B(4) is the set of positive

integers, and it is obviously impossible to define 7 at oo in such & way
a8 to preserve continuiby. )

n odd >3,

n even> 3,
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