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Perturbations of Schauder bases
in the spaces O(K) and I?,p > 1

by
ALFRED D. ANDREW* (Stanford, Cal.)

Abstract. Let K be an uncountable compact metric space and let B, > 0.
Let {z,} be a Schauder basis for X = C(XK)or X = I?(0,1), p> 1, and let T: X —X
be a bounded operator such that | T's, — #,[ < B~ & Vn. We investigate the question
of when the space 7.X contains an isomorph of X, and answer it in the affirmative
(with B = 1) for some useful bases.

1. Introduction. In the study of Banach spaces, it is sometimes
usefnl to study perturbations of natural Schauder bases in these spaces.
In this paper we investigate the type of perturbation defined by

DEFINITION 1.1. Let B> 0. A Schauder basis {#,} for a Banach
space X is B-perturbable if for each 6 > 0 and each bounded linear oper-
ator T: X — X satistying [|Tw, —,l < B— é for all n, the space TX con-
tains an isomorph of X. The largest B for which {#,} is B-perturbable
is called the perturbation constant of the basis {z,}.

In Section 2 we demonstrate that the Haar and Walsh systems in L,
9 > 1, have perturbation constant 1. In Section 3 we study perturbations
of bages in ((K) spaces, where K is an uncountable compact metric space.
We give a criterion for the perturbability of a basis for € (XK), and show
that the Haar system in ¢/(4) (4 denotes the Cantor set) and the Schauder
gystem in €([0, 1]) are both L-perturbable. There exist bases for 0([0, 1])
which are not B-perturbable for any B > 0.

In both the cases X = L? and X = O(XK), we show that TX contains
a complemented isomorph of X. Hence, if T'X is itself complemented,
it follows from the Pelezynski decomposition method that TX and X
are isomorphic.

Our notation is basically that of Lindenstrauss and Tzafriri [3].
If {y,} is a sequence in a Banach space X, we denote by [{y,}] the smallest
closed subspace of X containing {y,}. If {,} is a basic sequence in X,

* This article is part of the author’s Ph.D. thesis, prepared at Stanford Uni-
versity under the direction of Per Enflo.
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we denote by {2} the biorthogonal sequence, and by Py the natural
projection onto [{m;}7,].

A well-known perturbation result we shall use is [3]

Levya 1.1, (a) If {»,} is a basis for X with basis constant M, and
if e, — Yl < 1/2, then {y,} is a basis for X.

) If {,} is a basic sequence in X with basis constant M, and if [{z,}]
is complemented by a projection P, then 3 |m,—y,l < L/8M|P]| implies
that {y,} s a basic sequence and [{y,}] is complemented in X.

The sequences {z,} and {y,} are equivalent in the sense that Ya,®,
converges if and only if Xa,y, converges.

2. Perturbations in L?(0, 1), 1 << p < oco. In this section we show

that the Haar and Walsh systems in I?, p> 1, have perturbation constant 1.
The Haar system {p,}n_, is defined by

. @ =1,

P1 = X,z — X217

and

Pany (1) = 2P (2" (1 —i/2™) for @ =1,2,...;%=0,...,2"—1.
+i ?

Biorthogonal functionals to the Haar system are defined by

inga(f) = 20 [ 27" gpn, (@)f () do,

where ¢ denotes the exponent conjugate to p. It is well known that the
Haar system is an unconditional basis for L%, p > 1. We denote its uncon-
ditional constant in L* by M,. Recall

llai<

“Z a’nm m)wn H
{aylangl<1}

To define the Walsh system, let {§,} denote the Haar system normal-
ized in the sup norm, and define Rademacher functions {r,}5>, by

af—1

7 (t) = 2 ‘;’2"+i(t)
i=0

Now each 7 >0 has a unique decomposition n = 2™ +2"+ ... +2%
with n, < n,y < ... < n;. The Walsh functions {w,}s., are defined by

'wn(f) = Ty (g (1) o 7, (8)

It is known [4] that the sequence {w,} is & basis for L,, p > 1.

We shall use the following two lemmas. Details of the first may be
found in [3], and the second is a special case of a lemma in [1]. Lebesgue
meagure is denoted by m, and [-] denotes the greatest integer function.

M, = sup

wy =1 and
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Levwva 2.1. For any o-algebra B of measurable sels, the conditional
expectation operator. By is a projection of norm one from L onto the subspace
consisting of the B-measurable functions.

Lema 2.2. Let {pplasy « L7, L< p < o0, be a sequence of {—1,0,1}-
valued functions, and let A, = 97 (1), A, = vit1p(—~1)F for
n=1,2,...;4=0,...,2"—1. Suppose

(i) m(An,-i) = 2_77'7 n>0,

(i) 4o, = (0, 1),

(i) 4,;, n4,; =@, i #J, and

(iv) An+1,2i v —An+l,2i+l = -An,i-

Then {p,/lw,l} is isometrically equivalent to the Haar system.

THEOREM 2.3. The Haar system in L?, p > 1, has perturbation consiant 1.
In fact, if 6 and T are as in Definition 1.1, the space TL® contains a comp-
lemented isomorph of LP.

Proof. Let 6 > 0 and suppose T: L”— L? is a bounded linear oper-
ator which satisfies || Tp, — @, | < 1 — & for all n. We construct & sequence {y,},
isometrically equivalent to the original Haar system such that T|[{y,}1
has a bounded inverse, and such that T'([{y,}]) is complemented in L*.

We write T, = a,¢,-+7,, with @) (r,) = 0. Since |jpi|| = 1, we have
d<a,<2—¢and |Ir,|l <2 for all n.

Let > 0 and {n,} be a positive sequence such that Z 7, = 7/3. We

define the sequence {y,} inductively as follows. Let v, = ¢,, and choose
Ny > 0 such that [(I—Py,)(Tyo)ll < 7. For m> 0 and 0 <4 < 2", assume
Yoy +vvy Yomysy have been defined and that an increasing sequence of
in‘uegers {22+ has been selected such that for each j

(1) (Py,— Py, ) (93) =y,

(@) WPy, (Ty)ll <,

and

3) (= By,) (Tl < ;-

For each %. such that 2> N, ; and k> n, let {j}2*7" be a]l
enumeration of those indices j such thab SUPP@; < Yant 1y ey ((—1)72 (n=2)lp)
and 2% <j < 2%*L For b =1, ..., 2%, let {{s{"}%7"} be an enumeration
of all possible sequences of ;!:l’s, and defme the sequence {f,,} by

2 291—

l=n

of—n
i
flblk+h = gln=hip Z & )‘7’3'1“

i=1

(4)
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Reecall that » is fized. Each f,, is a candidate for ym, ;. Now [|f,] = 1 for
each m, and {f,,} converges weakly to zero. Hence, {Tf,,} converges weakly
to zero, and there exists M such that m > M implies

(5) 1Py (TE ) < o
Now for each m, M, <m < M k +1, there exists » such that
sk—n
Ty, 2(%—’6)/11 @, s(h)(p + oln=F)p s(ﬁ),},“
Let

! —k R
fm = 2(n )IPZa’iBi' )(pjii
i
4 —k)/k 0
Py = 9(n—k)] Z 8& )r-’fi’
i

and

* . gnFe 2 &M 9”;1- .
We wish to select m (and k) so that f}, (7,
since ¢ (r,) = 0 for all j, we have

Flt) = (2790 3 ( 3 ofPry)

i

= 2(n—k]l¢.22 PUPL) o (5,)-
i#s
It follows that averaged over choices of signs, {e™}, fn(r;,) is zero.
Hence there are m, m’, M; < m, m' < M,,,, corresponding to choices
of signs {e} and {*"} such that f5,(#), )= 0 and f,(r,,) < 0. Since we may
move from the choiee {¢} to {{*} by changing one sign at a time, we
may select m, m’ (reordering the sequence {j;} if necessary), such that

Irlrm) <0,
Frelrn) =0

) is small. Now |Ifn.ll =1, and

sg'”?& & and &M = g, P> 1.
Then
(6) min  [f5(r)l
Mp<s<Mpy g
< minfify, ()], o ()] < llf,‘; 7m) = I (1

gk=n

— %\z(n—k)l‘pz(n—k)la [(8 ¢ + 2 1%1) (51 + 2 s‘m)
- ( ~51¢;1+ -;2’1 s,-qi;;) (~alrjl+§ e‘rj{)][

. ok—n ok—n
- Q—K)ipo(n—F)ia I ( 51‘7’5:) ( 2 6‘-1',{) 4 ( 2 & Q’jt) (a1r;) i .
fux2 =2

icm°®
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We make the following estimates on the terms of (6):

@ lewgl =1,
@ ”317']1" <2
and
ok—n ok—n
®) H 2 ey, ] < “ 2 &9y, ” — glk-n)ig_
=2 sy
Since
ok ok—n gh—n
Z &ty = T( 2 81%,;) 2 0:8,9;,

=2 1=2

00 [ 5 w15 ] 415 e

Substituting (7)-(10) into (6) yields

< (IT1+2)20-.

(1) min |fr) <2020 (] 2)250 4 g00-n.2]
Mp<s<Mpyy
= (||| +2)20—"ie1_g.g0-Rip,
Therefore

lim{ min
koo Mp<s<Mp.y

Ifs(re)ll =0,
and we may choose m such that

(12) : Ifm (e foull < mgmyso

Now let wyny; = f,,, and choose Nyn,,> jye—n such that [(I—Pyyn )
(Tygnyi)l < Mgn,q. Hence (3) holds, and by the restriction 2% > Nyn, g,
and since Nyn; > jyk—n, (1) holds with j = 2" 44. In this case, (2) follows
from (5).

Tt is easily verified, using Lemma 2.2, that {y,},., is isometrically
equivalent to the Haar system. We now show that for 5 sufficiently
small, T|[{p,}]is invertible, and that T [{y,}] is complemented.

Reea,ll that for each N = 2", there exists &, and a choice of signa {e,}
such that

2k—n gk~n

o(n—Fk)» 2‘ a9, + gtn—k)ip Z &;,-

8=1

Ty, =
‘We denote

~
Yy = 207 )/pZaﬂssszl
8

R2”+i = 2“‘“’”2 831',',

8
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and
Yinys = 2000 31g oF |
8
Setting

R;"-H' = (P Nan--P N2"_,.,-_1) (Rz“-}-«: - "»”;n+i(Rzﬂ+~;) 1/)27"+i) ’

it follows from (1) that {y;+ R}, is a block basic sequence with respeet
to the Haar system and satisfies

(13) v (B) =0 Vj.

Furthermore, for n < 1/8M,, it follows from (2}, (3), (12) and Lemms 1.1
that the sequences {Ty,} and {y, -+ R, are equivalent, and that T[{y,}]
is complemented in L*. That [{y, + R, }] is complemented is a consequence
of the argument that T[{y,}] is isomorphic to L?. Let 8: Ty, — y, -+ R,
be the equivalence operator. )

For feI? let f* and f~ denote the positive and negative parts of f,
and for each N > 0 let By be the algebra generated by the sets suppy;
and suppy;,, % < N. We consider the conditional expectation operator E By
For each n, we will denote by @, the average of the «;’s occurring in the
Haar expansion of ¢,. It is then clear that

(14) By, (1) = TP,

and

(15) By () = Bp,(y,); m>n.
We will show :

(18) B (By) =0  Vn,m.

The ease m > # is obvious, and we present the case m = n in some detail.
The case m << n follows from similar eonsiderations.
It sufficies to show

(an J BE.=o.

suppY,,

| B=
suppy;
Let j(1) be the first (last) m such that gj,(y,) # 0, and BRY = P;(R;),
R® = (P,—P;)(R}), B®) =(I—P)(R,). Since the Haar functions in
the expansions of R® occur later than those in y,,

[ B®= [ B®=o.

EIIDPV:

suppy,

Next,
YRR = yn(B) =0,

icm
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by (13). But
Y (R®) = 2(n~k)/a[ f R® 4
“+

suppy,!

[ r®).

suppy,,’

Since these integrals are obviously equal, they are both zero. '

Now suppose g, oceurs in the expansion of B™. If supp ¢, N supp v, = @,
there is nothing to prove. Otherwise, let m be the largest index such that
SUPp @y < SUPPY,. Since {y;+R;} is a block basis with respect to the
Haar system, y,, is in the level previous to n, and either suppg, < suppy;;
or SUpPE < SUPPy,. Since suppy, exhausts one of these sets, and is
disjoint from the other, and since the Haar functions in the expansion of v,
have finer support than ¢, does, it follows that By, (¢r) = 0. Hence
By, (RY) = 0.

Define 8;: [{v;+ B}~ [{p}] by 8i(vj-+E,) = @,p,. For any N
and any scalar sequence {b,}Y_o, we have by virtue of (14), (15) and (16),
that

N H N
8u( D balv+ B = By, (3 bulyls+RL)-
1 1

Hence ||8, ]l < 1. Also, by unconditionality, the operator U: [{p,}1— [{v,}]
defined by Uy, = &,"w, is bounded, and |U|| < 8~*M,,. Hence [|To8;0 8|
< 81672 M, so Uo 8,08 is bounded. Sinee Uo 8,08 is inverse to T'|[{y,}],
the proof is complete.

‘We make the following comments concerning Theorem 2.3.

(1) The construction of the sequence {y,} using the weak conver-
gence of {f,,} to zero yields an alternate proof of the theorem of Linden-
strauss and Pelezyiski that the Haar system in L?, p > 1, is a precisely
reproducible basis.

(2) A rearrangement invariant (r.i.) Banach space X is a space of
measurable functions on (0,1) such that whenever T is a meagure-auto-
morphism of (0,1) and fe X, |fll = |If(T»)ll. Lemmas 2.1 and 2.2 remain
valid in all r.i. spaces X. Thus, Theorem 2.3 is valid in all r.i. spaces X
in which the Haar system is an unconditional basis and the sequence {f,,}
defined in (4) converges weakly to zero. In particular, the Haar system
may be 1-perturbed in any reflexive Orlicz space Ly,.

THROREM 2.4. The Walsh system {w,} has perturbation constant 1.

Proof. Let 6 > 0, and let T: L? — L? be a bounded linear operator
satisfying [ Tw, —w,| <1—4 for all n.

For 8> 0,16t Ny = {n: ¢j(p,) > p}andlet 4, = U suppey.
n jeNgnln,o0)

By using. the techniques of [1] and Theorem 2.3, it suffices to show the
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existence of f> 0 such that md;> 0. With

0
A5 = N suppg;, Ay =\ U 4,
Npnjan,antl) i n=j

80 the perturbability of {w,} follows from the existence of a, f > 0 such
that mAd, ;> o for all x.

Again, &< wj(Tw;) <2—4, and we write Tw; = a;w;+7;, with
'w;(rj) = 0. For each n>1 and each I, 2" <1 < 2!, there is a choice
of signs {eM} such that

on+1.y
g =271 2 My,
i=2"
and hence
antl_g
(18) o (Te) =270 ' ofi(Tw))
d=3"
=271 3 el 31 27 s} (Twoy)
i H
=27 Y wi(Tw)+27" Y ol e (Tw,) = @, +by,
1 1#]
where
an+1_1
@, =2"" > a, and b =27" 0w (Tw).
i=3" [z}

It is clear that 6 <@,<2—0 and
(19) — (1Tl +=,) < b < TN —@,.
Now select 0 < a < 1 such that

—ii—[nTu— 81< 8/8,
—a

and let N, ={: 2"<1< 2", b;> 0} and N_ = {I: 2"<1< 2"}, b, << 0}.
‘We consider two cases, and in each show that m4,, 55, > /2.

Case 1. # N, > 27a. If 1 € N, then ¢} (T;) > 3, > 6, so (18) implies
that md, , > a

Case 2. 3N, < 2"a. In this case we show that sufficiently many of the

by, 1l e N_, are small in absolute value as compared to @,. It is clear that
ontloy

> b =0, and from (19), that 3 b, <2"a[|T|—a,]. Hence
1=2n €N,

D (—b) < 2"ealIT]—a,].
leN_..
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Now, #N_ > 2"(1 —q),and thereis a set N « N_,H*N_ > (——a——):ﬁ:N_
such that

2, (~0) < g 2l 7).

I eN'_

Averaging over N yields

1 l1—a a " _
WZ (—b) <?ﬂt T_-a*z a[iTl~a,]1< 4/8,
by the choice of a.
It now follows that there is a set M < N_, #M > (a/2)-2" such
that 7 e M implies b,> — §/4, and hence I e M implies ¢} (Tp)) = @, b,
> 34/4. Hence mA, 55, > /2, and the theorem follows.

3. Perturbations of O(XK) bases. In this section we present a criterion
for the perturbability of a basis for O(K), where K ig an uncountable
compact metric space. By Milutin’s theorem, all such Banach spaces
are isomorphie, so in studying isomorphic properties of O(K) spaces,
one may choose whichever space K is convenient. Two usual choices
are the Oantor set 4 and the unit interval. We show that the Haar system
for C(4) and the Schauder system for ([0, 1]) both have perturbation
constant 1.

By a theorem of Pelezynski [5], a subgpace ¥ of C(XK) containing
an isomorph of C(K) also contains a complemented isomorph of C(XK).
Therefore, whenever {#,} it a perturbable basis for 0(K) and § and T
are a§ in Definition 1.1, the space TC(K) containg a complemented iso-
morph of C(K).

Recall that the Haar system may be defined as follows. Let {4, ; ;';’3.1?:: o
be a basis for the topology of 4 consisting of open and closed sets satis-

fying

(i) Ao,o = A,
({)y d, N4, ; =B, i +#j,
21

(1V) A1 20 dppy 01 = Ay
Define ¢y = x4,,, 20d for n =0,1,2,...; 0<i<2" define g,
It is clear that the Haar system forms a monot-

LT ey MR
one basis for 0(4).
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The Schauder system {p,} is a monotone basis for O([0, 1]) defined
by po(t) =1, p.(t) =11

0 = 2t, 0<t<<1/2,
P20 =214, 1p<i<i,

and for n>1; 1<k < 2™

(E—1)/2" < t < k2",
otherwise.

pa2"(t—(k—1)/2")),

_pﬂ”+k(t) = {0

We say the function p,n.,, occurs on the rth level of the Schauder system.
Our results follow from the following theorem of Rosenthal [6].
THEOREM. Let K be an uncouniable compact metric space, X a Banach

space, and T: C(K) X a bounded linear operator. If T*X* is monsepar-

able, thére ewists a subspace ¥ of C(K), isometric to 0(4), such that T|Y

18 am isomorphism.

Our perturbation criterion is

THEOREM 3.1. Let K be an uncountable compact metric space and {b;}
a basis for O(K). If there evists a constant A >0 amd an uncountable set
M < B(C(KY") such that p,v e M implies |u(b;)—v(b)| > A for some 4,
then {b;} may be A |2-perturbed.

Proof. Let ¢> 0 and suppose T: C(K)— O(K) satisties [[Th;—Dbi
< AJ2—¢ for all 4. By Rosenthal’s theorem it suffices to show that
T*(C(K)*) is nonseparable. But for u,» € M, we have

IT* —T*|| = sup (T*

bH=1

p—T)(b)] > > Sup (T* 5 —T*») ()]

—Supl(lt*ﬂ(l’bz) "SHPI (=) (Tb;— b))+ (—2) (b3l

Sup[l B— ) (b)| — (g —»)(Th; — ;)]

> A —2sup|| Th;— byl > 2¢ > 0.

Since M is uncountable, this implies that 7*(C(X)*) is nonseparable,
and the theorem follows.

In the applications which follow, M will be taken to be a collection
of point masses. Thus, the condition of Theorem 3.1 is that the basis (b}
should uniformly separate uncountably many points. Of course, sinee ¢ ( )
separates points, the basis {b;} separates points.

THEOREM 3.2. The Haar system {p,} in C(4) may be 1-perturbed.

icm°®
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Proof. Take M = {d,: # € 4}, and let 6,, 6, be distinct elements
of M. Since the sets 4,, ; form a basis for the topology of 4, thereis aset 4,, ;
such that

(1) vedny; Y Ednye

Assuming #» to be the smallest integer such that (1) holds, we have

2ed, yuy and yed, g

Hence
(8, — ) (@an—1ypm)l = l@an—14 1y (B) — @an—1 ey (9)] = 2.

Since 4, and hence M, is uncountable, Theorem 3.2 follows from Theorem
3.1 .
As for the Schauder system {p,}, taking M = {6,: #e[0,1]}, it
is easily seen that u, v € M implies |u(p,)—»(p,)| = 1/2 for some =, 50 that
the Schauder system may be 1/4-perturbed. By constructing a subset
of the point masges in a fashion analogous to the classical construction
of the Cantor set, it follows from Theorem 3.1 that the Schauder system
may be 1/2-perturbed. In fact, this technique can be used for other bases.
In the case of the Schauder system this result may be improved.

THEOREM 3.3. The Schauder system {p,} has perturbation constant 1.

Proof. Let §> 0 and suppose T: O([0,1])— C([0,1]) satisfies
1Tp, —pnll < 1—8 for all n. We show directly that T* has nonseparable
range.

Let p,, = Tp,,, and for each interval I < [0, 1], define

o(I) = sup |p;, (&) — Pu ()]
z,yel

‘We first show that info(I) > 0. Suppose to the contrary that info(I) = 0.
I I

Then there exists an interval I with o(I) < 6/2. Since |jp,,— P, <1— 4,
we have that supp, () > 6, and whenever suppp, < I, this implies

x
infp;( )> 8/2. Now choose N >2|T|é”%, and disjointly supported

Sehauder functions p,, ..., P, With suppp,, < I for eaoh 4. Then with

= anz, we have |fl =1, yet for wel, Tf(z) = Zp,w z) > N (8/2)
> IIT][ This contradiction establishes that info(I)> ¢ /2
I

Thus, for any I < [0,1], there exists points =,y e I, and n such
that {p; (@) —pi(y)| > 6/3, so by a construction analogous to the classical
construction of the Cantor set, there is an uncountable set of points M
such that for each pair of distinct @, y € M, there exists » with |(d,— 8,)
(p)| > 8/3. It follows that T*{C([0,1])*} is nonseparable, and hence
that {p,} is 1-perturbable.
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Bases for ((K) spaces are not in general B-perturbable for any B.
‘Warren [7] and Wojtaszezyk [8] have shown the existence of a normalized
basis {f,} for ([0, 1]) which is weakly convergent to 0. Warren’s construe-
tion provides an example of a basis for C([0, 1]) which is not B-perturb-
able for any B > 0.
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Subspaces of smooth sequence spaces
by
M. 8. RAMANUJAN (Ann Arbor, Mich.) and T. TERZIOGLU (Ankara)

Abstract. This work is concerned with subspaces of nuclear Fréchet smooth
sequence spaces. Particular attention is paid to those subspaces which are isomorphic
to power series spaces.

The investigation of all infinite-dimensional subspaces of nuclear
power series spaces of finife and infinite types is the subject of two import-
ant papers of Dubinsky [6], [7]. The earlier works of Rolewicz [12]
and Zahariuta [16] were concerned, to some extent, with subspaces of
power series spaces. The concepts of smooth sequence spaces of finite
and infinite types were introduced in [13] as a generalization of the notion
of power series spaces and nuclearities based on such spaces were briefly
studied in [4]. The present paper is basically concerned with subspaces
of nuclear Fréchet smooth sequence spaces.

In Section 1 we collect the necessary definitions and in Section 2
obtain some properties of block basic sequences with respect to the ca-
nonical basis of nuclear Kothe spaces. Section 3 is on basic sequences in
A, (a) and @ -subspaces of 4,(a) and G,-subspaces of 4,(a). In particular,
it is proved that if a @,-space is isomorphie to a subspace of 4,(a), then
it iy isomorphiec to a power series space of finite type (Theorem 7).
In Section 4 we study subspaces of G,-spaces; the subspaces considered
are power series spaces of infinite type or L;(b, co) spaces of Dragilev [3]
or @,-spaces. Zahariuta [16] showed earlier that an I.(b, oo) space is
either isomorphic to a power series space of infinite type or has no subspace
isomorphie to a power series space. We show that this result does not
extend to general G -spaces. We also give examples of G -spaces which

‘do not contain subspaces isomorphic to power series spaces while these

G-spaces are themselves isomorphic to subspaces of each nuclear power
series space A (f) which is stable.

The authors are thankful to Professor C. Bessaga for helpful remarks
leading to the present form of this paper.

1. Preliminaries. We refer the reader to [41, [9], [10], and [11] for
terms that are not defined here.
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