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Compact sets of tight measures

by
DAVID POLLARD* (Canberra)

Abstract. Topsgoe has proved generalisations of the famous Prohorov result connect-
ing compaciness and tightness in spaces of measures; his necessary and sufficient con-
ditions were developed from the theory of extension of tight contents via inner
measures. We show how these criteria can also be obtained using simple functional
analytic arguments, at loast when certain topological Tegularity properties are placed
on the underlying spaces.

1. Introduction. For a very general setting, Topsee [6] has character-
ised compact sets and nets in the cone M*T(X,t) of tight measures on
a set X, nsing a weak topology which generalises the usual topology of
weak convergence. In this paper we show how necessary and sufficient
conditions analogous to his can be derived for the latter topology by
gimple functional analytie arguments gimilar to those of Bourbaki [2].
‘When the underlying space X is Tychonov (completely regular and T'y)
our results coincide with Topsee’s.

9. Statement of main results. Let. X be a topological space and 0(X)
the Banach space of all bounded, continuous, real-valued functions on X.
To simplify slightly, we assume that X is completely Hausdorff (0(X)
- geparates the points of X), though the results could all be expressed in
teyms of Baire measures without this assumption. A bounded linear
functional T is said to be tight if T'(f.)->0 for every net (fu) in C(X) for
which 1 3 |f.|—0 uniformly on compacta. It can be shown ([8] and [7])
that the tight functionals are precisely those that can be (uniquely)
. represented as an integral with respect to @ tight signed Borel measure
on X, i.6., o difference u* — u~ of two bounded non-negative Borel measures
satisfying the regularity condition: u*(A) = sup {u=(K): A = Keo} for
every Borel set A, where %" iy the paving of compact subgets of X.
We shall identify the functional with its representing measure, and
write M(X,t) for the space of all such tight functionals/measures on
X. This space we equip with the topology of weak convergence which
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is the weakest topology making the map u—u(f) continuous for each
fixed feO(X). Notice that this is just the relativised weak s topology
when M (X, ?) is regarded as a subspace of the dual of ¢(X). The basic
result on compactness in M(X,¢) under this topology is .

ToeoREM 1. A & M(X,1) is relatively compact in M (X, t) iff the
Jollowing two conditions are satisfied:

(1) sup {Jlull: ped} < oo,

(i) for every met (f,) in C(X) for which 1 = |f,]->0 uniformly on compacta,
and every e > 0, there ewist (finitely many) o, woey an  for which
Sup min|u(f, ) < e.

%

In condition (i), |4| =u*(X)-+p~(X) denotes the total variation
of p, which is its norm in its interpretation as a linear functional on the
Banach space O(X); cf. [7].

This result can be re-expressed in purely measure theoretic terms
when we consider only the positive cone M™* (X, t). For this we need to
define the paving & of positive sets of X which consists of those open
sets which are complements of zero sets (= sets expressible in the form
F71(0) for some feC(X)). This paving has the separation property: 4f
e and Ge? and K < G then there is an f<O(X) for which 0 < f<1,
F=20o0n K and f =1 on C@. Also a paving & is said to dominate # if
each member of o is contained in some member of &.

TaroREM 2. A = M* (X, 1) is relatively compact in M* (X, 1) iff the
Jollowing two conditions are satisfied:

(1) sup{u(X): ued} < oo,

(i)' for every ¥ = 2 which dominates o, and & > 0, there ewist (finitely
many) Gy, ..., Gye & for which supminu(CE) < &

P i

. By imposing further conditions on the topology of X we obtain
the same form of the theorem as given by Topsee [6]:

TEBOREM 3. If X 4s o Tychonov space, then Theorem 2 is still walid
with &P replaced by the paving of all open subsets of X.

Notice that Topsee’s [6] w-topology is in gemeral finer than the

topology of weak convergence, but that they are the same when X is )

Tychonov.

.3. Proof of Theorem 1. We actually prove a slightly reformulated
version of this result to emphasize its functional analytic content. Sup-
Pose B is a Banach space with dual B* (equipped with the weak topology),
and let 2 be any family of nets on the unit sphere {be B: |b|| < 1} of B.
Define B as the subspace of B* consisting of those b* for which (b, B0
for every net (b,) in 9. Then we show that 4 < Bj is relatively compact
in BY iff
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(1) M == sup{p*||: v*eA} < oo,

(ii) for every subnet (b,) of a net in @ and &> 0 there are (finitely
mMany) o, ..., ¢, for which

supmin |<b,,, b*>| < &.
A1

Proof, For necessity we need only consider the case of A being
a compact subset of BY. Then (i) iy an immediate consequence of the
Uniform Boundedness Theorem [3]. Also the family of sets @, = {b*c¢ B:
[<bay B*)| < &} is an open cover of Bj. By choosing the finite subcover
Goyyovy Gy, OF the compact set 4 we arrive at (ii).

Oonversely, if A satidfies (i) and (i), consider its closure Z in B*
Because of (i) and the Alaoglu theorem [3] 4 is compact. We show that
4 < By. Suppose to the contrary that there is a b*¢d and a net (Bp)
in 9 for whiceh <by, by> does not tend to zero. Then we can extract a subnet
(b,) for which [(b,, by = s> 0 for all a. Let F*) = mjn](b(,i, b*>| be

the continuous function of 5* on B* obtained from the s given by con-
dition (ii). Then it is elementary that f(b*) has the same supremum over .4
and 4, which contradicts (ii). The result follows. m

4. Proof of Theorem 2. Wo show that the two conditions are equiv-
alent to those of Theorem 1. Clearly, (i) and. (i)’ are equivalent.

Buppose that condition (ii) is satisfied and that ¥ = # dominates &'
For each Ke " there is a Gye @ containing K. Then by the separation
property of 2 and # we can find an fr<0(X) with 0 < fr <1 and fi = 0
on K, frr =1 on CGg. Regarding ¢ as a directed set means that (fx)w.r
is a net tending uniformly to zero on compacta. Thus by (i) we can find
Ky, ...,K,e such that sEpmiin,u(fKt) <e Bub fx>leg, so that

#(fx) > u(C@y) and (i)’ follows. :

Conversely, suppose (ii)’ is satisfied. If 1 > |f,|-0 uniformly. on
compacta, then the family of # sets of the form G, = {|f,] < ¢} domin-
ates #'; o we can find ay,..., o, for which s:llpn:inu(CG“i) < & Then

supmin |u(f,,)| < supmin f -+ f [fo) Bp < & supp(X) + s,
Aot At Gy C""‘w A
and (i) follows. m ‘

3. Proof of Theorem 3. The result follows immediately from: if open
G2 Ke,then there is a G <P with G2 G 2 K. To see this we need
only note that the topology of the Tychonov space X is induced by €(X),
and hence 2 is a base for the topology. Thus the family of all & sets con-
tained in G filters up to @, and so the assertion follows from the com-
pactness of K. m
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6. Extensions to nets. Topsee [6] has actually obtained the necessary
and sufficient conditions for a net on M™ (X, t) to be relatively compact
(in his w-topology) in M*(X,t). We indicate how our Theorems 1, 2
and 3 can be extended to this case.

A net (y;) on a topological space Y is said to be relatively compact
in a subset ¥, of Y if every subnet of (y,) contains a further subnet con-
vergent to a point of ¥,. Equivalently, (y,) is relatively compact in. Y,
if every universal subnet [4] is convergent to a point of ¥,. It cam also
be shown that (y;) is relatively compact in ¥, iff for every family of open
sets covering Y, there 4s a finite subfamily in which the net eventually lies.

Using these properties we can prove a net-analogue of our functional
analytic form of Theorem 1. Notice that the Uniform Boundedness Theorem
is not in general true for nets [3], 80 'we have to include norm boundedness
as an assumption.

THEOREM 4. Let (b)) be a net in B* for which M = limsup b4 < co.
? s

8
Then it is relatively compact in B iff for every subnet (b,) of a net in 9
and &> 0 there exist ay, ..., a, such that

limsupmin [b,,, b5>] < s.
B 14

Proof. The necessity of the condition is proved in a similar manner
to the earlier result, by making use of the “open covering” characterisation
of relatively compact nets.

Conversely, if (b)) is a universal subnet of (b3), then for each be B
the net <5, b:f> is universal [4] on the compact interval [—M|bll, Mib|]
(we may assume [bp]l<< M for all § without loss of generality)., Thus
b, L) =lim<b, b, defines a member L of B* with |L| < M. We show

b4

that Le By. If not, we could find a subnet (b, of a net in @ for which
[Kbey Ly = & > 0 for all o. But then for any finitely many oy, «.., o,
we would have ’

lim sup min [(B,,, bj)| > limsupmin [<beyy B3| > &
8 i ¥ 4

which is a contradiction. m

We omit the deduction of the amalogues of Theorems 2 and 3 as
there are no essential difficulties involved.

7. Remarks. By functional analytic methods it is easy to prove the
existence of a cluster point of a seti (or net) in a large space (B*) and then
prove that this cluster point is in fact in the required smaller space (B%).
This contrasts with Topsee’s [6] method, where the cluster point hag
to be constructed by a more laborious application of the theory of tight
contents. However, it should be pointed out that those techniques are
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fundamental to the derivation of the representation theorem (as discussed
in [5]) used to translate the functional amnalytic form of the results. to
the corresponding measure theoretic expressions. :

Results for other spaces of measures such as the 7-smooth meagures
can be obtained by using a different class of nets 9. In the v-smooth,
case, though, the proof (at. least for the positive cone) reduces to the
usual application of Dini’s theorem, as in [1].
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