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A metric result on the pair correlation
of fractional parts of sequences

by

Zeév Rudnick (Tel Aviv) and
Alexandru Zaharescu (Montreal, Que.)

1. Introduction. Our purpose in this note is to show that the pair cor-
relation function of several sequences of fractional parts behaves like those of
random numbers. The pair correlation density for a sequence of N numbers
θ1, . . . , θN ∈ [0, 1] which are uniformly distributed as N →∞, measures the
distribution of spacings between the numbers at distances of order of the
mean spacing 1/N . Precisely, if ‖x‖ = distance(x,Z) then for any interval
[−s, s] set

(1.1) R2([−s, s], N) =
1
N

#{1 ≤ j 6= k ≤ N : ‖θj − θk‖ ≤ s/N}.
For random numbers θj chosen uniformly and independently,

R2([−s, s], N)→ 2s

with probability tending to 1 as N →∞. In this case one says that the pair
correlation function is Poissonian. A smooth form of (1.1) is to take a test
function f ∈ C∞c (R) and set

R2(f,N) :=
1
N

∑

1≤j 6=k≤N
FN (θj − θk)

where FN (y) =
∑
m∈Z f(N(y + m)). The Poisson case is that in the limit

N →∞, R2(f,N)→ T∞
−∞ f(x) dx.

We will show that the pair correlation function of many sequences of
fractional parts of the form {αa(x)}, x = 1, . . . , N with a(x) integers, have
Poissonian pair correlation for almost all α. Our main tool is:
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Theorem 1. Let a(x) be a sequence of integers so that a(x) 6= a(y) if
x 6= y and furthermore suppose that there are at most O(MN2+ε) solutions
to the equation

(1.2) n1(a(x1)− a(y1)) = n2(a(x2)− a(y2))

with 1 ≤ xi 6= yi ≤ N , and 1 ≤ |ni| ≤ M , M � NR for some R > 0, and
all ε > 0. Then for almost all α, we have

R2(f,N)→
∞\
−∞

f(x) dx.

A result of this kind was proved by Rudnick and Sarnak [4] for the spac-
ings of αnd, where d ≥ 2 is an integer. Crucial use is made there of Weyl’s
differencing argument [1, 5] to get cancellations in sums of the exponential
sums

∑
n≤N e(αF (n)), where F (n) is a polynomial of degree d ≥ 1, and α

is of diophantine type. No such estimate is available when we replace poly-
nomials by functions such as the exponential function gn (this is a key issue
in the study of “normal” numbers). The idea here is to avoid this issue for
individual α, and instead to prove this kind of result for almost all α (see
Proposition 4).

Theorem 1 reduces the study of the generic behavior of the pair corre-
lation of the sequence of fractional parts of a(x) to estimating the number
of solutions of the equation (1.2). In [4] it was shown that the number of
solutions of this equation for a(x) = xd, d ≥ 2, is indeed O(MN2+ε). In
Section 4 we show that the same estimate holds if a(x) is lacunary :

Proposition 2. Let a(x) > 0 be an increasing sequence of positive in-
tegers so that there is some c > 1 for which

a(x+ 1) ≥ ca(x).

Then the equation (1.2) has at most O(MN2 log2N) solutions in 0 < |ni|
≤M , 1 ≤ xi 6= yi ≤ N , where M � NR for some R > 0.

An example of such a sequence is a(x) = gx, g ≥ 2 an integer. Thus we
get:

Corollary 3. Let g ≥ 2 be an integer. Then for almost all α, the
sequence of fractional parts of αgn has Poisson pair correlation.

It seems plausible that for almost all α, all correlation functions should
be Poissonian in this case, and in particular the nearest neighbor spacing
distribution should be exponential.

Other examples would be the sequences a(n) = n! or gg
n

for an integer
g ≥ 2, or the integer parts [cn] where c > 1 is any real number.
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2. A metric result for sums of exponential sums. Suppose we are
given a sequence a(x) ∈ Z+, satisfying a(x) 6= a(y) if x 6= y. Define the Weyl
sum

Sα(n,N) =
∑

1≤x≤N
e(αna(x))

and for each N suppose we choose M = M(N) = N1+1/100, and set

HN (α) =
∑

1≤n≤M
|Sα(n,N)|2.

Proposition 4. For almost all α, we have

HN (α)�α MN2−1/4.

P r o o f. The method of proof follows standard steps in the metric theory
of uniform distribution of sequences (see [2, 3]): Because a(x) 6= a(y) if
x 6= y, we clearly have

1\
0

|Sα(n,N)|2 dα = N

and so
1\
0

HN (α) dα = MN.

Therefore we can estimate the measure of the set of α for which HN (α) >
MN2−1/4 by

meas{α : HN (α) > MN2−1/4} ≤ 1
MN2−1/4

\
{α:HN (α)>MN2−1/4}

HN (α) dα

≤ 1
MN2−1/4

1\
0

HN (α) dα

=
1

MN2−1/4
MN = N−3/4.

It follows from the Borel–Cantelli lemma that if we take a sequence of
Nm’s which is sufficiently sparse so that

∑
mN

−3/4
m converges, then along

that sequence we find that for all α in a set of full measure,

(2.1) HNm(α) ≤MmN
2−1/4
m for all m > m0(α).

For simplicity, we take Nm = m2.
Now fix α for which (2.1) holds. We now show that if Nm < N < Nm+1,

then

(2.2) |HN (α)−HNm(α)| �MN3/2,

which together with (2.1) proves our proposition.
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Note that N −Nm < Nm+1 −Nm = 2m+ 1� N1/2, and further

M −Mm = N101/100 −N101/100
m < (m+ 1)202/100 −m202/100

� m102/100 = N1/2+1/100.

We have

HN −HNm =
∑

n≤M
|Sα(n,N)|2 −

∑

n≤Mm

|Sα(n,Nm)|2

=
∑

n≤Mm

(|Sα(n,N)|2 − |Sα(n,Nm)|2) +
∑

Mm<n≤M
|Sα(n,N)|2

= I + II.

We use the trivial bound |Sα(n,N)|2 ≤ N2 to estimate the term II:

II � (M −Mm)N2 � N1/2+1/100N2 = MN3/2.

For the term I, note that if we square out the summands |Sα(n,N)|2 =∑
x,y≤N e(nα(a(x)− a(y))) and likewise for |Sα(n,Nm)|2, we find that

I =
∑

n≤Mm

∑

Nm<y≤N
e(−αna(y))

∑

1≤x≤Nm
e(αna(x)) + complex conjugate

+
∑

n≤Mm

∣∣∣
∑

Nm<x≤N
e(αna(x))

∣∣∣
2

= I1 + I1 + I2.

For the term I2 we use the trivial bound on the inner sum to get

I2 �Mm(N −Nm)2 �MN.

For I1 we get

I1 �
∑

n≤Mm

∑

Nm<y≤N
|Sα(n,Nm)| = (N −Nm)

∑

n≤Mm

|Sα(n,Nm)|.

By Cauchy–Schwarz we find

I1 � (N −Nm)M1/2
m

( ∑

n≤Mm

|Sα(n,Nm)|2
)1/2

� N1/2M1/2
m HNm(α)1/2

≤ N1/2M1/2
m (MmN

2−1/4)1/2 �MN3/2−1/8 < MN3/2.

Together with the estimates on II and I2 we get (2.2) and so prove the
proposition.

Remark. The choice of exponents 2 − 1/2, 1 + 1/100 is completely
arbitrary. All we needed was some improvement on the trivial bound
HN ≤MN2.
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3. Proof of Theorem 1. In this section we deduce Theorem 1 from
Proposition 4. The argument follows closely the one given in [4].

3.1. Bounding the variance. Let f ∈ C∞c (R) be a test function and set

R2(f,N) :=
1
N

∑

1≤j 6=k≤N
FN (θj − θk)

where

FN (y) =
∑

m∈Z
f(N(y +m)).

Using the Fourier expansion of FN (y) we find

R2(f,N) =
1
N2

∑

n∈Z
f̂

(
n

N

) ∑

1≤j 6=k≤N
e(n(θj − θk)),

that is,

(3.1) R2(f,N)(α) =
1
N2

∑

n∈Z
f̂

(
n

N

)
soff(n,N)

where

soff(n,N) :=
∑

1≤x 6=y≤N
e(nα(a(x)− a(y))).

As a function of α, R2(f,N)(α) is periodic and from (3.1) its Fourier
expansion is

R2(f,N)(α) =
∑

l∈Z
bl(N)e(lα)

where for l 6= 0,

(3.2) bl(N) =
1
N2

∑

n 6=0

∑

1≤x6=y≤N
n(a(x)−a(y))=l

f̂

(
n

N

)
.

The mean of R2(f,N)(α) is
1\
0

R2(f,N)(α) dα = b0(N) =
1
N2

∑

1≤x6=y≤N
f̂(0) =

(
1− 1

N

)
f̂(0)

so that
1\
0

R2(f,N)(α) dα =
∞\
−∞

f(x) dx+O(1/N).

This is the expected value for a random sequence.
We next estimate the variance of R2(f,N):
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Proposition 5. Under the assumption of Theorem 1,
1\
0

|R2(f,N)(α)− f̂(0)|2 dα� N−99/100+ε

for any ε > 0, the implied constants depending on ε and f .

P r o o f. We first note that since f̂(n/N) is negligible if |n| � N101/100

= M , we can bound bl(N) by

bl(N)� 1
N2

∑

0<|n|�M

∑

1≤x 6=y≤N
n(a(x)−a(y))=l

f̂

(
n

N

)

� 1
N2 #{0 < |n| �M, x 6= y ≤ N : n(a(x)− a(y)) = l}.

By Parseval,
1\
0

|R2(f,N)(α)− f̂(0)|2 dα =
(
f̂(0)
N

)2

+
∑

l 6=0

|bl(N)|2 � 1
N2 +

1
N4A(M,N)

where A(M,N) is the number of solutions of the equation

n1(a(x1)− a(y1)) = n2(a(x2)− a(y2))

with 0 < |n1|, |n2| � M , and x1 6= y1, x2 6= y2 ≤ N . By the assumption of
Theorem 1, A(M,N)�MN2+ε so since M = N1+1/100 we find

1\
0

|R2(f,N)(α)− f̂(0)|2 dα�MN−2+ε � N−1+1/100+ε

as required.

3.2. Almost everywhere convergence. In order to prove Theorem 1 from
the decay of the variance of the pair correlation (Proposition 5), we first
show that for each f ∈ C∞c (R), there is a set of full measure, depending
on f , so that for all α in this set

R2(f,Nm)(α)→ f̂(0)

for a subsequence Nm which grows faster than m.
Set

XN (α) = R2(f,N)(α)− f̂(0).

By Proposition 5, ‖XN‖22 �ε N
−99/100+ε for all ε > 0 and so if we take

Nm ∼ m101/99 then
1\
0

∑
m

|XNm(α)|2 dα =
∑
m

1\
0

|XNm(α)|2 dα <∞
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and so
∑
m |XNm |2 ∈ L1(0, 1). Thus the sum is finite almost everywhere,

and so XNm(α)→ 0 as m→∞ for almost all α.
We next show

Lemma 6. If Nm ∼ m101/99, Nm ≤ N < Nm+1 then for almost every α,

XN (α)−XNm(α)→ 0.

Since XNm(α)→ 0 for almost all α, this lemma shows that R2(f,N)(α)
→ f̂(0) for a set of full measure of α which depends on the test function f .
By a diagonalization argument we can pass to a subset of full measure of
α’s which works for all f ∈ C∞c (R); for the details see [4].

3.3. Proof of Lemma 6. Recall that for almost all α we have, by Propo-
sition 4, ∑

1≤n≤M
|Sα(n,N)|2 �MN2−1/4

and applying Cauchy–Schwarz we get

(3.3)
∑

1≤n≤M
|Sα(n,N)| �MN1−1/8

for all N � 1, and M = N101/100.
We write N = Nm + k, with 0 ≤ k � N

2/101
m . Then we claim that

(3.4) XNm+k(α)−XNm(α)

=
1
N2
m

∑

0<|n|≤M
f̂

(
n

Nm

)
{soff(n,Nm + k)− soff(n,Nm)}

+O(N−1/4+1/100+2/101
m ).

Indeed, since f̂ is rapidly decreasing, the trivial estimate

|soff(n,N)| ≤ N + |S(n,N)|2 ≤ N +N2

gives

XN (α) =
1
N2

∑

0<|n|≤M
f̂

(
n

N

)
soff(n,N) +O(N−A)

for all A� 1. From now on we ignore this rapidly decreasing term.
Further, from Proposition 4 and |soff(n,N)| ≤ N + |S(n,N)|2 we have
∑

0<|n|≤M
|soff(n,Nm + k)| ≤M(Nm + k) +

∑

0<|n|≤M
|S(n,Nm + k)|2

�M(Nm + k) +M(Nm + k)2−1/4 �MN2−1/4
m .

Next we claim that
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(3.5)
1

(Nm + k)2

∑

0 6=|n|≤M
f̂

(
n

Nm + k

)
soff(n,Nm + k)

=
1
N2
m

∑

0 6=|n|≤M
f̂

(
n

Nm

)
soff(n,Nm + k) +O(N−1/4+1/100+2/101

m ).

This will immediately give (3.4). Indeed, write

1
(Nm + k)2 =

1
N2
m

+O

(
k

N3
m

)
=

1
N2
m

+O(N−3+2/101
m )

and
n

Nm + k
=

n

Nm
+O

(
nk

N2
m

)

=
n

Nm
+O

(
M

N
2−2/101
m

)
=

n

Nm
+O(N−1+1/100+2/101

m )

so that for |n| ≤M ∼ N101/100
m , k < N

2/101
m ,

f̂

(
n

Nm + k

)
= f̂

(
n

Nm

)
+O

(
M

N
2−2/101
m

)

= f̂

(
n

Nm

)
+O(N−1+1/100+2/101

m ).

Therefore

1
(Nm + k)2

∑

0 6=|n|≤M
f̂

(
n

Nm + k

)
soff(n,Nm + k)

− 1
N2
m

∑

0 6=|n|≤M
f̂

(
n

Nm

)
soff(n,Nm + k)

=
(

1
N2
m

+O

(
1

N3−2/101

))

×
∑

0 6=|n|≤M

(
f̂

(
n

Nm

)
+O(N−1+1/100+2/101

m )
)
soff(n,Nm + k)

− 1
N2
m

∑

0 6=|n|≤M
f̂

(
n

Nm

)
soff(n,Nm + k)

� N−3+2/101
m

∑

0 6=|n|≤M
|soff(n,Nm + k)|

� N−3+2/101
m ·MN2−1/4

m � N−1/4+1/100+2/101
m by (3.3)

as required. This proves (3.5) and so (3.4).
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As our last step we express the difference soff(n,Nm + k) − soff(n,Nm)
in the form

soff(n,Nm + k)− soff(n,Nm)

= 2 Re
Nm+k∑

y=Nm+1

e(−nαa(y))
∑

1≤x≤Nm
e(nαa(x))

+
∑

Nm+1≤x 6=y≤Nm+k

e(nα(a(x)− a(y))).

We estimate the second term trivially by k2 � N
4/101
m :

|soff(n,Nm + k)− soff(n,Nm)| ≤ k|S(n,Nm + k)|+ k2.

Then inserting this into (3.4) and using (3.3) we get

XNm+k −XNm

� 1
N2
m

∑

0<|n|≤M
(k|S(n,Nm + k)|+ k2) +N−1/4+1/100+2/101

m

� k

N2
m

∑

0<|n|≤M
|S(n,N)|+ Mk2

N2
m

+N−1/4+1/100+2/101
m

� k

N2
m

MN7/8
m +

Mk2

N2
m

+N−1/4+1/100+2/101
m by (3.3)

� N−1/8+2/101+1/100
m +N−1+1/100+2/101

m +N−1/4+1/100+2/101
m

� N−1/8+2/101+1/100
m .

This proves our lemma.

4. Proof of Proposition 2. We assume that a(x) > 0 is an increasing
sequence of positive integers so that there is some c > 1 for which

(4.1) a(x+ 1) ≥ ca(x),

and we will show that the equation

(4.2) n1(a(x1)− a(y1)) = n2(a(x2)− a(y2)),

has at most O(MN2 log2N) solutions in 0 < |ni| ≤ M , 1 ≤ xi 6= yi ≤ N ,
where M � NR for some R > 0.

By changing the sign of ni and exchanging the roles of x1 and y1 and of
x2 and y2 as needed, we may assume that

(4.3) x1 > y1, x2 > y2, n1, n2 > 0.
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Moreover, by changing the roles of the right- and left-hand sides of (4.2),
we may further assume

(4.4) x1 ≥ x2.

We begin by observing that for solutions of (4.2) satisfying the above
normalization conditions (4.3), (4.4), we must have

(4.5) x1 − x2 � logcM.

Indeed, the LHS of (4.2) is by (4.1) at least

(4.6) n1(a(x1)− a(y1))

≥ 1 · (a(x1)− a(y1)) ≥ a(x1)− a(x1 − 1) ≥ a(x1)(1− 1/c).

The RHS of (4.2) is at most

n2(a(x2)− a(y2)) ≤Ma(x2).

From (4.1) we have
a(x1) ≥ cx1−x2a(x2)

so that the RHS of (4.2) is at most

(4.7) RHS ≤ Ma(x1)
cx1−x2

.

Combining (4.6) and (4.7) gives

a(x1)
(

1− 1
c

)
≤ Ma(x1)

cx1−x2

so that
x1 − x2 ≤ logcM.

Now fix n1, x1, y1. We need to show that the number of triples (n2, x2, y2)
solving (4.2) and the normalization conditions (4.3), (4.4) is at most
O(log2M). Since x1 − x2 ≤ logcM we may also fix x2 and show that the
number of pairs (n2, y2) solving (4.2) and the normalization conditions (4.3),
(4.4) is at most O(logM). Since y2 will now determine n2, it suffices to de-
termine y2. For this, it suffices to show that there is at most one solution
with x2 − y2 > 2 logcM .

Indeed, if (n2, y2) is a solution with x2 − y2 > 2 logcM then

a(y2) ≤ a(x2)
cx2−y2

<
a(x2)
M2 .

Thus the LHS of (4.2) equals

n2(a(x2)− a(y2)) = n2a(x2)
(

1− a(y2)
a(x2)

)
= n2a(x2)

(
1 +O

(
1
M2

))
.

If (n′2, y
′
2) is another such solution then

n2(a(x2)− a(y2)) = n′2(a(x2)− a(y′2))
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so that we find
n′2
n2

=
1 +O(1/M2)
1 +O(1/M2)

= 1 +O

(
1
M2

)
.

However, since n2, n
′
2 ≤ M this forces n2 = n′2. Thus there are at most

1 + 2 logcM solutions of (4.2) with n1, x1, y1, x2 fixed (and satisfying the
normalization conditions). This shows that the total number of solutions of
(4.2) is O(MN2 log2N).
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