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Jan-Hendrik Evertse (Leiden)

1. Introduction. We deal with equations

(1.1) a1ζ1 + . . .+ anζn = 1 in roots of unity ζ1, . . . , ζn

with non-zero complex coefficients. Clearly, from a solution for which one of
the subsums on the left-hand side is zero, it is possible to construct infinitely
many other solutions. Therefore, we restrict ourselves to solutions of (1.1)
for which all subsums on the left-hand side are non-zero, i.e.,

∑

i∈I
aiζi 6= 0 for each non-empty subset I of {1, . . . , n}.

Such solutions of (1.1) are called non-degenerate.
Denote by ν(a1, . . . , an) the number of non-degenerate solutions of (1.1).

First, let a1, . . . , an be non-zero rational numbers. In 1965, Mann [2] showed
that if (ζ1, . . . , ζn) is a non-degenerate solution of (1.1), then ζd1 = . . . =
ζdn = 1, where d is a product of distinct primes ≤ n + 1. From this result
it can be deduced that ν(a1, . . . , an) ≤ ec1n2

for some absolute constant c1.
Later, Conway and Jones [1] showed that for every non-degenerate solution
(ζ1, . . . , ζn) of (1.1) one has ζd1 = . . . = ζdn = 1, where d is the product
of distinct primes p1, . . . , pl with

∑l
i=1(pi − 2) ≤ n − 1. This implies that

ν(a1, . . . , an) ≤ ec2n
3/2(logn)1/2

for some absolute constant c2. Schinzel [3]
showed that if a1, . . . , an are non-zero and generate an algebraic number
field of degree D, then ν(a1, . . . , an) ≤ c2(n,D) for some function c2 de-
pending only on n and D. Later, Zannier [5] gave a different proof of this
fact and computed c2 explicitly. Finally, Schlickewei [4] succeeded in de-
riving an upper bound for the number of non-degenerate solutions of (1.1)
depending only on n for arbitrary complex coefficients a1, . . . , an. His result
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was
ν(a1, . . . , an) ≤ 24(n+1)!.

The purpose of this paper is to derive the following improvement of
Schlickewei’s result:

Theorem. Let n ≥ 1 and let a1, . . . , an be non-zero complex numbers.
Then (1.1) has at most (n+ 1)3(n+1)2

non-degenerate solutions.

The constant 3 can be improved to 2 + ε for every ε > 0 and every
sufficiently large n. We shall not work this out. Further, the proof of our
Theorem works without modifications for equations (1.1) with coefficients
a1, . . . , an from any field of characteristic zero.

We mention that the proofs of Mann, Conway and Jones, Schinzel and
Zannier are effective, in that they provide methods to determine all solutions
of (1.1), whereas Schlickewei’s proof is not. Our proof has the same defect.
Further, in the case where a1, . . . , an are rational numbers, our method of
proof cannot be used to improve upon the estimate of Conway and Jones.

Acknowledgements. I am very grateful to Hans Peter Schlickewei for
detecting an error in a previous draft of this paper, and for a suggestion
with which I could improve my bound ncn

3
in that draft to ncn

2
.

2. Equations with rational coefficients. It will be more convenient
to deal with a homogeneous version of equation (1.1). Thus, we consider the
equation

(2.1) a1ζ1 + . . .+ akζk = 0 in roots of unity ζ1, . . . , ζk,

where k := n + 1 ≥ 2 and where a1, . . . , ak are non-zero complex numbers.
Two solutions (ζ1, . . . , ζk) and (ζ ′1, . . . , ζ

′
k) of (2.1) are said to be proportional

if there is a root of unity % such that ζ ′i = %ζi for i = 1, . . . , k. A solution
(ζ1, . . . , ζk) of (2.1) is called non-degenerate if

∑
i∈I aiζi 6= 0 for each proper,

non-empty subset I of {1, . . . , k}. Thus, the Theorem is equivalent to the
statement that up to proportionality, (2.1) has at most k3k2

non-degenerate
solutions (i.e., there is a subset of solutions of (2.1) of cardinality ≤ k3k2

such that every non-degenerate solution of (2.1) is proportional to a solution
from this subset).

In the remainder of this section we assume a1, . . . , ak ∈ Q∗. Many of
the arguments in the proof of Lemma 1 below have been borrowed from the
proof of Theorem 1 of Mann [2]. This result states that every non-degenerate
solution of (2.1) is proportional to a solution consisting of (not necessarily
primitive) dth roots of unity, where d is the product of distinct primes ≤ k.
We could have given a slightly shorter proof of our Lemma 1 by applying
Mann’s theorem, but we preferred to keep our paper self-contained. The
order of a root of unity ζ is the smallest positive integer d such that ζd = 1.
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Lemma 1. Let (ζ1, . . . , ζk) be a (not necessarily non-degenerate) solution
of (2.1). Then there are indices i, j with 1 ≤ i < j ≤ k such that ζi/ζj is a
root of unity of order ≤ k2.

P r o o f. We proceed by induction on k. If k = 2, then ζ1/ζ2 = −a2/a1

∈ Q, hence ζ1/ζ2 = ±1. Let k ≥ 3 and suppose that the assertion holds for
equations (2.1) with fewer than k unknowns. We assume that (ζ1, . . . , ζk) is
non-degenerate. This is no loss of generality since if the left-hand side of (2.1)
has a proper vanishing subsum then the assertion follows by applying the
induction hypothesis to that subsum. We assume also that ζ1 = 1. Again,
this is no restriction, since replacing (ζ1, . . . , ζk) by a proportional solution
does not affect the quotients ζi/ζj . Lastly, we assume that (ζ1, . . . , ζk) 6=
(1, . . . , 1).

Let d be the smallest positive integer such that ζd1 = . . . = ζdk = 1. Then
d > 1. Choose any prime p dividing d and let pm be the largest power of p
dividing d. We have unique expressions

(2.2) ζi = ζ∗i · ζνi for i = 1, . . . , k,

in which ζ is a primitive pmth root of unity and for i = 1, . . . , k, ζ∗i is a root
of unity with (ζ∗i )d/p = 1 and νi ∈ {0, . . . , p− 1}. Let K = Q(ζ∗), where ζ∗

is a primitive (d/p)th root of unity. By inserting (2.2) into (2.1) and using
a1, . . . , ak ∈ Q∗ we get

(2.3)
p−1∑
q=0

a(q)ζq = 0 with a(q) =
∑

i:νi=q

aiζ
∗
i ∈ K for q = 0, . . . , p− 1.

From the minimality of d it follows that at least one of the exponents
ν1, . . . , νk in (2.2) is non-zero. Recalling that ζ1 = 1 we have ν1 = 0. Hence
{i : νi = 0} is a proper, non-empty subset of {1, . . . , k}. But as (ζ1, . . . , ζk)
is non-degenerate this implies

(2.4) a(0) =
∑

i:νi=0

aiζ
∗
i 6= 0.

From (2.3) and (2.4) it follows that ζ has degree at most p− 1 over K. This
implies that p2 does not divide d, since otherwise ζ would have degree p over
K. Since p was an arbitrary prime divisor of d, we infer that d is square-free.

But then ζ is a primitive pth root of unity and ζ has degree p − 1 over
K and minimal polynomial Xp−1 + Xp−2 + . . . + 1 over K. Together with
(2.3) this implies a(0) = . . . = a(p− 1), that is,

(2.5)
∑

i:νi=q1

aiζ
∗
i +

∑

i:νi=q2

(−ai)ζ∗i = 0

for each pair q1, q2 ∈ {0, . . . , p− 1} with q1 6= q2.
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We want to apply the induction hypothesis to (2.5). Let p be the largest
prime dividing d. If p ≤ 3 then from the fact that d is square-free it follows
that d ≤ 6 and hence ζi/ζj is a root of unity of order ≤ 6 < k2 for all i, j ∈
{1, . . . , k}. Suppose that p ≥ 5. By (2.4) and a(0) = . . . = a(p− 1) we have
a(q) 6= 0 and therefore {i : νi = q} is non-empty for q = 0, . . . , p − 1. From
this fact and p ≥ 5 it follows that there are distinct q1, q2 ∈ {0, . . . , p − 1}
such that the set T := {i : νi ∈ {q1, q2}} has cardinality at most 2

p · k < k.

Now the induction hypothesis applied to (2.5) with these indices q1, q2

implies that there are different indices h, j ∈ T such that ζ∗h/ζ
∗
j is a root of

unity of order at most (2k/p)2. By (2.3) we have

ζh/ζj = ζa(ζ∗h/ζ
∗
j ) with a ∈ {0, q1 − q2, q2 − q1}.

Recalling that ζ has order p, we infer that ζh/ζj has order at most

p

(
2
p
· k
)2

=
4
p
k2 < k2;

here we used again the fact that p ≥ 5. This completes the proof of Lem-
ma 1.

An immediate consequence of Lemma 1 is the following:

Lemma 2. There is a set U of cardinality at most k4, depending only on
k, such that for every solution (ζ1, . . . , ζk) of (2.1) there are distinct indices
i, j ∈ {1, . . . , k} for which ζi/ζj ∈ U.

P r o o f. Let U be the set of roots of unity of order ≤ k2. This set has
cardinality at most

∑k2

i=1 i ≤ k4. Lemma 1 implies that the assertion holds
with this set U .

3. Proof of the Theorem. In this section we consider equation (2.1)
with arbitrary, non-zero complex coefficients a1, . . . , ak. We first prove:

Lemma 3. There exists a set U1, depending on a1, . . . , ak and of cardi-
nality at most (k!)6 such that for every solution (ζ1, . . . , ζk) of (2.1) there
are distinct indices i, j ∈ {1, . . . , k} with ζi/ζj ∈ U1.

P r o o f. Similarly to [4], our approach is to take the determinant of k
solutions of (2.1), which is equal to 0, and then to expand this determinant
as a sum of k! terms. Thus, let z1 = (ζ11, . . . , ζ1k), . . . , zk = (ζk1, . . . , ζkk)
be k solutions of (2.1). Then

∣∣∣∣∣∣∣

ζ11 . . . ζ1k
...

...
ζk1 . . . ζkk

∣∣∣∣∣∣∣
= 0
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and by expanding the determinant, we get

(3.1)
∑
σ

sgn(σ)ζ1,σ(1) . . . ζk,σ(k) = 0,

where the sum is taken over all permutations σ of (1, . . . , k) and sgn(σ)
denotes the sign of σ. Note that the left-hand side of (3.1) is a sum of k!
roots of unity. By applying Lemma 2 to this sum, with k replaced by k!,
we infer that there exists a set U2 of cardinality at most (k!)4 such that for
every k-tuple of solutions z1, . . . , zk of (2.1), there are distinct permutations
σ, τ of (1, . . . , k) with

(3.2)
ζ1,σ(1)

ζ1,τ(1)
. . .

ζk,σ(k)

ζk,τ(k)
∈ U2.

Let m ≤ k be the smallest integer with the following property: for every
m-tuple z1 = (ζ11, . . . , ζ1k), . . . , zm = (ζm1, . . . , ζmk) of solutions of (2.1)
there are permutations σ, τ of (1, . . . , k) with

(3.3) σ 6= τ, σ(m+ 1) = τ(m+ 1), . . . , σ(k) = τ(k)

such that

(3.4)
ζ1,σ(1)

ζ1,τ(1)
. . .

ζm,σ(m)

ζm,τ(m)
∈ U2

(where the condition σ(m + 1) = τ(m + 1), . . . , σ(k) = τ(k) is understood
to be empty if m = k). Then, clearly, 2 ≤ m ≤ k.

First suppose that m ≥ 3. From the minimality of m it follows that (2.1)
has solutions z1, . . . , zm−1 such that for all pairs of permutations σ, τ of
(1, . . . , k) with

(3.5) σ 6= τ, σ(m) = τ(m), . . . , σ(k) = τ(k)

we have

(3.6)
ζ1,σ(1)

ζ1,τ(1)
. . .

ζm−1,σ(m−1)

ζm−1,τ(m−1)
6∈ U2.

We fix such solutions z1, . . . , zm−1 and allow zm to vary. Writing z =
(ζ1, . . . , ζk) for zm, we infer from (3.3)–(3.6) that for every solution z of
(2.1) there are permutations σ, τ of (1, . . . , k) with

(3.7)
ζ1,σ(1)

ζ1,τ(1)
. . .

ζm−1,σ(m−1)

ζm−1,τ(m−1)
· ζσ(m)

ζτ(m)
∈ U2, σ(m) 6= τ(m).

Now suppose that m = 2. Fix a solution z1 of (2.1). Then for any other
solution z of (2.1), there are permutations σ, τ with (3.3) such that

ζ1,σ(1)

ζ1,τ(1)
· ζσ(2)

ζτ(2)
∈ U2.
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We have σ(2) 6= τ(2), since otherwise σ(i) = τ(i) for i = 2, . . . , k, which
contradicts σ 6= τ . It follows that also for m = 2, and so for each possible
value of m, one can find for every solution z of (2.1) permutations σ, τ with
(3.7).

Writing σ(m) = i, τ(m) = j in (3.7), we infer that for every solution z of
(2.1) there are distinct indices i, j ∈ {1, . . . , k} such that ζi/ζj ∈ U1, where
U1 is the set consisting of all numbers of the form

β · ζ1,τ(1)

ζ1,σ(1)
. . .

ζm−1,τ(m−1)

ζm−1,σ(m−1)
,

with β ∈ U2 and with σ, τ being distinct permutations of (1, . . . , k). As
mentioned before, U2 has cardinality at most (k!)4. Further, the solutions
z1, . . . , zm−1 are fixed and for σ, τ we have k! possibilities each. Therefore,
U1 has cardinality at most (k!)6. This completes the proof of Lemma 3.
We mention that the choice of the solutions z1, . . . , zm−1 was ineffective;
therefore, the set U1 is ineffective.

Proof of the Theorem. We have to show that up to proportionality, (2.1)
has at most k3k2

non-degenerate solutions. We proceed by induction on k.
For k = 2, this assertion is trivial. Let k ≥ 3 and assume that each

equation (2.1) in k − 1 variables with non-zero complex coefficients has up
to proportionality at most (k − 1)3(k−1)2

non-degenerate solutions. Let U1

be the set from Lemma 3. Thus, for every solution (ζ1, . . . , ζk) of (2.1) there
are α ∈ U1 and distinct indices i, j ∈ {1, . . . , k} such that ζi/ζj = α. The
number of triples (α, i, j) with α ∈ U1, i, j ∈ {1, . . . , k} is at most

(3.8) (k!)6 · k2 ≤ k6k−4.

We now estimate from above the number of non-degenerate solutions
(ζ1, . . . , ζk) of (2.1) with

(3.9) ζi/ζj = α,

where (α, i, j) is a fixed triple with α ∈ U1 and i, j ∈ {1, . . . , k} with i 6= j.
Assume for convenience that i = k, j = k−1. Then for every solution of (2.1)
with (3.9) we have ak−1ζk−1 + akζk = a′k−1ζk−1 with a′k−1 = ak−1 + αak
and by substituting this into (2.1), we obtain

(3.10) a1ζ1 + . . .+ ak−2ζk−2 + a′k−1ζk−1 = 0.

We may assume that a′k−1 6= 0, for otherwise for every solution of (2.1)
with (3.9) we have ak−1ζk−1 + akζk = 0, i.e., (2.1) does not have non-
degenerate solutions with (3.9). Further, if (ζ1, . . . , ζk) is a non-degenerate
solution of (2.1) with (3.9), then (ζ1, . . . , ζk−1) is a non-degenerate solution
of (3.10). By the induction hypothesis, (3.10) has up to proportionality
at most (k − 1)3(k−1)2

non-degenerate solutions. Since each such solution



Linear equations in roots of unity 51

determines uniquely a solution of (2.1) with (3.9), it follows that (2.1) has
up to proportionality at most (k − 1)3(k−1)2

non-degenerate solutions with
(3.9). Together with the upper bound (3.8) for the total number of triples
(α, i, j), it follows that (2.1) has up to proportionality at most

(k − 1)3(k−1)2 · k6k−4 ≤ k3k2−6k+3+6k−4 ≤ k3k2

solutions. This completes the proof of the Theorem.
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