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A generalisation of Mahler measure
and its application in algebraic dynamical systems

by

Manfred Einsiedler (Wien)

We prove a generalisation of the entropy formula for certain algebraic
Zd-actions given in [2] and [4]. This formula expresses the entropy as the
logarithm of the Mahler measure of a Laurent polynomial in d variables
with integral coefficients. We replace the rational integers by the integers
in a number field and examine the entropy of the corresponding dynamical
system.

1. Introduction. We shall study the entropy of the following dynamical
systems which arise from algebra and harmonical analysis. For every discrete
Z[x±1

1 , . . . , x±1
d ]-module M one has a corresponding compact dual group

X = M̂ and an action of Zd on X which is given by the automorphism
dual to multiplication by the monomials. In [4] one can find the following
entropy formula for a special class of such dynamical systems which are
building blocks for more complex ones. The entropy of the Zd-action αX on
the dual group X of the cyclic module M = Z[x±1

1 , . . . , x±1
d ]/(f) is given by

(1) h(αX) =
{

logM(f) if f ∈ Z[x±1
1 , . . . , x±1

d ] \ {0},
∞ if f = 0,

where the Mahler measure M(f) of a nonzero polynomial f ∈Z[x±1
1 , . . . , x±1

d ]
is given by

M(f) = exp
( \
Td

log f(x) dx
)
.

Here the integral is taken with respect to the normalised Haar measure of
the d-dimensional torus.

We shall see that one gets an analogous result if one replaces the rational
integers by the integers of a number field. Let K be a finite field extension
of Q and let OK be the ring of integral elements of K over Z. For a principal
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16 M. Einsiedler

ideal (f) 6= 0 in the ring OK[x±1
1 , . . . , x±1

d ] we prove the entropy formula

(2) h(αX) = logM(NK|Q(f))

for the dual group X of the Z[x±1
1 , . . . , x±1

d ]-module

(3) OK[x±1
1 , . . . , x±1

d ]/(f).

The symbol NK|Q means the norm of the field K over Q extended to the
corresponding rings of polynomials.

The module in (3) is cyclic as a OK[x±1
1 , . . . , x±1

d ]-module but not as
a Z[x±1

1 , . . . , x±1
d ]-module, therefore the formula (1) is not applicable. One

can of course build up this module by using cyclic Z[x±1
1 , . . . , x±1

d ]-modules
and from this compute the entropy of the Zd-action. But the formula (2)
uses the number-theoretical advantages of the module (3) and is easier for
calculations.

We also study the entropy for nonprincipal ideals and for localisations
of OK.

I wish to thank Klaus Schmidt for many inspiring conversations, for
looking over the text many times and for Remark 3.11. I also want to thank
Johanna Gaier for helping me with my English.

2. Definitions. For any ring A and any natural number d we define the
ring of polynomials

Ld(A) = A[x±1
1 , . . . , x±1

d ]
in the commuting variables x1, . . . , xd. We shall often write xn instead of
xn1

1 . . . xndd . With this notation a typical polynomial f ∈ Ld(A) has the form

f =
∑

n∈Zd
cf (n)xn,

where only finitely many coefficients cf (n) ∈ A are nonzero.
Any ideal I ⊆ Ld(A) defines an action of Zd on the dual compact group

X = (Ld(A)/I)∧. The map αXn is defined as the dual of multiplication by
xn. In the following we denote the entropy of this action by hA(I). In the
special case of a principal ideal I = (f)A we also write hA(f).

Using Yuzvinskĭı’s formula (see [4]) one can prove the additivity of hA(·),
which means that hA(fJ) = hA(f) + hA(J) for any ideal J ⊆ Ld(A) and
any polynomial f ∈ Ld(A).

Let K|Q be a finite algebraic field extension with degree n and let
{τ1, . . . , τn} be the complete set of field homomorphisms from K to the
field C of complex numbers. For any polynomial f ∈ Ld(K) we define the
norm

NK|Q(f) =
n∏

i=1

τi(f),
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where τi(f) is the polynomial over the complex field one gets by applying
the homomorphism τi to the coefficients of f . If no misunderstandings are
possible we also write N(f) for the norm of f .

3. The entropy of (Ld(OK)/(f))∧. We start our study of entropy with
the special case of a principal ideal in the ring of algebraic integers of a finite
normal field extension of Q.

In order to get a connection between the entropies hZ and hOK we prove
the following lemma.

3.1. Lemma. Let L|K and K|Q be finite algebraic field extensions and let
n = [L : K]. For any principal ideal domain A ⊆ K which generates K as a
field over Q and its integral closure B in L we have

hB(f) = nhA(f)

for every polynomial f ∈ Ld(A).

P r o o f. By the separability of L|K there exists an integral basis
{α1, . . . , αn} of B over A (see for example Theorem I.2.10 of [3]). We prove
the lemma by defining an Ld(A)-module isomorphism

(Ld(A)/(f)Ld(A))
n ∼= Ld(B)/(f)Ld(B).

Consider the well-defined morphism

Φ : (Ld(A)/(f)Ld(A))
n → Ld(B)/(f)Ld(B)

given by Φ((hi+(f)Ld(A))i=1,...,n) =
∑
i hiαi+(f)Ld(B). Since every element

of B can be written as a linear combination of the αi with coefficients in A,
one can write every element of Ld(B) as a linear combination of the αi with
coefficients in Ld(A). It follows that Φ is surjective.

For the proof of the injectivity we assume that Φ((hi + (f))i) = 0, i.e.,
that there exist h′i such that

∑
i hiαi = (

∑
i h
′
iαi)f . The uniqueness of the

above representation shows that hi = h′if ≡ 0. Therefore the morphism Φ
is injective.

3.2. Proposition. Let K|Q be a normal finite algebraic field extension
and let OK ⊆ K be the domain of algebraic integers in K. The entropy of a
nonzero polynomial f ∈ OK[x±1

1 , . . . , x±1
d ] is given by

hOK(f) = logM(N(f)).

P r o o f. Let τ be a field automorphism of K. Then the Ld(Z)-modules
Ld(OK)/(f) and Ld(OK)/(τ(f)) are isomorphic by means of τ . This proves
that hOK(f) = hOK(τ(f)). If G = {τ1, . . . , τn} is the Galois group of K
over Q, then the addition formula mentioned in Section 2 and Lemma 3.1
imply that
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hOK(f) =
hOK(τ1(f)) + . . .+ hOK(τn(f))

n

=
hOK(N(f))

n
= hZ(N(f)) = logM(N(f)).

3.3. Example. For K = Q(
√

2) and f = 3x +
√

2 ∈ L1(Z[
√

2]) we can
easily compute the norm of f :

N(f) = (3x+
√

2)(3x−
√

2) = 9x2 − 2.

The entropy of the Z-action on the compact group

(Z[
√

2, x±1]/(3x+
√

2))∧

is logM(9x2 − 2) = log 9, by Proposition 3.2.

As a generalisation of the greatest common divisor of the coefficients of
a polynomial we define the content of a polynomial.

3.4. Definition. Let A be a Dedekind domain with field of fractions K
and let

f =
∑
m

cf (m)xm ∈ Ld(K)

be a Laurent polynomial. We define the content of f as the fractional ideal
of A generated by the coefficients of f :

ConA(f) = (cf (m) : m ∈ Zd)A.
A polynomial f ∈ Ld(K) is called primitive if the content of f is equal to A.

One form of Gauss’ lemma in a unique factorization domain says that
the content of polynomials is multiplicative. We now state the analogous
statement for our domains and our definition of content. This can be found
for instance as Satz 13 in Hilbert’s report “Die Theorie der algebraischen
Zahlkörper” (see [1], p. 78).

3.5. Lemma. Let OK be the domain of algebraic integers in a number
field K and let f, g ∈ Ld(K) be two Laurent polynomials. Then

ConOK(fg) = ConOK(f)ConOK(g)

with the usual definition of ideal multiplication.

3.6. Lemma. Let K|Q be a finite algebraic field extension, let OK be
the domain of algebraic integers in K and let f ∈ Ld(OK) be a primitive
polynomial. For each set S ⊆ OK \ {0} which is closed under multiplication
we have

hOK(f) = hS−1OK(f),

where S−1OK denotes the localisation of OK with respect to the set S.
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P r o o f. We first prove that

(f)Ld(S−1OK) ∩ Ld(OK) = (f)Ld(OK).

Let g ∈ Ld(S−1OK) with gf ∈ Ld(OK). Using Lemma 3.5 we get

ConOK(g) = ConOK(g)ConOK(f) = ConOK(gf) ⊆ OK,
so that g lies in Ld(OK) and the above statement is true.

Let s1, s2, . . . be an enumeration of S. We define

tn =
{

1 if n = 0,∏n
i=1 si if n > 0.

For the sequence of Z-modulesMn = (1/tn)OK we have
⋃∞
n=1Mn = S−1OK,

and the union of the Ld(Z)-modules
∑

Zd
Mn

/(
(f)Ld(S−1OK) ∩

∑

Zd
Mn

)

is equal to Ld(S−1OK)/(f)Ld(S−1OK), where we have identified the sets∑
Zd S

−1OK and Ld(S−1OK). Therefore, in the dual group

X = (f)⊥Ld(S−1OK) ⊆ ((S−1OK)∧)Z
d

the intersection of the subgroups

Vn =
(∑

Zd
Mn

)⊥

is {0}. By Lemma 13.6 of [4] we conclude that h(σX/Vn) → h(σX). The
module ∑

Zd
Mn

/(
(f)Ld(S−1OK) ∩

∑

Zd
Mn

)
,

which is the dual group of X/Vn, is isomorphic to

Ld(OK)/((f)Ld(S−1OK) ∩ Ld(OK)) = Ld(OK)/(f)Ld(OK).

This is easily seen by using the morphism Φ(x) = tnx from
∑
ZdMn to

Ld(OK) which maps (f)Ld(S−1OK)∩
∑
ZdMn to (f)Ld(S−1OK)∩Ld(OK). Now

the convergence of the entropies yields

hS−1OK(f) = h(σX) = hOK(f).

3.7. Example. We return to the field K = Q(
√

2) and the polynomial
f = 3x +

√
2 ∈ L1(Z[

√
2]) of Example 3.3. The polynomial f is primitive

and for each localisation with respect to a multiplicatively closed set S ⊆
OK \ {0},

hS−1OK(f) = hOK(f) = log 9.
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3.8. Definition. Let K|Q be a finite algebraic field extension and let
OK be the domain of algebraic integers in K. For each ideal J ⊆ OK we
define its norm as N (J) = |OK/J |.

For principal ideals this definition coincides with the usual one (Sec-
tion I.6 of [3]). We thus have

N ((a)) = |NK|Q(a)|.
3.9. Lemma. Let K|Q be a finite algebraic field extension, let OK be the

domain of integers in K and let S ⊆ OK\{0} be closed under multiplication.
For each nonzero prime ideal p ⊆ OK let ‖ · ‖p be the valuation such that
‖a‖p = 1/|OK/p| for every a ∈ p \ p2. For each nonzero ideal J ⊆ S−1OK
we have the entropy formula

hS−1OK(J) = log(N (J ∩ OK)),

and for every nonzero element a ∈ S−1OK,

hS−1OK(a) = log
(
|NK|Q(a)|

∏

p∩S 6=∅
‖a‖p

)
.

P r o o f. The Chinese remainder theorem (see [3], I.3.6) and the ring
isomorphism OK/pn ∼= OK,p/(pOK,p)n (see [3], I.11.2) show that

S−1OK/J ∼= OK,p1/(p1OK,p1)
n1 ⊕ . . .⊕OK,pr/(prOK,pr)nr(4)

∼= OK/(J ∩ OK),

where J ∩OK has the prime decomposition pn1
1 . . . pnrr . The last term in (4)

has exactly N (J ∩ OK) elements. The Haar measure of

((OK/(J ∩ OK))∧)Z
d ∼= (Ld(S−1OK)/(JLd(S−1OK)))∧

is the uniformly distributed product measure. The first statement of the
lemma follows from the well known entropy formula for full shifts.

For the second statement we have to determine the number of elements
of S−1OK/(a). The Chinese remainder theorem yields

S−1OK/(a) ∼= OK,p1/(p1OK,p1)
n1 ⊕ . . .⊕OK,pr/(prOK,pr)nr ,

where the pi are those prime ideals which are factors of a disjoint from S.
Therefore the number of elements is

1∏
p∩S=∅ ‖a‖p

= |NK|Q(a)|
∏

p∩S 6=∅
‖a‖p,

where we have used the product formula (see [3], Satz III.1.3).

3.10. Theorem. Let K|Q be an algebraic finite field extension and let
OK ⊆ K be the corresponding domain of algebraic integers. For each nonzero
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Laurent polynomial f ∈ Ld(OK),

hOK(f) = logM(N(f)).

P r o o f. We start with the case of a primitive polynomial. We apply
Lemma 3.6 to S = OK \ {0} to get

hOK(f) = hK(f).

Let L|K be a normal extension over Q of degree [L : K] = l. Lemma 3.1
with A = K and B = L yields

hK(f) =
1
l
hL(f).

Since f is primitive as an element of Ld(OK), one can write the identity in
OK as a linear combination of the coefficients of f , which is a representation
of the identity with values in OL. Therefore f is also primitive as an element
of Ld(OL). By Lemma 3.6 one gets

hOL(f) = hL(f).

Together with Proposition 3.2 we have

hOK(f) =
1
l
|logM(NL|Q(f))| = |logM(NK|Q(f))|.

If f is not primitive then we can find a power of f such that the content
of fm is a principal ideal (a):

Con(fm) = Con(f)m = (a)

by Lemma 3.5 and the fact that the ideal class group has finite order. Now
from the first part of the proof we get

hOK

(
1
a
fm
)

=
∣∣∣∣logM

(
NK|Q

(
1
a
fm
))∣∣∣∣.

By Lemma 3.9 we see that

hOK(a) = |log |NK|Q(a)|| = |logM(NK|Q(a))|.
The transformations

hOK(f) =
1
m

(
hOK(a) + hOK

(
1
a
fm
))

=
1
m

(
logM(NK|Q(a)) + logM

(
NK|Q

(
1
a
fm
)))

=
1
m

logM(NK|Q(fm)) = logM(NK|Q(f))

conclude the proof.

3.11. Remark. Theorem 3.10 can be proved more quickly if one uses
Example 18.7 of [4]: the entropy of the Zd-shift on the dual group of the
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Ld(Z)-module Ld(Z)n/ALd(Z)n for a matrix A ∈ Matn(Ld(Z)) is given by
|log(M(det(A)))|.

As we have already seen in the proof of Lemma 3.1 the Ld(Z)-module
Ld(OK) is isomorphic to Ld(Z)n. Multiplication by f is an Ld(Z)-linear map
and is therefore represented by a matrix Af ∈ Matn(Ld(Z)). For the proof
of Theorem 3.10 one only has to check the formula

NK|Q(f) = det(Af ),

which can be deduced in a way analogous to the corresponding equality for
numbers (see for example Section I.2 in [3]).

3.12. Example. Let K = Q[ 3
√

2] and f = 2x2 + 3
√

2. Then

N(f) = (2x2 + 3
√

2)(2x2 + ζ
3
√

2)(2x2 + ζ2 3
√

2) = 8x6 + 2,

where ζ denotes a primitive third root of the unity. Now one can compute
the entropy from Theorem 3.10 as follows:

hOK(f) = logM(8x6 + 2) = log 8.

3.13. Corollary. Let K|Q be a finite algebraic field extension, let OK ⊆
K be the domain of algebraic integers and let S ⊆ OK \ {0} be closed under
multiplication. For each prime ideal p let ‖ · ‖p be the valuation such that
‖a‖p = 1/|OK/p| for every a ∈ p \ p2. For every nonzero polynomial f ∈
Ld(S−1OK) we have

hS−1OK(f) = log
(
M(NK|Q(f))

∏

p∩S 6=∅
‖ConOK(f)‖p

)
.

P r o o f. For a primitive polynomial we argue as for Theorem 3.10.
For the general case we also examine the polynomial fm. For the gener-

ator a of the content of fm we know the entropy from Lemma 3.9:

hS−1OK(a) = log
(
M(NK|Q(a))

∏

p∩S 6=∅
‖a‖p

)
.

The polynomial (1/a)fm is primitive and we conclude the proof in the same
way as for Theorem 3.10.

3.14. Example. Let K = Q(
√

2) and

f = (3 +
√

2)x− 7 = (3 +
√

2)(x− (3−
√

2)).

Then
N(f) = 7(x2 − 7).

We choose S = {7n : n ∈ N}. The content of f is ConOK(f) = (3 +
√

2), and
the prime decomposition of 7 in the unique factorisation domain Z[

√
2] has

the form
7 = (3 +

√
2)(3−

√
2).
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Using Corollary 3.13 we get

hZ[
√

2,1/7](f) = log
(
M(N(f))

∏

p∩S 6={0}
‖Con(f)‖p

)
= log

(
49 · 1

7

)
= log 7.

4. The entropy of (Ld(OK)/J)∧. Now we start our examination of
nonprincipal ideals J ⊆ Ld(S−1OK) and prove an entropy formula for the
corresponding dynamical systems.

But first we prove some preliminary results.

4.1. Lemma. Let K|Q be a finite algebraic field extension and let OK be
its domain of algebraic integers. A polynomial f ∈ Ld(Z) is primitive as an
element of Ld(Z) if and only if it is primitive as an element of Ld(OK). For
f ∈ Ld(OK) we have N(f) ∈ (f)Ld(OK) ∩ Ld(Z). If the polynomial f is also
primitive, then the norm N(f) is primitive.

P r o o f. For a primitive polynomial f ∈ Ld(Z) all the coefficients are
integers and the unity can be written as an integral combination of the
coefficients. This representation is also a representation of the unity in OK,
so that f is primitive as an element of Ld(OK).

If f ∈ Ld(Z) is primitive with respect to OK but not with respect to Z,
then there exists a prime p ∈ Z which divides all the coefficients of f . We
get ConOK(f) ⊆ pOK 6= OK, contrary to the assumption that f is primitive.

For the second statement of the lemma we have to prove that

NK|Q(f)
f

=
∏

τ :K→L
τ 6=id

τ(f) ∈ Ld(OK),

where L is a normal closure of K over Q and τ : K→ L are the possible field
homomorphisms. The polynomial NK|Q(f)/f has coefficients in OL. Since
f,NK|Q(f) ∈ Ld(K) the quotient NK|Q(f)/f also has to be in Ld(K). We
conclude that NK|Q(f)/f ∈ Ld(OK).

For the last statement we take a primitive polynomial f ∈ Ld(OK). As
the unity is an integral combination of the coefficients of f , for any field
homomorphism τ : K → L the polynomial τ(f) is primitive in Ld(OL).
Using Lemma 3.5 we see that

NK|Q(f) =
∏

τ :K→L
τ(f)

is primitive in Ld(OL) and the first part of the lemma shows that N(f) is
primitive as an element of Ld(Z).

Analogously to the content of a polynomial we need the notion of the
content of an ideal.
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4.2. Definition. Let A be a Dedekind domain with field of fractions K
and let J ⊆ Ld(K) be a finitely generated Ld(A)-submodule. We define the
content of J over A as

ConA(J) =
∑

f∈J
ConA(f),

and call an ideal J primitive if its content is equal to A.

As an easy consequence of our definition and our form of Gauss’ lemma
(see Lemma 3.5) we can prove the following result.

4.3. Lemma. Let OK be the domain of integral elements in a number
field K and let J ⊆ Ld(K) be a finitely generated Ld(OK)-submodule. There
exists a polynomial f ∈ J with

ConOK(J) = ConOK(f).

For any g ∈ Ld(K) we have

ConOK(gJ) = ConOK(g)ConOK(J).

P r o o f. There exist polynomials f1, . . . , fl ∈ J whose coefficients gener-
ate ConOK(J). One can easily find a sequence n2, . . . , nl such that

f = f1 + xn2
1 f2 + . . .+ xnl1 fl ∈ J

has all the coefficients of f1, . . . , fl as coefficients. This means ConOK(f) =
ConOK(J).

For g ∈ Ld(K) and any h ∈ J we now have, by Lemma 3.5,

ConOK(gh) = ConOK(g)ConOK(h) ⊆ ConOK(g)ConOK(J)

= ConOK(g)ConOK(f) = ConOK(gf) ⊆ ConOK(gJ)

and therefore ConOK(gJ) = ConOK(g)ConOK(J).

4.4. Lemma. Let K|Q be a finite algebraic field extension, let OK ⊆ K
be the corresponding domain of integral elements and let S ⊆ OK \ {0} be
closed under multiplication. For any ideal I ⊆ Ld(S−1OK) which contains
a primitive polynomial f ∈ I and a nonzero constant a ∈ I ∩ S−1OK, the
entropy of the shift on (Ld(S−1OK)/I)∧ vanishes.

P r o o f. The norms N(f) ∈ Ld(Z) and N(a) ∈ Z are also elements of I,
which was proved in Lemma 4.1. Therefore we can assume that f ∈ I∩Ld(Z)
and n ∈ I ∩Z. If we prove the statement for the ideal I ∩Ld(OK) ⊆ Ld(OK)
we also get it for I ⊆ Ld(S−1OK) by a similar consideration to the proof of
Lemma 3.6. The Ld(Z)-module isomorphism

Ld(OK)/(n, f)Ld(OK)
∼= (Ld(Z)/(n, f)Ld(Z))

n,
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which can be seen as in the proof of Lemma 3.1, and the fact that (n, f)Ld(OK)
⊆ I∩Ld(OK) prove the lemma because the entropy of the Ld(Z)-ideal (n, f)
vanishes.

We have already defined the quantity hR(·) for a ring R. If R is a unique
factorisation domain, then so is the polynomial ring Ld(R). Therefore each
subset A ⊆ Ld(R) admits a greatest common divisor gcd(A). In the next
lemma we prove a connection between the entropy of the ideal and its great-
est common divisor.

4.5. Lemma. Let R be a Noetherian unique factorisation domain which
satisfies hR(f) < ∞ for each nonzero f ∈ Ld(R). Then for any nonzero
ideal J ⊆ Ld(R),

hR(J) = hR(gcd(J)).

P r o o f. First we remark that the lemma is equivalent to the special
case of a primitive ideal, i.e., to the case where gcd(J) = 1. Let J be an
arbitrary ideal and denote by g = gcd(J) its common divisor. The ideal
g−1J = {f ∈ Ld(R) : gf ∈ J} satisfies gcd(g−1J) = 1. Since g(g−1J) = J ,
by additivity we have hR(J) = hR(g) + hR(g−1J).

We proceed by induction on the number of generators f1, . . . , fl of J =
〈f1, . . . , fl〉. We start with l = 2 and f = f1 ⊥ g = f2, and get the exact
sequence

0→ Ld(R)/(f)
∗g−→ Ld(R)/(f) π→ Ld(R)/(f, g)→ 0,

where the map ∗g is multiplication by the polynomial g, and π is the canon-
ical projection. Since f ⊥ g, multiplication by g is injective. The equation
im(∗g) = ker(π) and the surjectivity of π are also clear. As the entropy
hR(f) for f 6= 0 is finite we conclude by using the dual sequence that
hR((f, g)) = 0.

Assume now that the lemma has already been proved for l ≥ 2 gen-
erators. For a primitive ideal with l + 1 generators f1, . . . , fl+1 we define
g = gcd(f1, . . . , fl) and get an exact sequence

0→
(
f1

g
, . . . ,

fl
g
, fl+1

)/
(f1, . . . , fl+1)→ Ld(R)/(f1, . . . , fl+1)

∗g−→ Ld(R)/(f1, . . . , fl+1) π→ Ld(R)/(g, fl+1)→ 0,

which is easily proved as above.
The entropies of the corresponding dual groups are finite and therefore

hR((g, fl+1))− hR((f1, . . . , fl+1)) + hR((f1, . . . , fl+1))

− h(σ((f1/g,...,fl/g,fl+1)/(f1,...,fl+1))∧) = 0.
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The first expression above vanishes because of g ⊥ fl+1 and the case l = 2
which we have already proved. So we get

h(σ((f1/g,...,fl/g,fl+1)/(f1,...,fl+1))∧) = 0.

By the inductive assumption for the ideal (f1/g, . . . , fl/g) and the sequence

Ld(R)
/(f1

g
, . . . ,

fl
g

)
→ Ld(R)

/(f1

g
, . . . ,

fl
g
, fl+1

)
→ 0,

we have h(σ(Ld(R)/(f1/g,...,fl/g,fl+1))∧) = 0. The exact sequence

0→
(
f1

g
, . . . ,

fl
g
, fl+1

)/
(f1, . . . , fl+1)

→ Ld(R)/(f1, . . . , fl+1)→ Ld(R)
/(f1

g
, . . . ,

fl
g
, fl+1

)
→ 0

proves the induction step hR((f1, . . . , fl+1)) = 0.

Now we can prove the generalisation of the entropy formula for nonprin-
cipal ideals.

4.6. Theorem. Let K|Q be a finite algebraic field extension of Q, let
OK ⊆ K be the domain of integral elements in K and let S ⊆ OK \ {0} be
closed under multiplication. For any nonzero ideal J ⊆ Ld(S−1OK) we have
the entropy formula

(5) hS−1OK(J) = log(M(prN(gcdLd(K)(J)))N (ConS−1OK(J) ∩ OK)),

where prN(·) denotes a primitive version of the norm of the polynomial.

P r o o f. We start with a new formulation of the entropy formula for a
principal ideal (g). Corollary 3.13 shows that the entropy is the logarithm
of

M(N(g))
∏

p∩S 6=∅
‖ConOK(g)‖p = M(prN(g))ConZ(N(g))

∏

p∩S 6=∅
‖ConOK(g)‖p,

where we identify the ideals in Z with their positive generators.
For the proof of the equality

(6) ConZ(N(g)) = N (ConOK(g))

we use as previously the polynomial gm, where m is a positive integer such
that the content ConOK(gm) = (a) is a principal ideal. From Gauss’ lemma
(see Lemma 3.5) we get

ConZ(N(g)) = m
√

ConZ(N(gm)) = m
√

ConZ
(
N
(

1
ag

m
))|N(a)| = m

√
|N(a)|,

because the norm of the primitive polynomial gm/a is primitive as we have
seen in Lemma 4.1.
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On the right-hand side of (6) we make the same transformations to get

N (ConOK(g)) = m
√
N (ConOK(gm))

= m

√
N (ConOK

(
1
ag

m
))N (a) = m

√
|N(a)|.

Therefore the entropy is the logarithm of

M(prN(g))N (ConOK(g))
∏

p∩S 6=∅
‖ConOK(g)‖p.

In order to prove the theorem for the case of a principal ideal we thus only
have to show that

N (ConOK(g))
∏

p∩S 6=∅
‖ConOK(g)‖p = N (ConS−1OK(g) ∩ OK).

The proof of the above equality is analogous to a part of the proof of Lemma
3.9, where the Chinese remainder theorem was used.

For a nonprincipal ideal J ⊆ Ld(S−1OK) we can define the inverted
content

I = ConS−1OK(J)−1 = {a ∈ K : aConS−1OK(J) ⊆ S−1OK}
and define a finite set {α1, . . . , αr} ⊆ K of generators of I. The content
of the polynomial g =

∑r
i=1 αix

i
1 ∈ Ld(K) is equal to I. By Lemma 4.3

the ideal gJ is primitive in Ld(S−1OK). There exists an a ∈ S−1OK with
g′ = ag ∈ Ld(S−1OK). With the two possibilities of writing the ideal agJ
as a product of a polynomial or a constant with an ideal we get

hS−1OK(g′J) = hS−1OK(g′) + hS−1OK(J) = hS−1OK(a) + hS−1OK(gJ),

where we again used the additivity of entropy. The right-hand side of (5)
also satisfies this sort of additivity. We already know that (5) holds for the
principal ideals (g′) and (a). To conclude the proof we have to show it also
holds for the primitive ideal gJ .

Let J be a primitive ideal. We define

J ′ = KJ ∩ Ld(S−1OK) ⊇ J,
where the inclusion may be strict. We take a finite set {g1, . . . , gs} of gener-
ators for J ′. The ideal J contains a primitive polynomial f ∈ J as we have
seen in Lemma 4.1. For gi ∈ KJ there exists an ai ∈ S−1OK with aigi ∈ J .
With the ideals Ji = 〈g1, . . . , gi〉+ J we get the exact sequences

0→ Ji/J → Ji+1/J → Ji+1/Ji → 0.

The ideal Ji+1 is—modulo Ji—generated by gi+1. Therefore Ji+1/Ji is iso-
morphic to the cyclic module
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Ld(S−1OK)/Ii.

The ideal Ii contains f and ai+1 because fgi+1, ai+1gi+1 ∈ J ⊆ Ji. From
Lemma 4.4 we know that the entropy of the shift on the dual group of
Ji+1/Ji vanishes. Yuzvinskĭı’s formula and induction show that the entropies
of the shifts on the dual groups of Ji/J vanish. In particular the entropy of
the shift on Y = (J ′/J)∧ is zero. The exact sequence

0→ J ′/J → Ld(S−1OK)/J → Ld(S−1OK)/J ′ → 0

yields hS−1OK(J) = hS−1OK(J ′).
Let {t1, . . . , tn, . . .} be an enumeration of S−1OK \ {0} and put

rn =
{

1 if n = 0,∏n
i=1 ti if n > 0.

We define the abelian groups

Mn =
1
rn
S−1OK,

with union K. The corresponding Ld(Z)-modules
∑

Zd
Mn/KJ ∩

∑

Zd
Mn

have Ld(K)/KJ as union. Multiplication by rn shows they are all isomorphic
to

Ld(S−1OK)/J ′.

From Lemma 13.6 of [4] and Lemma 4.5 we get

hS−1OK(J) = hS−1OK(J ′) = hK(KJ) = hK(gcdLd(K)(J)).

Therefore the problem reduces to the case of a principal ideal with S′ =
OK \ {0}, and from the first part of the proof we get

hS−1OK(J) = hK(gcdLd(K)(J)) = log(M(prN(gcdLd(K)(J)))).

The term N (ConK(·)∩OK) = 1 is trivial over the field K. This is the formula
we wanted to prove because for the primitive ideal J ,

N (ConS−1OK(J) ∩ OK) = N (S−1OK ∩ OK) = 1.

4.7. Example. For K = Q(i) the domain of algebraic integers OK = Z[i]
is a principal ideal domain and we can compute the entropy by two different
methods. We define J = (f1, f2) to be the ideal with the generators

f1 = (1 + i)(2 + i)(x2 − i), f2 = (1− i)(x2 − 2 + i)(x2 − i).
The greatest common divisor of f1 and f2 is given by (1 + i)(x2 − i) which
does not lie in J , because the two elements 2 + i and x2 − 2 + i do not
generate the whole ring of polynomials. This can be seen by taking this ring
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modulo (2+ i), producing a ring isomorphic to F5[x±1]. The second element
x2 − 2 + i now has the form x2 − 4.

As Z[i] is a unique factorisation domain we can use Lemma 4.5 and
Theorem 3.10 to compute the entropy

hZ[i](J) = logM(2(x4 + 1)) = log 2.

But we can also use Theorem 4.6: the polynomials f1 and f2 have the great-
est common divisor x2 − i in the ring Q[i, x±1] and the norm of this poly-
nomial is x4 + 1. As the ideal ConZ[i](J) is generated by ConZ[i](f1) and
ConZ[i](f2), it is equal to

gcd((1 + i)(2 + i), (1− i)) = (1 + i).

With the formula from Theorem 4.6 we get

hZ[i](J) = logM(x4 + 1) + logN (1 + i) = log 2.

Finally, we examine an example where Lemma 4.5 is not applicable.

Example. Let K = Q(
√−5). Then OK = Z[

√−5]. We choose

f1 = 2(x2 − 7), f2 = (
√−5 + 1)(x2 − 7)(x2 − 3)

as the generators of J = (f1, f2). Their greatest common divisor over K is
(x2 − 7) and the content of J is (2,

√−5 + 1). The entropy is given by

hZ[
√−5](J) = logM(N(x2 − 7)) + logN (2,

√−5 + 1) = log 7 + log 2,

where we have again used Theorem 4.6.
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