ArticleOriginal scientific text
Title
On two-primary algebraic K-theory of quadratic number rings with focus on K₂
Authors 1, 2
Affiliations
- Department of Mathematics, University of Utrecht, Utrecht, The Netherlands
- Department of Mathematics, University of Oslo, Oslo, Norway
Keywords
algebraic K-groups of quadratic number rings, 2- and 4-rank formulas for Picard groups, étale cohomology
Bibliography
- M. C. Boldy, The 2-primary component of the tame kernel of quadratic number fields, Ph.D. thesis, Catholic University of Nijmegen, 1991.
- A. Borel, Cohomologie réelle stable des groupes S-arithmétiques classiques, C. R. Acad. Sci. Paris 7 (1974), 235-272.
- J. Browkin and H. Gangl, Table of tame and wild kernels of quadratic imaginary number fields of discriminants > - 5000 (conjectural values), Math. Comp., to appear.
- J. Browkin and A. Schinzel, On Sylow 2-subgroups of
for quadratic number fields F, J. Reine Angew. Math. 331 (1982), 104-113. - P. E. Conner and J. Hurrelbrink, The 4-rank of K₂(), Canad. J. Math. 41 (1989), 932-960.
- A. Fröhlich and R. Taylor, Algebraic Number Theory, Cambridge Stud. Adv. Math. 27, Cambridge Univ. Press, 1993.
- M. Ishida, The Genus Fields of Algebraic Number Fields, Lecture Notes in Math. 555, Springer, 1976.
- F. Keune, On the structure of the K₂ of ring of integers in a number field, K-Theory 2 (1989), 625-645.
- M. Kolster, The structure of the 2-Sylow subgroup of K₂(), I, Comment. Math. Helv. 61 (1986), 376-388.
- P. Morton, On Redei's theory of the Pell equation, J. Reine Angew. Math. 307/308 (1978), 373-398.
- J. Neukirch, Class Field Theory, Grundlehren Math. Wiss. 280, Springer, 1986.
- H. Qin, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith. 69 (1995), 153-169.
- H. Qin, The 4-rank of
for real quadratic fields F, Acta Arith. 72 (1995), 323-333. - D. Quillen, Finite Generation of the Groups
of Rings of Algebraic Integers, Lectures Notes in Math. 341, Springer, 1973, 179-198. - J. Rognes and C. Weibel, Two-primary algebraic K-theory of rings of integers in number fields, preprint, 1997; http://www.math.uiuc.edu/K-theory/0220/.
- J. Tate, Relations between K₂ and Galois cohomology, Invent. Math. 36 (1976), 257-274.
- A. Vazzana, On the 2-primary part of K₂ of rings of integers in certain quadratic number fields, Acta Arith. 80 (1997), 225-235.
- A. Vazzana, Elementary abelian 2-primary parts of K₂ and related graphs in certain quadratic number fields, Acta Arith. 81 (1997), 253-264.