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1. Introduction. A primitive root modulo the prime p is any integer a
coprime to p such that its exponent modulo p is p − 1. There are totally
φ(p − 1) primitive roots modulo p in [1, p], where φ is Euler’s function. It
is a natural problem to consider the fraction φ(p− 1)/(p− 1), which is the
proportion of non-zero residues mod p which are primitive roots.

Trivially, we have 0 < φ(p − 1)/(p − 1) ≤ 1/2. For any real numbers
x ≥ 2 and u, let

Dπ(x, u) =
1

π(x)

∑

p≤x
φ(p−1)/(p−1)≤u

1,

where π(x) is the number of primes up to x. In 1974, P. D. T. A. Elliott [2]
proved that the limit

lim
x→∞

Dπ(x, u) = Dπ(u)

exists for all real numbers u. The function Dπ(u) is continuous and is strictly
increasing on the interval [0, 1/2]. I. J. Schoenberg [12] had earlier con-
sidered the distribution problem for φ(n)/n. He proved the existence of
limx→∞ x−1∑

n≤x, φ(n)/n≤u 1 for any real number u, and the continuity of
the limit as a function of u.

The concept of primitive root modulo a prime can be generalized. This
was done by R. D. Carmichael [1]. He defined a “primitive λ-root modulo
n” as any integer coprime to n and having the maximal exponent modulo n.
Thus a primitive root for a prime p is a primitive λ-root modulo p. He also
found the following properties (see [1, 7]) of the maximal exponent modulo
n, denoted by λ(n):

(i) λ(pe) = φ(pe) for all primes p and e ≥ 1 except p = 2 and e > 2 in
which case we have λ(2e) = φ(2e)/2 = 2e−2.
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(ii) λ(n) = lcmpe‖n{λ(pe)}.
(iii) Let a be an integer coprime to n and let la(n) be the exponent of a

modulo n. Then la(n) |λ(n).

Thus, in this notation, an integer a coprime to n is a primitive λ-root
modulo n if and only if la(n) = λ(n). In [3] one can find results concerning
the size of the function λ(n).

Let R(n) be the number of primitive λ-roots modulo n in [1, n]. In this
paper we investigate the distribution of the values of R(n)/φ(n), in analogy
with that of φ(p− 1)/(p− 1) considered by Elliott. That is, if we define

D(x, u) =
1
x

∑

n≤x
R(n)/φ(n)≤u

1

for any real numbers x > 0 and u, what can we say about D(x, u)? In
particular, does limx→∞D(x, u) exist for all u?

Note that the fraction R(n)/φ(n) represents the proportion of residue
classes mod n that are primitive λ-roots to the total number of residue
classes coprime to n. We trivially have 0 < R(n)/φ(n) ≤ 1. That this
inequality is nearly best possible is contained in the following result.

Theorem 1. We have

lim
n→∞

R(n)/φ(n) = 1, lim
n→∞

R(n)/(φ(n)/ln lnn) = e−γ ,

where γ is Euler’s constant.

The function D(x, u) is only interesting for 0 < u < 1. Perhaps sur-
prisingly, we show that there are values of u ∈ (0, 1) where limx→∞D(x, u)
does not exist. To attack the question we wish we could take a more natural
approach, say by working with the first moment of R(n)/φ(n) or R(n)/n.
However these functions are not multiplicative as the function φ(n)/n is,
and thus the methods used by Elliott and Schoenberg do not appear to
work.

Thanks to Pomerance’s suggestion, we turn our attention to the first
moment of ln(R(n)/φ(n)) instead. Though this function is also not multi-
plicative, it can be approximated by a comparatively simple sum over prime
factors of λ(n). Adopting the notation lnk x, suggested by John Selfridge, for
the k-fold iteration of the natural logarithm of x, we will prove our principal
results as indicated in the next two theorems.

Theorem 2. The maximal order of the function

1
x

∑

n≤x
|ln(R(n)/φ(n))|
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is less than or equal to c ln5 x for some constant c > 0, and greater than or
equal to c′ ln6 x for another constant c′ > 0. On the other hand , the minimal
order of the function is less than or equal to a constant.

As a consequence of Theorem 2 we have

Theorem 3. There is a positive constant c and an unbounded set of
numbers x such that for each u in (0, 1), we have D(x, u) ≤ c/|lnu|. On
the other hand , there are positive constants δ, b and an unbounded set of
numbers x with D(x, (ln5 x)−b) ≥ δ. Thus for some positive constant u0,
limx→∞D(x, u) does not exist for all u with 0 < u < u0.

It follows immediately from Theorem 3 that the sequence of distribution
functions D(n, u) does not converge weakly. Suppose that it does. Let D(u)
be the distribution function to which D(n, u) converges weakly [4]. Then
D(u) is discontinuous in (0, u0) by Theorem 3, which contradicts the fact
that the set of discontinuities of D(u) is countable—a well-known property
of monotone functions.

In a forthcoming paper [8] we will prove, by a more complicated argu-
ment, that the constant δ in Theorem 3 can be taken as anything less than
1. This result will be shown to be relevant to the study of the integers n
for which a fixed integer a is a primitive λ-root, in analogy with Artin’s
conjecture for primes.

The author would like to take this opportunity to express his heartfelt
thanks to Carl Pomerance for patient advice concerning problems in this
paper and remarkable comments. Without Pomerance’s help this project
would not have survived. The author is indebted to Andrew Granville and
Vsevolod Lev for their suggestions. The author would also like to thank the
referee for a comment regarding Theorem 2.1.

2. The closed form for R(n) and a few properties of R(n).
Throughout this paper we always use p and q to represent primes and k, m,
n to represent natural numbers. We give an explicit formula for R(n) in the
next theorem, to which a different approach can be found in [9]. Then we
will study some deeper features of the function.

Theorem 2.1. Let ∆q(n) := #{prime p : pe ‖n and qv |λ(pe)} for a
prime q with qv ‖λ(n), except the case 23 ‖n and 2 ‖λ(n), when ∆2(n) :=
1 + #{prime p : p |n}. Then

R(n) = φ(n)
∏

q|λ(n)

(
1− 1

q∆q(n)

)
.

P r o o f. For any integer m ≥ 1 let N(m) be the number of elements
of order m in (Z/nZ)∗. We claim that N(m) is a multiplicative function.
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Suppose (k, l) = 1. Clearly the product of two elements, of orders k and
l respectively, has order kl. Conversely, every element of order kl can be
written uniquely as a product of an element of order k and an element of
order l. Thus N(kl) = N(k)N(l).

As a consequence we haveN(λ(n)) =
∏
qv‖λ(n)N(qv). To compute N(qv)

it is convenient to factor (Z/nZ)∗ into a direct sum of cyclic groups.
Let Cm denote a cyclic group of order m. Let n = pe11 . . . perr · 2e where

p1, . . . , pr are distinct odd primes and e1, . . . , er are positive integers. By
the Chinese remainder theorem we have

(Z/nZ)∗ ∼= Cλ(pe11 ) ⊕ . . .⊕ Cλ(perr ) ⊕ (Z/2eZ)∗.

If e = 0 the last summand drops off. Otherwise

(Z/2eZ)∗ ∼=
{
Cλ(2e) if e = 1 or 2,
Cλ(2e) ⊕ C2 if e ≥ 3.

We have factored (Z/nZ)∗ into a direct sum of r + r′ cyclic groups, where
r′ = 0, 1 or 2. Let ni be the order of the ith summand, so that

(Z/nZ)∗ ∼= Cn1 ⊕ Cn2 ⊕ . . .⊕ Cnr+r′ .
The number of solutions to xm = 1 in Ck is (m, k), so the number

of solutions to xq
v

= 1 in (Z/nZ)∗ is given by
∏r+r′

i=1 (qv, ni). Similarly

xq
v−1

= 1 has
∏r+r′

i=1 (qv−1, ni) solutions in (Z/nZ)∗. Thus

N(qv) =
r+r′∏

i=1

(qv, ni)−
r+r′∏

i=1

(qv−1, ni).

Note that the second product is q−∆q(n) times the first product, since

(qv−1, ni) =
{

(qv, ni) if qv -ni,
q−1(qv, ni) if qv |ni.

Thus, N(qv) = (1− q−∆q(n))
∏r+r′

i=1 (qv, ni) and so

N(λ(n)) =
∏

qv‖λ(n)

N(qv) =
∏

q|λ(n)

(
1− 1

q∆q(n)

)
·
∏

qv‖λ(n)

r+r′∏

i=1

(qv, ni).

But for the double product we have

∏

qv‖λ(n)

r+r′∏

i=1

(qv, ni) =
r+r′∏

i=1

∏

qv‖λ(n)

(qv, ni) =
r+r′∏

i=1

(λ(n), ni) =
r+r′∏

i=1

ni = φ(n),

which completes the proof.

We note that ∆q(n) ≥ 0 and equality holds if and only if λ(n) is not
divisible by q. Let us define the function r(n) := R(n)/φ(n). Then r(n) =
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∏
prime q(1 − 1/q∆q(n)). The word “prime” will be suppressed as we always

use q to denote a prime. We now prove Theorem 1 in the introduction.

Proof of Theorem 1. It is trivial that r(n) ≤ 1. Let us prove that
limn→∞r(n) = 1. Let x be any large number and ε be a small positive
constant. Let B = {primes p ≤ x : gcd(p− 1, P (xε)) = 1 and p ≡ 3 mod 4},
where P (z) =

∏
2<p≤z p for any z. Then there is a positive constant δ such

that for all sufficiently large x we have

#B ≥ δ x

(lnx)2 .

This result can be obtained by applying Theorem 7.4 of [5] to sieve the set
A = {p − 1 : p ≤ x and p ≡ 3 mod 4} with the set P = {primes p > 2},
taking κ = 1, α = 1/2 and z = xε. Here we can choose any ε < 1/4.

If p ∈ B and q is a prime factor of p− 1 other than 2, then q > xε. But
p ≤ x. Thus p− 1 has at most 1/ε odd prime factors, counting multiplicity.
Choose [lnx] such primes pi ∈ B, i = 1, . . . , [lnx]. Let nx =

∏[ln x]
i=1 pi. Then

by definition of r(n),

r(nx) =
∏

q|λ(nx)

(
1− 1

q∆q(nx)

)
≥
(

1− 1
2[ln x]

)(
1− 1

xε

)[ln x]/ε

,

which has limit 1 as x goes to infinity. Thus we proved limn→∞r(n) = 1.
To see the lower bound, first note that

r(n) ≥
∏

q|λ(n)

(
1− 1

q

)
≥

∏

q≤N(n)

(
1− 1

q

)
,

where N(n) is chosen to be the least number such that the product of the
primes up to N(n) is greater than or equal to λ(n). From prime number
theory, N(n) = (1 + o(1)) lnλ(n) ≤ (1 + o(1)) lnn. Thus, from Mertens’
theorem, r(n) ≥ (e−γ + o(1))/ln2 n.

We claim this inequality is sharp. For any given large x let m =
∏
q≤ln x q.

Then from prime number theory again, we have lnm ∼ lnx. Thus x1/2 ≤
m ≤ x2 if x is sufficiently large. By Linnik’s theorem, there is a prime p
such that p ≡ 1 mod m and p ≤ mc for some absolute constant c. With this
choice of p we have x1/2 ≤ p ≤ x2c. Thus by Mertens’ theorem,

r(p) =
∏

q|p−1

(
1− 1

q

)
≤
∏

q≤ln x

(
1− 1

q

)
=

1 + o(1)
eγ ln2 x

=
1 + o(1)
eγ ln2 p

.

Send x to infinity to see that there are infinitely many such primes. So we
proved our claim and our theorem.
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Our goal is to study the distribution of values of the function r(n). As
we noted before, we can write

r(n) =
∏
q

(
1− 1

q∆q(n)

)
= exp

(
−

∑

q:∆q(n)=1

1
q

+O(1)
)
,

where the O(1) is less than or equal to zero. It is convenient to introduce
the function

f(n) :=
∑

q:∆q(n)=1

1
q
.

Thus, r(n) ≤ e−f(n) ≤ cr(n) for an absolute constant c ≥ 1. We see that
the distribution of values of r(n) is dominated by its counterpart of f(n). It
is important to understand the behavior of the function f(n). Our strategy
is to study the first moment of f(n), the sum

∑
n≤x f(n). We note that

(1)
∑

n≤x
f(n) =

∑

n≤x

∑

q:∆q(n)=1

1
q

=
∑

q≤x

1
q

∑

n≤x
∆q(n)=1

1,

where q ≤ x because ∆q(n) = 1 implies that q |λ(n) ≤ n. We close this
section by showing that the contribution to this sum from the terms with
q > ln2 x is negligible.

Theorem 2.2. As x→∞,

∑

n≤x

∑

q|λ(n)
q>ln2 x

1
q

= O

(
x

ln3 x

)
.

Let us mention the following lemma before proving Theorem 2.2.

Lemma 2.3 (see [10, 11]). For any integer k ≥ 2 and any x ≥ 2,

∑

p≤x
p≡1 mod k

1
p

=
ln2 x

φ(k)
+O

(
ln k
φ(k)

)

where the implied constant is uniform.

P r o o f (of Theorem 2.2). Notice that for a prime q |λ(n), either q2 |n
or q | p− 1 for some prime p |n. Note that

∑

q>ln2 x

1
q

∑

n≤x
q2|n

1 ≤ x
∑

q>ln2 x

1
q3 �

x

(ln2 x)2 ln3 x
.
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Thus

(2)
∑

n≤x

∑

q|λ(n)
q>ln2 x

1
q

=
∑

ln2 x<q≤x

1
q

∑

p≤x
p≡1 mod q

∑

n≤x
p|n

1 +O

(
x

ln2
2 x

)
.

We have
∑
q>y

1
q2 =

1
y ln y

(1 + o(1)) and
∑
q>y

ln q
q2 =

1
y

(1 + o(1)).

Using these facts and Lemma 2.3 we have
∑

q>ln2 x

1
q

∑

p≤x
p≡1 mod q

∑

n≤x
p|n

1 ≤ x
∑

q>ln2 x

1
q

∑

p≤x
p≡1 mod q

1
p

= x
∑

q>ln2 x

1
q

(
ln2 x

q − 1
+O

(
ln q
q − 1

))
= O

(
x

ln3 x

)
.

Our theorem follows by substituting the above estimate in (2).

3. The first moment of f(n). When q ≤ ln2 x the inner sum of (1)
has the following bounds.

Theorem 3.1. There exist positive constants c1 and c2 so that , for all
large numbers x and any prime q ≤ ln2 x, we have

c2x

q1−{ln3 x/ln q} ≤
∑

n≤x
∆q(n)=1

1 ≤ c1x

q‖ln3 x/ln q‖ ,

where {y} denotes the fractional part of the real number y and ‖y‖ the
minimal distance from y to the integers, that is, ‖y‖ = minn∈Z{|y − n|}.

Before proving Theorem 3.1 let us look at its consequences.

Theorem 3.2. For the positive constant c1 in Theorem 3.1 we have
∑

n≤x
f(n) ≤ 2c1x

∑

q≤ln2 x

1
q1+‖ln3 x/ln q‖

for all large x.

P r o o f. The theorem follows immediately by combining Theorems 2.2
and 3.1, and the observation that 21+‖ln3 x/ln 2‖ ≤ 2

√
2 in (1).

Although we can bound the first moment of f(n) from below in a similar
way, we are not able to use these estimates to get the correct order of
magnitude. We would need this to show there are many values of n for
which f(n) is large. We get around this problem by introducing a smaller
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function f̃(n) for which we are able to find the correct order of magnitude
for its average order. Let

f̃(n) :=





∑

q≤ln4 n,∆q(n)=1

1
q

if n > ee,

0 otherwise.

Note that every term in the sum for f̃(n) is also in the sum for f(n), so
f(n) ≥ f̃(n). For the new function we have

Theorem 3.3. For the positive constant c2 in Theorem 3.1,
∑

n≤x
f̃(n) ≥ 1

2
c2x

∑

q≤ln4 x

1
q2−{ln3 x/ln q}

for all large x.

P r o o f. The proof follows almost immediately from Theorem 3.1. One
just needs to check that the contribution from pairs n, q with ln4 n < q ≤
ln4 x is negligible.

Let us turn to the proof of Theorem 3.1. We need some preparations.

Lemma 3.4. We have
∑

n≤x
∆q(n)=1

1 =
∑

k≥1

∑

p≤x1/2

qk‖p−1

∑

m≤x/p
(m,P

qk
(x/p))=1

1 +O

(
x ln q
q

)
,

where the error is non-negative.

P r o o f. We will work out the above formula for
∑
n≤x,∆q(n)=1 1 in such

a way that detailed explanations for the formulae marked by numbers to
their left are supplied in the subsequent discussion:∑

n≤x
∆q(n)=1

1 =
∑

k≥1

∑

n≤x
qk‖λ(n)
∆q(n)=1

1

=
∑

k≥1

∑

p≤x
qk‖p−1

∑

r≥1

∑

m≤x/pr
(m,P

qk
(x/pr))=1

1 +O

(
x

q2

)
(3)

=
∑

k≥1

∑

p≤x
qk‖p−1

∑

m≤x/p
(m,P

qk
(x/p))=1

1 +O

(
x

q2

)
(4)

=
∑

k≥1

∑

p≤x1/2

qk‖p−1

∑

m≤x/p
(m,P

qk
(x/p))=1

1 +O

(
x ln q
q

)
.(5)
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To see why the equality of (3) is true, let us first notice that qk ‖λ(n) implies
either qk+1 |n or qk ‖ p− 1 for some prime p |n. Since the 4-fold sum in (3)
counts the exact number of the positive integers n ≤ x with ∆q(n) = 1 and
a prime factor p for which qk ‖ p− 1 where qk ‖λ(n), the difference between
this 4-fold sum in (3) and the sum just before it is bounded by

∑

n≤x
q2|n

1 ≤ x

q2 .

The difference between the 4-fold sum in (3) and the sum in (4) is

≤
∑

k≥1

∑

p≤x
qk‖p−1

∑

r≥2

x

pr
� x

∑

k≥1

∑

p≤x
qk‖p−1

1
p2 � x

∑

k≥1

1
q2k =

x

q2 − 1
.

By Lemma 2.3, the difference between the sum in (4) and the sum in (5) is
bounded by

∑

k≥1

∑

x1/2<p≤x
qk‖p−1

x

p
= x

∑

k≥1

(
ln2 x− ln2 x

1/2

qk
+O

(
k ln q
qk

))
� x ln q

q
.

It is easy to notice that the errors in (3), (4) and (5) are all non-negative.
Therefore we proved Lemma 3.4.

For the sake of convenience we introduce a few notations of sieve meth-
ods. Let A be the set of positive integers up to x. Let Pqk be the set of
primes congruent to 1 modulo qk. Let

Pqk(z) :=
∏

p≤z
p≡1 mod qk

p for any z ≤ x.

Then

S(A,Pqk , y) :=
∑

n∈A
(n, P

qk
(y))=1

1 and W (z) :=
∏

p≤z
p∈P

qk

(
1− 1

p

)
.

Lemma 3.5. (i) With the notations introduced above we have

S(A,Pqk , x)� xW (x)

uniformly for all q, k and x.
(ii) Let z = exp(lnx/ln2 x). As x→∞ we have

S(A,Pqk , z) = x

(
1 +O

(
1

lnx

))
W (z)

uniformly for all q and k.
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P r o o f. See Theorems 2.2 and 7.2 in [5].

Lemma 3.6. There are absolute positive constants c and x0 so that

S(A,Pqk , x) ≥ cx,
provided that qk ≥ ln2 x and x ≥ x0.

P r o o f. Let z = exp(lnx/ln2 x). Write

S(A,Pqk , x) = S(A,Pqk , z)− E
where E is the number of positive integers n ≤ x such that gcd(n, Pqk(z))
= 1 and gcd(n, Pqk(x)/Pqk(z)) > 1. Then by the condition qk ≥ ln2 x and
Lemma 2.3,

E ≤
∑

z<p≤x
p∈P

qk

∑

n≤x
p|n

1 ≤
∑

z<p≤x
p∈P

qk

x

p

= x

(
ln2 x− ln2 z

qk(1− 1/q)
+O

(
k ln q
qk

))
= O

(
x ln3 x

ln2 x

)
,

where the implied constant is independent of q and k. By Lemma 3.5(ii) we
have

S(A,Pqk , z) = xW (z)(1 + o(1))

uniformly as x→∞, where

W (z) =
∏

p≤z
p∈P

qk

(
1− 1

p

)
= exp

(
−
∑

p≤z
p∈P

qk

1
p

+O

(
1
qk

))

= exp
(
− ln2 z

qk(1− q−1)
+O

(
k ln q
qk

))
,

by Lemma 2.3 again. But ln2 z = ln2 x−ln3 x and qk ≥ ln2 x. ThusW (z) ≥ c′
for some constant c′ > 0 independent of q and k. Therefore, if x is sufficiently
large,

S(A,Pqk , x) ≥ c′x (1 + o(1))− o(x) ≥ cx
for some constant c with 0 < c < c′. This ends the proof.

Proof of Theorem 3.1. First we will show that
∑

n≤x
∆q(n)=1

1 ≤ c1x

q‖ln3 x/ln q‖

for some positive constant c1. First we claim that
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(6)
∑

n≤x
∆q(n)=1

1� x
∑

k≥1

ln2 x

qk
exp

(
− ln2 x

qk−1(q − 1)

)
+O

(
x ln q
q

)
.

To see this let us look at the innermost sum in Lemma 3.4. Noting that
p ≤ x1/2, by Lemma 3.5 and Lemma 2.3, we have

∑

m≤x/p
(m,P

qk
(x/p))=1

1

� x

p

∏

prime l≤x/p
l≡1 mod qk

(
1− 1

l

)
=
x

p
exp
(
−

∑

l≤x/p
l≡1 mod qk

1
l

+O

(
1
q2k

))

=
x

p
exp
(
− ln2(x/p)
qk−1(q − 1)

+O

(
k ln q
qk

))
� x

p
exp
(
− ln2 x

qk−1(q − 1)

)
,

uniformly in q and p. Now put this result into the sum in Lemma 3.4 and
use Lemma 2.3 again to find that
∑

n≤x
∆q(n)=1

1

� x
∑

k≥1

(
ln2 x

1/2

qk
+O

(
k ln q
qk

))
exp
(
− ln2 x

qk−1(q − 1)

)
+O

(
x ln q
q

)
.

Since
∑
k≥1 k ln q/qk = O(ln q/q), we have (6).

Next we divide the sum on the right side of (6) into two sums, according
to whether qk > ln2 x or qk ≤ ln2 x. Let M be the minimal integer so
that qM > ln2 x. Then M = ln3 x/ln q − {ln3 x/ln q} + 1, which equals
[ln3 x/ln q] + 1. Then

∑

qk>ln2 x

ln2 x

qk
exp
(
− ln2 x

qk(1− 1/q)

)

≤
∑

qk>ln2 x

ln2 x

qk
=

ln2 x

qM (1− 1/q)
≤ 2 ln2 x

qM
=

2
q1−{ln3 x/ln q} .

Let L be the maximal integer so that qL ≤ ln2 x. Then

L =
[

ln3 x

ln q

]
=

ln3 x

ln q
−
{

ln3 x

ln q

}
.

Noting that k ≥ 1, we have
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∑

qk≤ln2 x

ln2 x

qk
exp
(
− ln2 x

qk(1− 1/q)

)
≤

∑

qk≤ln2 x

ln2 x

qk

1
2!

(
ln2 x

qk(1− 1/q)

)2

=
2(q − 1)
q ln2 x

(qL − 1) <
2qL

ln2 x

=
2

q{ln3 x/ln q} .

Put these results back in (6). We have
∑

n≤x
∆q(n)=1

1� x

q‖ln3 x/ln q‖ +O

(
x ln q
q

)
� x

q‖ln3 x/ln q‖ ,

since ‖ln3 x/ln q‖ ≤ 1/2. Thus we proved one half of Theorem 3.1.
Secondly we will prove that

∑

n≤x
∆q(n)=1

1 ≥ c2x

q1−{ln3 x/ln q}

for some positive constant c2 independent of q. By Lemma 3.4, noting that
the error in it is non-negative, we have

∑

n≤x
∆q(n)=1

1 ≥
∑

kwith
qk>ln2 x

∑

p≤x1/2

qk‖p−1

∑

m≤x/p
(m,P

qk
(x/p))=1

1

≥
∑

kwith
qk>ln2 x

∑

p≤x1/2

qk‖p−1

c
x

p
(7)

= cx
∑

kwith
qk>ln2 x

(
ln2 x

1/2

qk
+O

(
k ln q
qk

))
(8)

≥ cx
(

ln2 x

qM
+O

(
M ln q
qM

))
,(9)

where M is the smallest integer so that qM > ln2 x. We obtain (7) and (8)
by using Lemmas 3.6 and 2.3, respectively. So what is left to be explained
is (9). Notice that the sum in (8) can be written as

∑

k≥M

ln2 x

qk
+O

( ∑

k≥M

k ln q
qk

)
,

so that (9) follows.
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Since M = ln3 x/ln q − {ln3 x/ln q}+ 1 and q ≤ ln2 x, we have

M ln q
qM

� (ln3 x/ln q) ln q
qln3 x/ln q−{ln3 x/ln q}+1

=
ln3 x

ln2 x
q{ln3 x/ln q}−1.

Therefore, choosing c2 = c/2, we have
∑

n≤x
∆q(n)=1

1 ≥ cx
(

ln2 x

qM
+O

(
M ln q
qM

))

= cxq{ln3 x/ln q}−1(1 + o(1)) ≥ c2xq{ln3 x/ln q}−1,

for x sufficiently large. We have proved Theorem 3.1.

4. Two crucial series. As one can see from Theorems 3.2 and 3.3, it
is necessary to understand the series

∑

q≤T

1
q1+‖lnT/ln q‖ and

∑

q≤ln2 T

1
q2−{lnT/ln q}

in the course of estimating the first moments of f(n) and f̃(n). This section
is dedicated to the study of some features of the two series.

Theorem 4.1. For T ≥ eee , we have
∑

q≤T

1
q1+‖lnT/ln q‖ � ln3 T.

First let us mention the following well known fact in prime number the-
ory.

Lemma 4.2. For all x ≥ 2,
∑

p≤x

1
p

= ln lnx+ c3 +O(exp(−c4 (lnx)1/2)),

where c3 and c4 > 0 are constants.

P r o o f (of Theorem 4.1). Write the series as the sum of s1 and s2 as
follows: ∑

q≤Q

1
q1+‖lnT/ln q‖ +

∑

Q<q≤T

1
q1+‖lnT/ln q‖ = s1 + s2,

where Q will be determined later. We will use the trivial estimate s1 =
O(ln2Q). For s2, let us write

s2 =
∑

Q<q≤T
‖lnT/ln q‖>lnA/ln q

1
q1+‖lnT/ln q‖ +

∑

Q<q≤T
‖lnT/ln q‖≤lnA/ln q

1
q1+‖lnT/ln q‖

= s
(1)
2 + s

(2)
2 ,
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where A > e will be chosen so that lnA/lnQ < 1/2 but the exact value for
A will be determined later. Clearly s(1)

2 = O
( ln2 T

A

)
while

s
(2)
2 =

∑

Q<q≤T
|k−lnT/ln q|≤lnA/ln q

1
q1+|k−lnT/ln q| ,

where there is at most one integer k ≥ 1 for each prime q as our A satisfies
lnA/lnQ < 1/2. Thus, by Lemma 4.2,

s
(2)
2 ≤

∑

k≤(lnT+lnA)/lnQ

∑

(T/A)1/k≤q≤(AT )1/k

1
q

=
∑

k≤(lnT+lnA)/lnQ

(
ln2(AT )1/k−ln2

(
T

A

)1/k

+O
(

exp
(
−c4
√

1
k

ln
T

A

)))
.

Since lnA/lnQ < 1/2 and Q ≤ T , we have lnA/lnT < 1/2, so that

ln2(AT )1/k − ln2

(
T

A

)1/k

= ln
lnT + lnA
lnT − lnA

= ln
(

1 +
2 lnA

lnT − lnA

)

< ln
(

1 +
4 lnA
lnT

)
<

4 lnA
lnT

and
1
k

ln
T

A
≥ lnT − lnA

lnT + lnA
lnQ ≥ lnQ

3
.

Hence

s
(2)
2 ≤ lnT + lnA

lnQ

(
4 lnA
lnT

+O

(
exp

(
− c4√

3
(lnQ)1/2

)))
.

Now choose Q so that lnQ = (3/c24)(ln2 T )2, and choose A = (ln2 T )2. If T
is sufficiently large, we have Q ≤ T and lnA/lnQ < 1/2. We thus have

s
(2)
2 ≤ lnT + lnA

lnQ

(
4 lnA
lnT

+O

(
1

lnT

))
= O

(
ln3 T

(ln2 T )2

)
.

At the same time,

s
(1)
2 = O

(
ln2 T

A

)
= O

(
1

ln2 T

)
and so s2 = O

(
1

ln2 T

)
.

Then
∑

q≤T

1
q1+‖lnT/ln q‖ = s1 + s2 = O(ln2Q) = O(ln3 T ).

This concludes the proof of Theorem 4.1.
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Theorem 4.1 gives us an upper bound for the series mentioned at the
beginning of the section. Next let us investigate the normal value of the
series.

We note that
∑

q≤T

1
q1+‖lnT/ln q‖ =

∑

q≤T
‖lnT/ln q‖<ln2 q/ln q

1
q1+‖lnT/ln q‖

+
∑

q≤T
‖lnT/ln q‖≥ln2 q/ln q

1
q1+‖lnT/ln q‖

≤
∑

q≤T
‖lnT/ln q‖<ln2 q/ln q

1
q

+
∑

q≤T
‖lnT/ln q‖≥ln2 q/ln q

1
q ln q

=
∑

q≤T
‖lnT/ln q‖<ln2 q/ln q

1
q

+O(1)

where the last equality follows from the fact that
∑

1/(p ln p) < ∞, p run-
ning over primes. This suggests considering the average value of the following
function. Let us define

g(t) :=
∑

q≤et
‖t/ln q‖<ln2 q/ln q

1
q

for all t ≥ 0. Thus the above argument shows that

(10)
∑

q≤et

1
q1+‖t/ln q‖ ≤ g(t) +O(1).

Lemma 4.3. There is a positive constant c5 so that , for all y > 0,
[y]∑

k=1

g(k) ≤ c5y.

P r o o f. By definition,
[y]∑

k=1

g(k) =
∑

1≤k≤y

∑

q≤ek
‖k/ln q‖<ln2 q/ln q

1
q
≤
∑

q≤ey

1
q

∑

1≤k≤y
‖k/ln q‖<ln2 q/ln q

1.

Since ln2 q/ln q < 1/2, if ‖k/ln q‖ < ln2 q/ln q then there is a unique integer
l with

l − ln2 q

ln q
<

k

ln q
< l +

ln2 q

ln q
.
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For the fixed integer l there are at most 2 ln2 q + 1 integers k so that∥∥∥∥
k

ln q

∥∥∥∥ =
∣∣∣∣
k

ln q
− l
∣∣∣∣ <

ln2 q

ln q
.

Therefore
[y]∑

k=1

g(k) ≤
∑

q≤ey

1
q

dy/ln qe∑

l=0

(2 ln2 q + 1)� y
∑

q≤ey

ln2 q

q ln q
� y,

as the last sum is bounded. Thus we proved Lemma 4.3.

Theorem 4.4. There is a positive number c6 so that , for all y ≥ 1,
[y]∑

k=1

∑

q≤ek

1
q1+‖k/ln q‖ ≤ c6y.

P r o o f. This follows from (10) and Lemma 4.3.

Definition. Let S be a set of natural numbers. If limx→∞ 1/x#{n ≤ x :
n ∈ S} exists, we call it the density of S. Otherwise we call the corresponding
upper or lower limit the upper or lower density of S, respectively.

As a corollary of Theorem 4.4 we have

Theorem 4.5. Let c6 be the same constant as in Theorem 4.4, and let
b > c6 be any number. Then the set Sb of k ∈ N with

∑

q≤ek

1
q1+‖k/ln q‖ ≤ b

has positive upper density.

P r o o f. Suppose that Sb has density zero. Then N \ Sb has density one.
On the other hand, for any y > 0,

∑

k≤y

∑

q≤ek

1
q1+‖k/ln q‖ ≥ b

∑

k≤y
k 6∈Sb

1.

Then by Theorem 4.4, we have

c6 ≥ b 1
y

∑

k≤y
k 6∈Sb

1.

Send y to infinity, we have c6 ≥ b, a contradiction. Therefore Sb has positive
upper density. We are done.

In the rest of the section we will consider the second series mentioned at
the beginning of this section. Our attention will focus on how big the series
could be when T is large. The next lemma is an elementary result.
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Lemma 4.6. If q ≥ 5 and ‖ln 2T/ln q‖ < ln 2/ln q, then
1

q2−{lnT/ln q} ≥
1
4q
.

For a given T let Q be the largest prime less than or equal to ln2 T such
that all primes q with 5 ≤ q ≤ Q satisfy∥∥∥∥

ln 2T
ln q

∥∥∥∥ ≤
ln 2
ln q

.

We want to know how large Q can be as a function of T . By the following
result on simultaneous Diophantine approximation we can say something
about this question.

Lemma 4.7. Let ξ1, . . . , ξl be any l real numbers. Then, for any integer
N > 1, there exists a positive integer m ≤ N l such that ‖mξi‖ < 1/N for
all i = 1, . . . , l.

P r o o f. See the proof of Theorem 200 in [6].

Let Q be any large prime. Consider the l irrationals 1/ln 5, 1/ln 7, . . . ,
1/lnQ where l = π(Q)− 2. Let N = dlnQ/ln 2e. Then by Lemma 4.7 there
exists an integer m, 1 ≤ m ≤ N l, so that every prime q with 5 ≤ q ≤ Q
satisfies ‖m/ln q‖ < 1/N ≤ ln 2/lnQ. Since ‖m/ln 5‖ < ln 2/lnQ and ln 5 is
irrational it follows that m = m(Q)→∞ as Q→∞.

By the definition of N we have N = (lnQ/ln 2) +O(1) when Q is suffi-
ciently large. But l = π(Q)−2, so for Q sufficiently large by the prime num-
ber theorem we have Q > l lnN ≥ lnm. Now choose T such that 2T = em.
Clearly m > lnT . Thus Q > ln2 T . With this choice of T all primes q with
5 ≤ q ≤ ln2 T satisfy ‖ln 2T/ln q‖ < ln 2/ln q. Thus by Lemma 4.6,

∑

q≤ln2 T

1
q2−{lnT/ln q} ≥

∑

5≤q≤ln2 T
‖ln 2T/ln q‖<ln 2/ln q

1
q2−{lnT/ln q}

≥
∑

5≤q≤ln2 T

1
4q

=
ln4 T

4
+O(1).

Therefore we have proved the following theorem.

Theorem 4.8. There is an unbounded set of numbers T for which
∑

q≤ln2 T

1
q2−{lnT/ln q} ≥

1
5

ln4 T.

5. Proofs of Theorems 2 and 3. Recall the function r(n) = R(n)/φ(n)
from Section 2. We can restate Theorem 2 in the following form. These
estimates are also bounds for the first moment of f(n) and that of f̃(n).
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Theorem 5.1. There exist positive constants c7, c8 and c9 so that

(i) for all sufficiently large x we have
∑

n≤x
|ln r(n)| ≤ c7x ln5 x;

(ii) there is an unbounded set of numbers x for which
∑

n≤x
|ln r(n)| ≥ c8x ln6 x;

(iii) there is an unbounded set of numbers x for which
∑

n≤x
|ln r(n)| ≤ c9x.

P r o o f. By the definition of f(n) in Section 2 we have f(n) = − ln r(n)+
O(1), where the O(1) is non-positive. Since 0 < r(n) ≤ 1, we have

∑

n≤x
f(n) =

∑

n≤x
|ln r(n)|+O(x),

where the O(x) is non-positive. Noticing that f(n) ≥ f̃(n), we can get
Theorem 5.1 by applying Theorems 3.2, 3.3, 4.1, 4.5 and 4.8.

Corollary 5.2. Let c9 be the constant in Theorem 5.1. There is an
unbounded set of numbers x such that

D(x, u) ≤ c9/|lnu|
for all u with 0 < u < 1.

P r o o f. By definition,
∑

n≤x
r(n)≤u

|ln r(n)| ≥ x|lnu|D(x, u)

for all u with 0 < u < 1. Thus, the corollary follows from Theorem 5.1(iii).

Corollary 5.3. There is a positive constant c10 with the property that ,
for any positive constant b < c10, the set Sb = {n ∈ N : r(n) ≤ (ln5 n)−b}
has positive upper density.

Consider the set

S ′b = {n ∈ N : f̃(n) ≥ b ln6 n}.
Since ln r(n) = −f(n) +O(1) with the O(1) being non-positive and f(n) ≤
f̃(n), we have S ′b ⊆ Sb. It is enough to show that there is a constant c10

such that, for all b with 0 < b < c10, S ′b has a positive upper density.
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From the definition of f̃(n) we trivially have f̃(n) ≤ 2 ln6 n when n is
large enough. Thus we have, for x sufficiently large,

∑

n≤x
f̃(n) =

∑

n≤x
n6∈S′b

f̃(n) +
∑

n≤x
n∈S′b

f̃(n) ≤
∑

n≤x
n 6∈S′b

b ln6 x+ 2 ln6 x
∑

n≤x
n∈S′b

1.

On the other hand, we choose c10 = c2/10 where c2 is the constant in
Theorem 3.1. Then, by Theorems 3.3 and 4.8, there exists an unbounded
set of real numbers x for which∑

n≤x
f̃(n) ≥ c10x ln6 x.

Let b be any constant with 0 < b < c10. Then combining the above we have
for such numbers x,

c10 ≤ b

x

∑

n≤x
n6∈S′b

1 +
2
x

∑

n≤x
n∈S′b

1 ≤ b+
2
x

∑

n≤x
n∈S′b

1.

Thus the upper density of S ′b is at least (c10 − b)/2, which is positive. Thus
we have proved the corollary.

Corollary 5.4. There exist positive constants δ, b and an unbounded
set of numbers x with D(x, (ln5 x)−b) ≥ δ.

P r o o f. This follows immediately from the definition of D(x, u) and from
Corollary 5.3.

Theorem 5.5. There exists a positive number u0 such that , for each
u ∈ (0, u0), the function D(x, u) does not have a limit as x→∞. Thus the
function r(n) does not have distribution function.

P r o o f. This is a corollary of Corollaries 5.2 and 5.4.

Note that Theorem 3 in the introduction follows from Corollaries 5.2,
5.4 and Theorem 5.5.
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