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On two problems of Mordell about exponential sums

by

Hong Bing Yu (Hefei)

1. Introduction. In his last papers, Mordell ([2, 3]) considered a new
type of exponential sums and propounded several interesting problems, two
of which we shall discuss in the present note.

Throughout, p is an odd prime, g (and g1) are primitive roots mod p,
1 ≤ X ≤ p− 1, and er(x) = exp(2πix/r) as usual.

The first problem suggested by Mordell (see [2]) is to estimate

(1) S1 =
X∑
x=1

ep(ax+ bgx + cgx1 ), abc 6≡ 0 (mod p),

which is an associated exponential sum of

(2) S0 =
X∑
x=1

ep(ax+ bgx), ab 6≡ 0 (mod p).

In [2] Mordell proved that

|S0| ≤ 2
√
p log p+ 2

√
p+ 1;

he also remarked that the method he used does not appear to be applicable
to S1. We shall prove

Theorem 1. Let d = min(indg g1, indg1 g), d > 1. Then

|S1| ≤ d1/4p3/4(2 log p+ 3).

The second problem relates to

(3) Sn(X, b) =
X∑
x=1

ep(bx+ fn(gx)),

where b 6≡ 0 (mod p), and

(4) fn(x) = anx
n + . . .+ a1x ∈ Z[x], an 6≡ 0 (mod p), n < p.
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Mordell [3] proved, by using an elementary argument, that

(5) |Sn(p− 1, b)| � p1−1/(2n)

where the implied constant depends only on n. Further he asked whether 1/2
is the best possible value of the exponent in (5). The following Theorem 2
answers this question affirmatively.

Theorem 2. We have

(6) |Sn(X, b)| ≤ n√p (2 log p+ 3);

and , for X > 8n2 log2 p,

(7) max
1≤b≤p−1

|Sn(X, b)| ≥
√
X/2.

Theorem 2 is easily generalized. We have

Theorem 3. Let fn(x) be as in (4), and let

hm(x) = bmx
m + . . .+ b1x ∈ Z[x], bm 6≡ 0 (mod p), m < p.

Write

(8) Sm,n(X) =
X∑
x=1

ep(hm(x) + fn(gx)).

Then

|Sm,n(X)| ≤ 4p1−1/2m(n log p)1/2m−1
.

By Theorem 3, (13) (below) and Weyl’s criterion we immediately have
the following result, which may be of independent interest.

Corollary. For any fixed fn(x) satisfying (4) and an arbitrary hm(x) ∈
Z[x], the numbers hm(x) + fn(gx) are uniformly distributed modulo p for
1 ≤ x ≤ p, when p is sufficiently large.

It should be mentioned here that, in different contexts, the exponential
sums (8) (and hence (1), (2) and (3)) have been generalized by Niederreiter
(see Lidl and Niederreiter [1, Chapter 8, §7]). However, his results do not
imply ours.

2. The proof of Theorems 1 and 2. To prove Theorem 1 we need
the following lemma.

Lemma 1. Let χ be a Dirichlet character (mod p), b, c and d be integers
with bc 6≡ 0 (mod p), d > 1 and (p− 1, d) = 1. Write

Sχ(b, c) =
p−1∑
x=1

χ(x)ep(bx+ cxd).
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Then
|Sχ(b, c)| ≤ d1/4p3/4.

P r o o f. This can be proved by a well-known method due to Mordell. It
is easily seen that

(9)
p−1∑
u=0

p−1∑
v=0

|Sχ(u, v)|4 ≤ p2
p−1∑
s=0

p−1∑
t=0

N2(s, t),

where N(s, t) denotes the number of solutions of the congruences{
x+ y ≡ s (mod p),
xd + yd ≡ t (mod p).

Since d is odd, it follows that N(0, 0) = p, N(s, t) = 0 when only one of s, t
is zero and N(s, t) ≤ d− 1 when st 6= 0. Hence the right hand side of (9) is

≤ p2
(
N2(0, 0) + (d− 1)

p−1∑
s,t=1

N(s, t)
)

≤ p2(p2 + (d− 1)(p− 1)(p− 2)) ≤ p3(p− 1)d.

On the other hand, for any k 6≡ 0 (mod p), we have |Sχ(b, c)| = |Sχ(bk, ckd)|.
Also, for given u, v, the congruences{

bk ≡ u (mod p),
ckd ≡ v (mod p),

have at most one solution in k. Hence

|Sχ(b, c)|4 =
1

p− 1

p−1∑

k=1

|Sχ(bk, ckd)|4 ≤ 1
p− 1

p−1∑
u=0

p−1∑
v=0

|Sχ(u, v)|4 ≤ p3d,

as required.

Proof of Theorem 1. We may assume without loss of generality that
d = indg g1. By the finite Fourier expansion of ep(bgx + cgdx), we have, for
x = 1, . . . , X,

(10) ep(bgx + cgdx) =
p−1∑

k=1

ckep−1(kx),

where the Fourier coefficients ck are given by the formula

ck =
1

p− 1

p−1∑
y=1

ep(bgy + cgdy)ep−1(−ky), k = 1, . . . , p− 1.

By Lemma 1 (setting χ(x) = ep−1(−k indg x) and d = indg g1) we have

(11) |ck| ≤ 1
p− 1

d1/4p3/4 for k = 1, . . . , p− 1.
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Thus, by (1) and (10) (noting that gx1 ≡ gdx (mod p)), we get

S1 =
X∑
x=1

p−1∑

k=1

ckep−1(kx)ep(ax) =
p−1∑

k=1

ck

X∑
x=1

ep−1(kx)ep(ax).

From this and (11), we have

|S1| ≤ 1
p− 1

d1/4p3/4
p−2∑′
k=1

1∣∣sin (ap + k
p−1

)
π
∣∣ + 3

d1/4p3/4

p− 1
X,

where the accent indicates that two values of k, to be chosen the same as in
Mordell [2, pp. 86–87], are omitted from the summation (cf. [2, (8)]). Then,
by the estimate in [2], we have

|S1| ≤ 2d1/4p3/4 log p+ 3d1/4p3/4 = d1/4p3/4(2 log p+ 3).

This proves Theorem 1.

Proof of Theorem 2. We first prove (6), which is in fact a consequence of
Weil’s bounds on exponential sums and hybrid sums.

In analogy to (10), we have, for x = 1, . . . , X,

ep(fn(gx)) =
p−1∑

k=1

c′kep−1(kx),

where the c′k are given by

c′k =
1

p− 1

p−1∑
y=1

ep(fn(gy))ep−1(−ky), k = 1, . . . , p− 1.

By Weil’s bounds (see Schmidt [4, Corollary II.2F and Theorem II.2G]), we
have

|c′k| ≤
n
√
p

p− 1
, k = 1, . . . , p− 1.

Then, similar to the above,

|Sn(X, b)| =
∣∣∣
p−1∑

k=1

c′k

X∑
x=1

ep−1(kx)ep(bx)
∣∣∣ ≤ 2n

√
p log p+ 3n

√
p

as required.
To prove (7), we note that

(12)
p−1∑

b=0

|Sn(X, b)|2 =
X∑

x,y=1

p−1∑

b=0

ep(b(x− y) + fn(gx)− fn(gy)) = pX.
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Moreover, from Weil’s bounds mentioned above, it is easily seen that

(13)
∣∣∣
X∑
x=1

ep(fn(gx))
∣∣∣ ≤ 2n

√
p log p.

This together with (12) gives (7) at once.

3. The proof of Theorem 3. We require the lemma below.

Lemma 2. Let F (x) be an arbitrary function, and let ∆hF (x) =
F (x+ h)− F (x). Then

∣∣∣
Y∑
x=1

e(F (x))
∣∣∣
2

= Y +
Y−1∑
r=1

Y−r∑
y=1

e(∆rF (y)) +
Y−1∑
r=1

Y∑

y=Y+1−r
e(∆r−Y F (y)),

where Y is a positive integer and e(u) = exp(2πiu).

P r o o f. We have

(14)
∣∣∣
Y∑
x=1

e(F (x))
∣∣∣
2

= Y +
Y∑

x,y=1
x6=y

e(F (x)− F (y)).

When x 6= y, 1 ≤ |x−y| ≤ Y −1. For any r (1 ≤ r ≤ Y −1), the solutions of
x− y = r are given by 1 ≤ y ≤ Y − r; and the solutions of x− y = −Y + r
are given by Y + 1− r ≤ y ≤ Y . The lemma then follows from (14).

To prove Theorem 3, we proceed by induction on m. When m = 1 the
result follows from Theorem 2. Assume that Theorem 3 is true with m
replaced by m− 1 (m ≥ 2). By Lemma 2, we have

|Sm,n(X)|2 = X +
X−1∑
r=1

X−r∑
y=1

ep(∆rhm(y) +∆rfn(gy))(15)

+
X−1∑
r=1

X∑

y=X+1−r
ep(∆r−Xhm(y) +∆r−Xfn(gy)).

Write T (r) for the inner sum of the first double sum in (15). Note that

∆r(fn(gy)) = a1(gr − 1)gy + . . .+ an(gnr − 1)gny.

Let aks (1 ≤ s ≤ t ≤ n) be all those ai such that aks 6≡ 0 (mod p), and let
l = (k1, . . . , kt). For 1 ≤ r ≤ X, if

(16) gksr ≡ 1 (mod p) for s = 1, . . . , t,

then (p− 1) | rl, and so p−1
(p−1,l) | r. Thus the number of solutions of (16) is at

most (l, p−1) ≤ l ≤ n. For these solutions r, obviously |T (r)| ≤ X − r ≤ X.
For the remaining r’s, aks(g

ksr − 1) (1 ≤ s ≤ t) are not all ≡ 0 (mod p).
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Moreover, ∆rhm(y) (mod p) has degree m− 1 with respect to y. Hence, by
the induction hypothesis,

|T (r)| ≤ 4p1−1/2m−1
(n log p)1/2m−2

.

Therefore,
∣∣∣
X−1∑
r=1

T (r)
∣∣∣ ≤ nX + 4p1−1/2m−1

(n log p)1/2m−2
X.

A similar estimate holds for the second double sum in (15). The result then
follows easily.
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