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A combinatorial approach to
partitions with parts in the gaps
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Dennis Eichhorn (Urbana, Ill.)

Many links exist between ordinary partitions and partitions with parts
in the “gaps”. In this paper, we explore combinatorial explanations for some
of these links, along with some natural generalizations. In particular, if we
let pk,m(j, n) be the number of partitions of n into j parts where each part is
≡ k (mod m), 1 ≤ k ≤ m, and we let p∗k,m(j, n) be the number of partitions
of n into j parts where each part is ≡ k (mod m) with parts of size k in the
gaps, then p∗k,m(j, n) = pk,m(j, n).

1. Introduction. Recently, several papers have been written that study
partitions by considering, manipulating, and even filling their “gaps”. The
pathbreaking work in this area has been done largely by Alladi and Bowman
(see [1–4]). In this paper, we explore how taking a combinatorial approach
to this gap-theoretic study of partitions can make several generalizations of
results existing in the literature come to light in a natural way.

2. Preliminaries. In this section, we give the definitions necessary to
state our main results. Although the symbolic representation of the objects
defined in this section may seem lengthy, the objects themselves are actually
quite simple.

A composition of a non-negative integer n is any sequence of positive
integers with sum n. An ordinary partition of a non-negative integer n is a
non-increasing sequence of positive integers with sum n. Let C be the set of
all compositions, let C(n) be the set of all compositions of n, let P be the
set of all ordinary partitions, let P(n) be the set of all ordinary partitions
of n, and let p(n) = |P(n)|, the cardinality of P(n). As a convention, we
include ∅ in P and C.
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120 D. Eichhorn

Notation. 1. For d, e integers with e ≥ 1, we define the formal sum:

de = d+ . . .+ d︸ ︷︷ ︸
e times

.

2. For di integers, we denote the composition deaa + d
ea+1
a+1 + . . .+ debb by⊕b

i=a d
ei
i .

3. When there is a risk of confusion, we let ⊕ denote the concatenation
of two pieces of a composition or partition, and we let + denote the sum
within a part of a composition or partition (that is, ⊕ is a binary operation
from C(n)× C(m) into C(n+m) while + is a binary operation from Z× Z
into Z).

Examples.

• 14 + 13 + 10 + 10 + 7 + 7 + 7 + 7 + 6 + 5 + 3 + 3 + 3 ∈ P(95) ⊂ C(95),
and may be rewritten as

141 + 131 + 102 + 74 + 61 + 51 + 33.

•
4⊕

i=1

(19− i2)i = 181 + 152 + 103 + 34 ∈ P(90) ⊂ C(90)

= 18 + 15 + 15 + 10 + 10 + 10 + 3 + 3 + 3 + 3.

• (5 + 4)⊕ 6⊕ (21 + 7 + 2)⊕ 3 ∈ C(48) is merely

9 + 6 + 30 + 3.

Now we are ready to define a “partition with ones in the gaps”. The
idea here is that we take a partition with differences at least two between
consecutive parts, and we insert up to gi ones between the ith and (i+ 1)st
parts where gi, the “ith gapspace”, is the amount of extra room we have in
meeting the minimal difference two condition.

Definition. A partition with ones in the gaps is any composition that
may be constructed in the following way:

• For b ≥ 0, let
⊕b

i=1 di ∈ P be such that db ≥ 2 and di − di+1 ≥ 2 for
all 1 ≤ i < b.
• Define g0 =∞, gb = db − 2, and gi = di − di+1 − 2 for all 1 ≤ i < b.
• Then

(1) π = 1e0 ⊕
b⊕

i=1

(di ⊕ 1ei)

where 0 ≤ ei ≤ gi for i = 0, 1, . . . , b is a partition with ones in the gaps. We
call the gi the gapspaces of π, we call the di the main parts of π, and we
call the parts of size one the parts in the gaps of π.
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Let P∗ be the set of all partitions with ones in the gaps, let P∗(n) be
the set of all partitions with ones in the gaps such that the sum of the parts
(including the ones) is n, and let p∗(n) = |P∗(n)|. Notice that for every
π ∈ P∗, the representation of π in (1) is unique.

Examples.

• 12 + 21 + 19 + 1 + 16 + 12 + 8 + 2 ∈ P∗(71) ⊂ C(71). In this example,
g0 =∞, g1 = 0, g2 = 1, g3 = 6, g4 = 4, and g5 = 0.
• 30 + 26 + 19 + 13 + 14 + 12 + 15 + 3 + 1 ∈ P∗(113) ⊂ C(113). In this

example, g0 =∞, g1 = 2, g2 = 5, g3 = 3, g4 = 0, g5 = 7, and g6 = 1.
• p∗(4) = 5 since P∗(4) = {4, 3 + 1, 1 + 3, 12 + 2, 14} ⊂ C(4).

Let C(j, n) be the set of all compositions of n with j parts, let P(j, n) be
the set of all ordinary partitions of n into j parts, let p(j, n) = |P(j, n)|, let
P∗(j, n) be the set of all partitions of n into j parts with ones in the gaps,
and let p∗(j, n) = |P∗(j, n)|. (Note: when we say that π ∈ P∗(j, n), we mean
that if we write π as in (1), then n = e0 +

∑b
i=1(di+ei) and j = b+

∑b
i=0 ei.)

Examples.

• 19 + 132 + 9 + 8 + 73 + 2 ∈ P(9, 85) ⊂ C(9, 85).
• p(3, 10) = 8 since

P(3, 10) = {8 + 12, 7 + 2 + 1, 6 + 3 + 1, 6 + 2 + 2, 5 + 4 + 1,

5 + 3 + 2, 4 + 4 + 2, 4 + 3 + 3} ⊂ C(3, 10).

• 13 + 20 + 13 + 12 + 10 + 6 + 12 ∈ P∗(12, 56) ⊂ C(12, 56).

• p∗(3, 10) = 8 since

P∗(3, 10) = {12 + 8, 1 + 8 + 1, 8 + 12, 1 + 7 + 2, 7 + 1 + 2,

1 + 6 + 3, 6 + 1 + 3, 6 + 3 + 1} ⊂ C(3, 10).

Let Pk,m be the set of all partitions where each part is ≡ k (mod m), let
Pk,m(n) be the set of all partitions of n where each part is ≡ k (mod m),
let pk,m(n) = |Pk,m(n)|, let Pk,m(j, n) be the set of all partitions of n into
j parts where each part is ≡ k (mod m), and let pk,m(j, n) = |Pk,m(j, n)|.

We are now prepared to define a “partition where each part is ≡ k
(mod m) with parts of size k in the gaps”. The idea here is analogous to
the idea behind a “partition with ones in the gaps”, but now the minimal
difference two condition is replaced by a minimal difference 2m condition.

Definition. Let 1 ≤ k ≤ m. A partition where each part is ≡ k
(mod m) with parts of size k in the gaps is any composition that may be
constructed in the following way:

• For b ≥ 0, let
⊕b

i=1 di ∈ Pk,m be such that db ≥ m+k and di−di+1 ≥
2m for all 1 ≤ i < b.
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• Define g0 = ∞, gb = (db − k)/m − 1, and gi = (di − di+1)/m − 2 for
all 1 ≤ i < b.
• Then

(2) π = ke0 ⊕
b⊕

i=1

(di ⊕ kei)

where 0 ≤ ei ≤ gi for i = 0, 1, . . . , b is a partition where each part is ≡ k
(mod m) with parts of size k in the gaps. We again call the gi the gapspaces
of π, the di the main parts of π, and the parts of size k the parts in the gaps
of π.

Let P∗k,m be the set of all partitions where each part is ≡ k (mod m)
with parts of size k in the gaps, let P∗k,m(n) be the set of all partitions in
P∗k,m such that the sum of the parts (including the parts of size k) is n, and
let p∗k,m(n) = |P∗k,m(n)|. Notice that for every π ∈ P∗k,m, the representation
of π in (2) is unique. Let P∗k,m(j, n) be the set of all partitions in P∗k,m(n)
with j parts (including the parts of size k), and let p∗k,m(j, n) = |P∗k,m(j, n)|.
(Note: when we say that π ∈ P∗k,m(j, n), we mean that if we write π as in

(2), then n = k · e0 +
∑b
i=1(di + k · ei) and j = b+

∑b
i=0 ei.)

Examples.

• 36 + 79 + 33 + 59 + 51 + 23 + 3 + 11 ∈ P∗3,4(15, 253) ⊂ P∗3,4(253). In
this example, g0 =∞, g1 = 3, g2 = 0, g3 = 5, g4 = 1, and g5 = 1.
• p∗1,2(8) = 6 since

P∗1,2(8) = {1 + 7, 7 + 1, 13 + 5, 12 + 5 + 1, 15 + 3, 18}.
• p∗2,3(4, 20) = 5 since

P∗2,3(4, 20) = {23 + 14, 22 + 14 + 2, 2 + 14 + 22, 14 + 23, 22 + 11 + 5}.

3. The main results. In this section, we give generalizations of some
theorems of Bowman [4]. Bowman’s results were originally proved using
continued fraction generating functions, but here we will use purely combi-
natorial methods.

Theorem 1 is an essential extension of one of Bowman’s results, and it
allows us to later achieve further generalizations.

Theorem 1. Let j and n be integers. Then

p∗(j, n) = p(j, n).

P r o o f. We will construct a map φ from P∗(j, n) to P(j, n), and then
we will demonstrate that φ is a bijection. We can think of the action of φ
on π ∈ P∗(j, n) as a repeated stealing from the rich and giving to the poor .
Each of the main parts of π will get a turn at being “the rich”, and every
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part, main or in the gaps, lying anywhere to the right of a main part will
get some number of turns at being one of “the poor”.

Let π be defined as in (1). Then the action of φ on π will be comprised
of b instances of stealing from the rich and giving to the poor, along with
one rearrangement of parts. We will define φt to be the map that causes the
tth instance of stealing from the rich and giving to the poor for t = 1, . . . , b,
and we will define ψ to be the map that rearranges the parts appropriately.

Let Πt(j, n) ⊂ C(j, n) be the set of all πt ∈ C(j, n) that may be written
in the following form:

(3) πt = 1e0 ⊕
t−1⊕

i=1

[di ⊕ (i+ 1)ei ]⊕
b⊕

i=t

[di ⊕ tei ].

When we write an element of Πt(j, n) in this manner, we will refer to the di
as the main parts, and we will refer to all of the other parts as parts in the
gaps. Let φt act on πt ∈ Πt(j, n) by “stealing” the quantity b− t+

∑b
i=t ei

from dt and “giving” one to each part of πt that lies to the right of dt.
We can see that φt is actually a map from Πt(j, n) into Πt+1(j, n). Let ψ
reorder the parts of πb+1 ∈ Πb+1(j, n) by first taking all of the main parts
of πb+1 in order and then appending all of the parts in the gaps of πb+1 in
reverse order. Given these definitions of ψ and the φt, we let φ be defined
by φ(π) = ψ ◦ φb ◦ φb−1 ◦ . . . ◦ φ1(π) where π ∈ P∗(j, n) is written as in (1).

Example. Consider π1 ∈ P∗(13, 80) defined as follows:

π1 = 13 + 23 + 1 + 19 + 17 + 10 + 14 + 3.

Notice that π1 ∈ Π1(13, 80), and thus

φ1(π1) = 13 + 14 + 2 + 20 + 18 + 11 + 24 + 4 = π2,

φ2(π2) = 13 + 14 + 2 + 13 + 19 + 12 + 34 + 5 = π3,

φ3(π3) = 13 + 14 + 2 + 13 + 13 + 13 + 44 + 6 = π4,

φ4(π4) = 13 + 14 + 2 + 13 + 13 + 8 + 54 + 7 = π5,

φ5(π5) = 13 + 14 + 2 + 13 + 13 + 8 + 54 + 7 = π6,

and

ψ(π6) = 14 + 132 + 8 + 7 + 54 + 2 + 13 = φ(π1).

Symbolically, we have defined φt by

φt(πt) = 1e0 ⊕
t−1⊕

i=1

[di ⊕ (i+ 1)ei ]⊕
(
dt − b+ t−

b∑
r=t

er

)
⊕ . . .

. . .⊕ (t+ 1)et ⊕
b⊕

i=t+1

[di + 1⊕ (t+ 1)ei ]
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where for t = 1, . . . , b, πt ∈ Πt(j, n) is defined as in (3). (Note: when we
write πt+1 = φt(πt) as in (3), the di are not the same as the di from πt.)
We can also see that we have defined ψ by

ψ(πb+1) =
[ b⊕

i=1

di

]
⊕
[ b⊕

i=0

(1 + b− i)eb−i
]

where πb+1 ∈ Πb+1(j, n) is defined as in (3). We find that the action of φ
on π is given symbolically by

φ(π) =
[ b⊕

i=1

(
di − j + 2i− 1 +

i−1∑
t=0

et

)]
⊕
[ b⊕

i=0

(1 + b− i)eb−i
]

(4)

=
j⊕

i=1

ai ∈ C(j, n),

where again, π is written as in (1).
With these symbolic definitions in place, we are now prepared to show

that φ is actually a map from P∗(j, n) into P(j, n), and also that φ is a
bijection. Notice that, for 1 ≤ i < b,

ai = di − j + 2i− 1 +
i−1∑
t=0

et

= di − 2− j + 2(i+ 1)− 1− ei +
(i+1)−1∑
t=0

et

= ai+1 + di − di+1 − 2− ei = ai+1 + gi − ei ≥ ai+1.

Also notice that

ab = db − j + 2b− 1 +
b−1∑
t=0

et = db − 2− eb + b+ 1(5)

= gb − eb + b+ 1 ≥ b+ 1 ≥ ab+1.

Furthermore, notice from (4) that for b < i ≤ j, the ai are non-increasing,
and thus φ(π) ∈ P(j, n).

Next, suppose

φ
[
1e0 ⊕

b⊕

i=1

(di ⊕ 1ei)
]

= β =
j⊕

i=1

ai ∈ P(j, n).

We now show that φ is one-to-one by demonstrating that b, the ei, and the di
are all uniquely determined by β. First, to see that b is uniquely determined,
we observe that by (4), ab+1 = h+1 where h is the largest integer such that
eh 6= 0 (if there is no such h, then b = j), and thus ab+1 ≤ b+ 1. Now, since
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ab ≥ b + 1 by (5), we find that b must be the smallest integer such that
ab+1 ≤ b+ 1, and thus b is uniquely determined by β. Next, we can see from
(4) that each ei is exactly the multiplicity of the parts of size i+ 1 in β for
each i = 0, 1, . . . , b−1, and thus these ei are also uniquely determined by β.
Given that, eb = j − b−∑b−1

t=0 et is also uniquely determined by β. Finally,
(4) tells us that di = ai + j − 2i+ 1−∑i−1

t=0 et for all 1 ≤ i ≤ b. Therefore,
each part of 1e0 ⊕⊕b

i=1(di ⊕ 1ei) is uniquely determined by β, and thus φ
is one-to-one.

Now we show that φ, as a map from P∗(j, n) into P(j, n), is onto. Sup-
pose γ =

⊕j
i=1 ai ∈ P(j, n). Let b be the smallest positive integer such that

ab+1 ≤ b + 1. For 0 ≤ t ≤ b − 1, let et be the number of ai = t + 1. Let
eb = j − b −∑b−1

i=1 ei. For 1 ≤ i ≤ b, let di = ai + j − 2i + 1 −∑i−1
t=0 et.

Consider

φ
[
1e0 ⊕

b⊕

i=1

(di ⊕ 1ei)
]

=
j⊕

i=1

ci ∈ P(j, n).

By (4), we can see that both for 1 ≤ i ≤ b and for b < i ≤ j, ci = ai. Thus

φ
[
1e0 ⊕

b⊕

i=1

(di ⊕ 1ei)
]

= γ,

and since γ ∈ P(j, n) was arbitrary, φ is onto.

Example. Consider γ ∈ P(8, 45) defined as follows:

γ = 9 + 9 + 7 + 6 + 5 + 5 + 3 + 1.

Since a4 = 6 6≤ 4 and a5 = 5 ≤ 5, b = 5 − 1 = 4. Since γ contains one 1,
no 2s, one 3, and no 4s, we have e0 = 1, e1 = 0, e2 = 1, and e3 = 0. Also
e4 = 8 − 4 − 1 − 0 − 1 = 2. Finally, d1 = 9 + 8 − 2 + 1 − 1 = 15, d2 =
9 + 8 − 4 + 1 − (1 + 0) = 13, d3 = 7 + 8 − 6 + 1 − (1 + 0 + 1) = 8, and
d4 = 6 + 8− 8 + 1− (1 + 0 + 1 + 0) = 5. By (4), we can now see that in fact

φ(1 + 15 + 13 + 1 + 8 + 5 + 12) = γ.

Since φ is one-to-one and onto, it is a bijection, and hence p∗(j, n) =
p(j, n).

Now, as a corollary to Theorem 1, we have a new proof of one of Bow-
man’s results [4, Theorem 1].

Corollary 1 (Bowman). Let n be any integer. Then

p∗(n) = p(n).
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P r o o f. By Theorem 1,

p∗(n) =
n∑

j=0

p∗(j, n) =
n∑

j=0

p(j, n) = p(n).

Now that we have made the key observation, we can quickly achieve our
most general main theorem. This theorem is a three-fold generalization of
Corollary 1.

Theorem 2. For all non-negative integers j, k,m, and n with 1 ≤ k ≤ m,

p∗k,m(j, n) = pk,m(j, n).

P r o o f. We will show that there is a one-to-one correspondence between
elements of P∗k,m(j, n) and elements of P∗(j, (n+ j(m− k))/m), and then
we will show that there is a one-to-one correspondence between elements of
Pk,m(j, n) and elements of P(j, (n+ j(m− k))/m). After we have demon-
strated this, our result will follow immediately from Theorem 1.

Recall that every λ ∈ P∗k,m(j, n) may be written as

λ = ke0 ⊕
b⊕

i=1

(fi ⊕ kei)

where
⊕b

i=1 fi ∈ Pk,m, fb ≥ m + k, fi − fi+1 ≥ 2m for all 1 ≤ i < b, j =

b+
∑b
i=0 ei, and 0 ≤ ei ≤ gi for 0 ≤ i ≤ b where g0 =∞, gb = (fb − k)/m−1,

and gi = (fi − fi+1)/m−2 for all 1 ≤ i < b. By setting di = (fi − k)/m+ 1,
we see that this is equivalent to saying that every element of P∗k,m(j, n) may
be written as

λ = ke0 ⊕
b⊕

i=1

{[k +m(di − 1)]⊕ kei}

where
⊕b

i=1 di ∈ P, db ≥ 2, di − di+1 ≥ 2 for all 1 ≤ i < b, j = b+
∑b
i=0 ei,

and 0 ≤ ei ≤ gi for 0 ≤ i ≤ b where g0 =∞, gb = db−2, and gi = di−di+1−2
for all 1 ≤ i < b. Now, if we observe that

e0 +
b∑

i=1

(di + ei) =
n+ j(m− k)

m
,

we see that the elements of P∗k,m(j, n) are in one-to-one correspondence with
the elements of P∗(j, (n+ j(m− k))/m), and thus

p∗k,m(j, n) = p∗
(
j,
n+ j(m− k)

m

)
.

Now, observe that every element of Pk,m(j, n) may be written as
⊕j

i=1 gi
where gi ≡ k (mod m) for all 1 ≤ i ≤ j. By setting ai = (gi − k)/m+ 1, we
see that this is equivalent to saying that every element of Pk,m(j, n) may
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be written as
⊕j

i=1[k +m(ai − 1)] where
⊕j

i=1 ai ∈ P. Now, if we observe
that

j∑

i=1

ai =
n+ j(m− k)

m
,

we see that the elements of Pk,m(j, n) are in one-to-one correspondence with
the elements of P(j, (n+ j(m− k))/m), and thus

pk,m(j, n) = p

(
j,
n+ j(m− k)

m

)
.

Finally, Theorem 1 tells us that

p∗
(
j,
n+ j(m− k)

m

)
= p

(
j,
n+ j(m− k)

m

)
,

and hence Theorem 2 follows.

Now, as corollaries to Theorem 2, we have another new result and a new
proof of a result of Bowman [4, Theorem 2].

Corollary 2. For all non-negative integers k,m, and n with 1 ≤ k ≤ m,

p∗k,m(n) = pk,m(n).

P r o o f. By Theorem 2,

p∗k,m(n) =
n∑

j=0

p∗k,m(j, n) =
n∑

j=0

pk,m(j, n) = pk,m(n).

Corollary 3 (Bowman). For all non-negative integers n, if we let q(n)
be the number of partitions of n into distinct parts, then

q(n) = p∗1,2(n).

P r o o f. Euler showed that q(n) = p1,2(n) [5]. Thus, with the aid of
Corollary 2 where k = 1 and m = 2, we see that

q(n) = p1,2(n) = p∗1,2(n).

4. Further generalizations. Bijections similar to the one employed
in Theorem 1 can be used to prove many other theorems involving parti-
tions with parts in the gaps. In this section, we list several such theorems
along with some examples. We will again need to define several objects with
seemingly complicated symbolic representations, but as before, the objects
themselves are actually quite simple.

If we unravel what was done in the proof of Theorem 2, we can see that
what we have done just amounts to changing the quantity that we steal
from the rich and give to the poor. In Theorem 1, at each stage we stole
one for each of the poor, while in Theorem 2, at each stage we stole m for
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each of the poor. With this in mind, it is reasonable to expect that we can
further generalize Theorem 2 to treat partitions whose parts are restricted
to certain residue classes modulo m.

Let K = {k1, . . . , kt} where 1 ≤ k1 < . . . < kt ≤ m, and let PK,m be
the set of all partitions such that for every part d of the partition, there
exists some k ∈ K such that d ≡ k (mod m). Let PK,m(n) be the set of
all partitions in PK,m such that the sum of the parts is n, let pK,m(n) =
|PK,m(n)|, let PK,m(j, n) be the set of all partitions in PK,m(n) with j
parts, and let pK,m(j, n) = |PK,m(j, n)|.

Definition. Let K = {k1, . . . , kt} where 1 ≤ k1 < . . . < kt ≤ m.
A partition with congruence set K (mod m) with parts in the gaps is any
composition that may be constructed in the following way:

• For b ≥ 0, let
⊕b

i=1 di ∈ PK,m be such that db ≥ m+k1 and di−di+1 ≥
2m for all 1 ≤ i < b.
• Define g0 =∞, gb = b(db − k1)/mc − 1, and gi = b(di − di+1)/mc − 2

for all 1 ≤ i < b.
• Then

π =
t⊕

r=1

ker,0r ⊕
b⊕

i=1

(
di

t⊕
r=1

ker,ir

)
,

where 0 ≤∑t
r=1 er,i ≤ gi for i = 0, 1, . . . , b and er,b = 0 if db−m

∑t
r=1 er,b <

m+kr, is a partition with congruence set K (mod m) with parts in the gaps.

Let P∗K,m be the set of all partitions with congruence set K (mod m)
with parts in the gaps, let P∗K,m(n) be the set of all partitions in P∗K,m
such that the sum of the parts is n, and let p∗K,m(n) = |P∗K,m(n)|. Let
P∗K,m(j, n) be the set of all partitions in P∗K,m(n) with j parts, and let
p∗K,m(j, n) = |P∗K,m(j, n)|.

Using the bijection from Theorem 1 with the amount we steal from the
rich and give to the poor increased by a factor of m, we can prove

Theorem 3. Let j,m, and n be non-negative integers, and let K =
{k1, . . . , kt} where 1 ≤ k1 < . . . < kt ≤ m. Then

p∗K,m(j, n) = pK,m(j, n).

As before, summing on j yields a meaningful corollary.

Corollary 4. Let m and n be non-negative integers, and let K =
{k1, . . . , kt} where 1 ≤ k1 < . . . < kt ≤ m. Then

p∗K,m(n) = pK,m(n).

Example. If we let K = {1, 2}, then

p∗K,3(9) = pK,3(9) = 16
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since

P∗K,3(9) = {1 + 8, 8 + 1, 12 + 7, 2 + 7, 1 + 7 + 1, 14 + 5, 12 + 2 + 5,

22 + 5, 15 + 4, 13 + 2 + 4, 1 + 22 + 4, 1 + 24, 13 + 23,

15 + 22, 17 + 2, 19}
and, listed in the corresponding order after the appropriate bijection,

PK,3(9) = {8 + 1, 5 + 4, 7 + 12, 7 + 2, 42 + 1, 5 + 14, 5 + 2 + 12,

5 + 22, 4 + 15, 4 + 2 + 13, 4 + 22 + 1, 24 + 1, 23 + 13,

22 + 15, 2 + 17, 19}.
Another natural question to ask is “How does this bijection affect other

classical partition functions?” In what follows, we answer this question with
regards to partitions into h colors, and then with regards to partitions into
distinct parts.

We now generalize our definitions in a different way, so that we may prove
an h-colored analog of Theorem 2. A composition of a non-negative integer
n into h colors is any sequence of positive integers in which each positive
integer is assigned one of h distinct colors, and the sum of all of these
positive integers is n. A partition of a non-negative integer n into h colors is
a non-increasing sequence of positive integers in which each positive integer
is assigned one of h distinct colors, the order of the colors is not considered,
and the sum of all of these positive integers is n. For our purposes, we
will always let the set of available colors be {1, . . . , h}. Since the order of
the colors is not considered, when we are listing parts of the same size, we
will list them in non-increasing color order. We will indicate the color of a
part with a subscript on the left (e.g., 43 is a part of size 3 and color 4).
In situations where we are only concerned with the size of the part being
considered, we will suppress the subscript on the left.

Let hPk,m be the set of all partitions into h colors where each part is ≡ k
(mod m), let hPk,m(n) be the set of all partitions in hPk,m such that the
sum of the parts is n, let hpk,m(n) = |hPk,m(n)|, let hPk,m(j, n) be the set of
all partitions in hPk,m(n) into j parts, and let hpk,m(j, n) = |hPk,m(j, n)|.

Definition. Let 1 ≤ k ≤ m. A partition into h colors where each part
is ≡ k (mod m) with parts of size k in the gaps is any composition into h
colors that may be constructed in the following way.

• For b ≥ 0, let
⊕b

i=1 cidi ∈ hPk,m be such that db ≥ m+ k, di− di+1 ≥
2m for all 1 ≤ i < b, and if ci < ci+1, then di − di+1 6= 2m.
• Define g0 = ∞, gb = (db − k)/m − 1, and gi = (di − di+1)/m − 2 for

all 1 ≤ i < b.
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• Then

π =
h⊕
r=1

rk
er,0 ⊕

b⊕

i=1

(
cidi

h⊕
r=1

rk
er,i
)
,

where 0 ≤∑h
r=1 er,i ≤ gi for i = 0, 1, . . . , b and er,b = 0 if db−m

∑t
r=1 er,b =

m+k and cb < r, is a partition into h colors where each part is ≡ k (mod m)
with parts of size k in the gaps.

Let hP
∗
k,m be the set of all partitions into h colors where each part is

≡ k (mod m) with parts of size k in the gaps, let hP
∗
k,m(n) be the set of

all partitions in hP
∗
k,m such that the sum of the parts is n, let hp

∗
k,m(n) =

|hP∗k,m(n)|, let hP
∗
k,m(j, n) be the set of all partitions in hP

∗
k,m(n) with j

parts, and let hp
∗
k,m(j, n) = |hP∗k,m(j, n)|.

We are now prepared to state

Theorem 4. For all non-negative integers h, j, k,m, and n with
1≤ k≤m,

hp
∗
k,m(j, n) = hpk,m(j, n).

We find that the proof of Theorem 4 is analogous to the proof of The-
orem 1 if we allow the “stolen” parts which we give to the poor to change
color as is necessary.

Once again, summing on j yields a meaningful corollary.

Corollary 5. For all non-negative integers h, k,m, and n with 1 ≤ k
≤ m,

hp
∗
k,m(n) = hpk,m(n).

Example.

2p
∗
1,3(8) = 2p1,3(8) = 26

since

2P
∗
1,3(8) = {11 + 17, 21 + 17, 11 + 27, 21 + 27, 17 + 11, 27 + 11, 27 + 21,

114 + 14, 113 + 21 + 14, 112 + 212 + 14, 11 + 213 + 14,

214 + 14, 114 + 24, 113 + 21 + 24, 112 + 212 + 24,

11 + 213 + 24, 214 + 24, 118, 117 + 21, 116 + 212, 115 + 213,

114 + 214, 113 + 215, 112 + 216, 11 + 217, 218}
and, listed in the corresponding order after the appropriate bijection,

2P1,3(8) = {17 + 11, 17 + 21, 27 + 11, 27 + 21, 142, 24 + 14, 242, 14 + 114,

14 + 21 + 113, 14 + 212 + 112, 14 + 213 + 11, 14 + 214,

24 + 114, 24 + 21 + 113, 24 + 212 + 112, 24 + 213 + 11,

24 + 214, 118, 21 + 217, 212 + 116, 213 + 115, 214 + 114,

215 + 113, 216 + 112, 217 + 11, 218}.
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Finally, the method of Theorem 1 can also be used to give bijections be-
tween partitions with parts in the gaps and ordinary partitions into distinct
parts. The key to doing this is to modify the definitions of the gapspaces and
to replace the minimal difference 2m conditon with a minimal difference 3m
condition. We will call these new partitions with parts in the gaps “smallgap
partitions”.

Let Qk,m be the set of all partitions into distinct parts where each part is
≡ k (mod m), let Qk,m(n) be the set of all partitions of n into distinct parts
where each part is ≡ k (mod m), let qk,m(n) = |Qk,m(n)|, let Qk,m(j, n) be
the set of all partitions of n into j distinct parts where each part is ≡ k
(mod m), and let qk,m(j, n) = |Qk,m(j, n)|.

Definition. Let 1 ≤ k ≤ m. A smallgap partition where each part is
≡ k (mod m) with parts of size k in the gaps is any composition that may
be constructed in the following way:

• For b ≥ 0, let
⊕b

i=1 di ∈ Qk,m be such that db ≥ 2m+k and di−di+1 ≥
3m for all 1 ≤ i < b.
• Define g0 =∞,

gb =
{

1 if db > 2m+ k,
0 if db = 2m+ k,

gi =
{

1 if di − di+1 > 3m,
0 if di − di+1 = 3m, for all 1 ≤ i < b.

• Then

π = ke0 ⊕
b⊕

i=1

(di ⊕ kei)

where 0 ≤ ei ≤ gi for i = 0, 1, . . . , b is a smallgap partition where each part
is ≡ k (mod m) with parts of size k in the gaps.

Let Q∗k,m be the set of all smallgap partitions where each part is ≡ k
(mod m) with parts of size k in the gaps, let Q∗k,m(n) be the set of all
smallgap partitions in Q∗k,m such that the sum of the parts is n, let q∗k,m(n) =
|Q∗k,m(n)|, let Q∗k,m(j, n) be the set of all smallgap partitions in Q∗k,m(n) with
j parts, and let q∗k,m(j, n) = |Q∗k,m(j, n)|.

We are now prepared to state

Theorem 5. For all non-negative integers j, k,m, and n with 1 ≤ k
≤ m,

q∗k,m(j, n) = qk,m(j, n).

We find that we can either prove Theorem 5 directly in a manner analo-
gous to the way we proved Theorem 1, or we can prove the k = m = 1 case
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first, and then show that Theorem 5 follows from that case in the same way
that Theorem 2 followed from Theorem 1.

As is always the case, summing on j yields a meaningful corollary.

Corollary 6. For all non-negative integers k,m, and n with 1 ≤ k ≤ m,

q∗k,m(n) = qk,m(n).

Example.
q∗3,4(90) = q3,4(90) = 14

since
Q∗3,4(90) = {3 + 87, 87 + 3, 83 + 7, 79 + 11,

75 + 15, 71 + 19, 67 + 23, 63 + 27, 59 + 31,

55 + 35, 51 + 39, 3 + 51 + 3 + 23 + 3 + 7,

3 + 47 + 3 + 27 + 3 + 7, 3 + 43 + 3 + 27 + 3 + 11}
and, listed in the corresponding order after the appropriate bijection,

Q3,4(90) = {87 + 3, 83 + 7, 79 + 11, 75 + 15, 71 + 19,

67 + 23, 63 + 27, 59 + 31, 55 + 35, 51 + 39,

47 + 43, 35 + 19 + 15 + 11 + 7 + 3,

31 + 23 + 15 + 11 + 7 + 3, 27 + 23 + 19 + 11 + 7 + 3}.
If we wished, we could create many new results by taking combinations

of Theorems 3, 4, and 5, but stating such theorems is quite cumbersome.
For that reason, we will forego the statement of such theorems here.

5. Conclusion. We have now seen how the notion of stealing from the
rich and giving to the poor gives rise to many natural generalizations of
some results in [4]. It may be of interest to further explore how this type
of bijection can be extended to produce identities between other types of
partitions. Furthermore, it has recently come to light that this bijection can
actually be used to demonstrate the equivalence of some of the results of
Alladi and Bowman; this link will be the subject of a future project by the
author.
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