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On strong uniform distribution, II.
The infinite-dimensional case

by

Y. Lacroix (Brest)

We construct infinite-dimensional chains that are L1 good for almost
sure convergence, which settles a question raised in this journal [N]. We give
some conditions for a coprime generated chain to be bad for L2 or L∞, using
the entropy method. It follows that such a chain with positive lower density
is bad for L∞. There also exist such bad chains with zero density.

0. Introduction. A chain C is a multiplicative semigroup of the one
of positive integers N. We say a sequence p = (pk) generates the chain
C if C = {∏J

k=1 p
αk
k : αk ≥ 0, J ≥ 1}. A chain is of finite dimension

(abbreviated FD) if there exists a finite sequence generating it; else, it is
infinite-dimensional (abbreviated ID).

For example, N is ID and generated by the set P of all primes. Disproving
Khinchin’s strong uniform distribution conjecture, Marstrand [M] proved
that there exists an open subset V of the torus T such that the averages

1
N

N∑
n=1

1V (nx mod 1)

fail to converge a.e. with respect to Lebesgue measure λ.
He also proved that if C is finitely generated by prime numbers and

(nk) denotes the increasing sequence such that {nk : k ≥ 1} = C, then the
averages

(1)
1
K

K∑

k=1

f(nkx mod 1)

converge a.e. to
T
T f dλ for f ∈ L∞(T, λ).
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Later, R. Nair [N] observed that Marstrand’s preceding result could be
extended to f ∈ L1(T, λ), making use of the multidimensional ergodic the-
orem ([Be], [K]). He raised the question of the existence of ID chains such
that the averages in (1) converge a.e. for any f ∈ L1(T, λ).

In this note we give an affirmative answer to R. Nair’s question, together
with some hints towards the use of the entropy method [Bo] for proving some
chain is bad.

The problem of a.s. convergence of averages (1) developed parallel to the
Riemann sum problem, which is that of a.s. convergence of the averages

1
nk

nk∑

i=1

f

(
x+

i

nk
mod 1

)
.

For the latter, after W. Rudin [R] showed that for any ID chain C = {nk :
k ≥ 1} the convergence fails to hold a.e. for some f ∈ L∞(T, λ), in [DP] and
later [BW] it was proved that the optimal functional space of convergence
was L logLd−1 if the chain is generated by d primes for instance (see also
[J], [B], and [N1] for this problem). Hence our main result (Theorem 1)
strengthens the difference between these two problems.

In the first section, we construct explicit examples of ID chains that are
good for a.s. convergence for any f ∈ L1(T, λ). We make a careful use of the
Tempel’man Ergodic Theorem for actions of the amenable semigroup

⋃
q Nq

[K]. This essentially relies on proving some “covering lemma” .
The second section completes our answer to Nair’s question: we give in

Theorem 2 some criteria for a chain to be bad for L2 or L∞, using the
entropy method due to J. Bourgain [Bo] (used also in [BW] for the Riemann
sum problem). In particular, a chain with positive lower density is bad for
L∞, and there exist such bad chains with zero density.

Our results are summarized by the following:

Theorem 0. There exist increasing subsequences p = (pk) of coprime
integers such that a.s. convergence in (1) holds for any f ∈ L1(T, λ) along
C(p). Moreover , the a.s. limit is

T
T f dλ.

If a coprime generated chain C(p) has positive lower density , i.e.

d?(C(p)) = lim inf
N

#C(p) ∩ [1, N ]
N

> 0,

then a.s. convergence in (1) fails for some f ∈ L∞(T, λ).
There exists such a chain with

d(C(p)) = lim
N

#C(p) ∩ [1, N ]
N

= 0.

The author would like to thank R. Nair for helpful discussions during
his visit at the Brest Mathematics Department, February 1996.
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1. Good ID chains

1.1. Ergodic theoretic preliminaries. We shall make an essential use of
the following abelian semigroup endowed with its counting measure (for a
subset T , #T denotes its cardinality):

l0(N) := {(αi)i≥1 : αi ∈ N, ∃j, i > j ⇒ αi = 0}.
Given q an integer, we identify Nq with a subsemigroup of Nq+1 and the

latter with one of l0(N) via the following embedings:

Nq ↪→ Nq+1 ↪→ l0(N)
(α1, . . . , αq) 7→ (α1, . . . , αq, 0) 7→ (α1, . . . , αq, 0, 0, . . .).

Given a probability measure space (X,B, µ) and a sequence (Tk)k≥1 of
commuting endomorphisms of (X,B, µ) (i.e. each Tk : X → X is measurable,
Tkµ = µ, and Tk ◦Tk′ = Tk′ ◦Tk) we define an action Γ of l0(N) on (X,B, µ)
by

(2) Γ ((αk)) := ©
k≥1

Tαkk ,

where T 0
k is meant to be the identity map. Mainly in this paper the reader

can consider that Tkx = pkx mod 1, X = T, and µ = λ, the Lebesgue
measure.

For any sequence (T (n)) of subsets of l0(N), consider the following mul-
tiple condition (P):

(P)





(P1) : 0 < #T (n) <∞,
(P2) : ∀γ ∈ l0(N), limn #((T (n) + γ) M T (n))/#T (n) = 0,
(P3) : T (n) ⊂ T (n+ 1), n ≥ 1,
(P4) : ∃K1 <∞, ∀N, limn #(T (N) + T (n))/#T (n) ≤ K1,
(P5) : ∃K2 <∞, ∀n, #(T (n)− T (n))/#T (n) ≤ K2,

where T (n)− T (n) := {α ∈ l0(N) : ∃γ ∈ T (n), α+ γ ∈ T (n)}.
Then if (T (n)) satisfies (P), by the Tempel’man Ergodic Theorem [K,

p. 224], for any f ∈ L1(µ), the averages

1
#T (n)

∑

α∈T (n)

f ◦ Γ (α)(x)

converge µ-a.e.
In this case we say that (T (n)) is L1 good universal (for l0(N) actions).

If C is an ID coprime generated chain, Tkx = pkx mod 1, we shall see in 1.2
below that averages (1) taken along particular sequence (T (n)) of subsets of
l0(N) coincide with those above, converge λ-a.e. (when (P) holds), and the
limit equals

T
T f dλ (because the action is ergodic [K]).

Definition 1. If averages (1) converge a.s. for any f ∈ Lp(T), we say
that C is a good chain (for Lp); otherwise C is bad (for Lp).
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1.2. Condition (P) for a pairwise coprime generated chain. In this sub-
section we reduce condition (P) for chains. Let p1 < p2 < . . . be an increasing
sequence of pairwise coprime integers, C denote the chain they generate, and
(nk) denote the sequence constituted by the elements of C ordered by size.
For given q ≥ 1 and n ∈ [1,∞[, we let

(3)

Tq(n) :=
{

(α1, . . . , αq) ∈ Nq :
q∑

i=1

αi log pi ≤ logn
}
,

T (n) :=
{
α = (αi) ∈ l0(N) :

∑

i≥1

αi log pi ≤ logn
}
.

If q(n) := max{q : pq ≤ n}, then T (n) = Tq(n)(n). Therefore, for given
q ≥ 1, both (Tq(n)) and (T (n)) satisfy (P1), (P3), and (P5) with K2 = 1,
because T (n)− T (n) ⊂ T (n).

Moreover, since T (n) ⊂ T (N) + T (n) (resp. Tq(n) ⊂ Tq(N) + Tq(n)),
and since it is easily checked that

#(T (N) + T (n)) ≤ #T (n) +
∑

γ∈T (N)

#((γ + T (n)) \ T (n))

(resp. #(Tq(N) + Tq(n)) ≤ #Tq(n) +
∑

γ∈Tq(N)

#((γ + Tq(n)) \ Tq(n)) ),

we see that (P2) implies (P4) with K1 = 1. Hence we deduce (cf. (2))

Lemma 1. The sequence (T (n)) (resp. (Tq(n))) defined by (3) is L1 good
universal for l0(N) actions whenever it satisfies (P2).

Given γ = (γi) ∈ l0(N), we have (also with T (n) replaced by Tq(n))

(4) #((T (n) + γ) MT (n)) = #(T (n) \ (T (n) + γ)) + #((T (n) + γ) \T (n)).

An elementary computation [M] shows that

(5) #Tq(n) ∼ (log n)q

q!
∏q
i=1 log pi

.

Therefore, by (5), for any γ ∈ l0(N),

lim
n

#(T (n) \ (T (n) + γ))/#T (n) = 0,

hence with (4), (P2) reduces to

(P6) ∀γ ∈ l0(N), lim
n

#((T (n) + γ) \ T (n))/#T (n) = 0

(resp. lim
n

#((Tq(n) + γ) \ Tq(n))/#Tq(n) = 0).



Strong uniform distribution 283

Now we show how this reduction is already applicable to the proof of [N,
Thm. 1]. In addition to (5) we also have in [M]

(6) #∂q̄(Tq(x)) ∼x→∞
log(pq1 . . . p

q
q)

(q − 1)!
∏q
i=1 log pi

(log x)q−1.

Hence with (2), (5), (6), Lemma 1, (P6), and the fact that

(Tq(n) + γ) \ Tq(n) ⊂ Tq
(
n

q∏

i=1

pγii

)
\ Tq(n),

a somewhat simplified proof of [N, Thm. 1] follows:

Corollary 1. The sequence (Tq(n)) is L1 good universal for l0(N) ac-
tions.

1.3. The inductive step for constructing an ID good chain. Now we know
that (P6) is enough for an ID coprime generated chain to be good, the idea
is to show that given p1 < . . . < pq, it is possible to choose pq+1 > pq such
that a “small” increase occurs in the quotients (P6) uniformly in γ belonging
to some finite subset 〈q〉 of l0(N), where the union over q of these subsets
cover l0(N).

Actually, this is possible thanks to the equality T (n) = Tq(n)(n) and to
a careful use of estimates (5) and (6). We start by presenting the analysis
of this “control” (Lemma 2 below).

We assume q > 1 and that p1 < . . . < pq are pairwise coprime. We also
let pq+1 > pq denote an integer coprime to the previous pk’s, to be specified
later on. We let

〈q〉 := {γ = (γi) ∈ Nq : γi ≤ q, 1 ≤ i ≤ q},
and q := (q, . . . , q) ∈ Nq. We define (γ ≤ γ′) ⇔ (∀i, γi ≤ γ′i). We also
introduce (cf. (P6))

∂γ(Tq(n)) := (Tq(n) + γ) \ Tq(n).

Then an easy observation leads to

γ ≤ γ′ ⇒ ∂γ(Tq(n)) ⊂ ∂γ′(Tq(n)).

Given arbitrary εq > 0, using (5) and (6), we show as in Corollary 1 that
there exists an N(εq) such that

(7) x ≥ N(εq)⇒ ∀γ ∈ 〈q〉, #∂γ(Tq(x))/#Tq(x) < εq/2.

From now on we select pq+1 ≥ N(εq) (N(εq) is as in (7)). Then if k ≥ 1
and pkq+1 ≤ n < pk+1

q+1 , we have

Tq+1(n) =
k∑

i=0

(Nq × {i}) ∩ Tq+1(n) (disjoint union).
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Set Tq+1(n, i) := (Nq × {i}) ∩ Tq+1(n), 0 ≤ i ≤ k = [log n/log pq+1]. Then
we observe that (0 ≤ i ≤ k)

(α1, . . . , αq, i) ∈ Tq+1(n, i)⇔ (α1, . . . , αq) ∈ Tq(n/piq+1),

and moreover, if γ ∈ 〈q〉, then

∂γ(Tq+1(n)) =
k∑

i=0

∂γ(Tq+1(n, i)) (disjoint union)

where ∂γ(Tq+1(n, i)) = (Tq+1(n, i) + γ) \ Tq+1(n, i). Moreover,

(α1, . . . , αq, i) + γ ∈ ∂γ(Tq+1(n))⇔ (α1, . . . , αq) + γ ∈ ∂γ(Tq(n/piq+1)).

Hence

#Tq+1(n) =
k∑

i=0

#Tq(n/piq+1),

#∂q̄(Tq+1(n)) =
k∑

i=0

#∂q̄(Tq(n/piq+1)).

Thus for any n, pq+1 ≥ N(εq), if k = [log n/log pq+1], we have, using (7):

k = 0 (i.e. N(εq) ≤ n < pq+1)⇒ Tq+1(n) = Tq(n)

⇒ ∀γ ∈ 〈q〉,#∂γ(Tq+1(n))/#Tq+1(n) < εq/2,

and

k 6= 0⇒ ∀γ ∈ 〈q〉,
#∂γ(Tq+1(n))/#Tq+1(n) ≤ #∂q̄(Tq+1(n))/#Tq+1(n)

≤
∑k−1
i=0 #∂q̄(Tq(n/piq+1))
∑k−1
i=0 #Tq(n/piq+1)

+ #∂q̄(Tq(n/pkq+1))/#Tq(n/pk−1
q+1)

< εq/2 +A(pq+1, n/p
k
q+1),

where A(pq+1, x) = #∂q̄(Tq(x))/#Tq(pq+1x) (x ≥ 1).
By (5) and (6) there exist two positive constants C1, C2 (depending on

p1, . . . , pq and q, but not on pq+1) such that for any x, y ≥ 1,

(8) #∂q̄(Tq(x)) ≤ C1(log x)q−1, #Tq(y) ≥ C2(log y)q.

Hence, (8) implies that, with C3 = C1/C2, and for any x ≥ 1,

(9) A(pq+1, x) ≤ C3/log pq+1.

Let us select both pq+1 ≥ N(εq) and C3/log pq+1 < εq/2 (here C3 is given
and the condition requires pq+1 to be large enough). Then by (9), we see
that as soon as n ≥ N(εq), for any γ ∈ 〈q〉,
(10) #∂γ(Tq+1(n))/#Tq+1(n) < εq.
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We have proved:

Lemma 2. Given q > 1, arbitrary coprime p1 < . . . < pq, and arbitrary
εq > 0, there exists an integer N(εq) and a pq+1 ≥ N(εq) which is coprime
to the pi’s (1 ≤ i ≤ q) such that for any γ ∈ 〈q〉, if n ≥ N(εq), then (10)
holds.

1.4. The inductive construction of an ID good chain. We fix a sequence
(εq)q≥1 of positive real numbers tending to 0. Next we select an arbitrary
p1 > 0. Then a repeated inductive use of Lemma 2 produces a sequence
p1 < . . . < pq+1 < . . . of pairwise coprime integers, and another sequence
N(ε1) ≤ . . . ≤ N(εq) ≤ . . . of integers (we can choose them increasing).

We then define, for each n, the set T (n) as in Subsection 1.2. As before,
T (n) = Tq(n)(n), where pq(n) ≤ n < pq(n)+1: thus if n > p2 and q ≤ q(n)−1,
then

γ ∈ 〈q〉 ⇒ #∂γ(Tq(n)(n))/#Tq(n)(n) < εq(n)−1.

Now we fix γ ∈ l0(N) and select q ≥ 2 such that γ ∈ 〈q〉. Then if n0

satisfies q(n0)− 1 ≥ q, we find that for any n ≥ n0,

#∂γ(T (n))/#T (n) = #∂γ(Tq(n)(n))/#Tq(n)(n) < εq(n)−1,

by our inductive construction using Lemma 2. Since εq → 0 and q(n)→∞,
this proves (P6), hence (P2). By Lemma 1, we obtain:

Theorem 1. Let p1 < p2 < . . . be the sequence of pairwise coprime
integers constructed above, and C the ID chain it generates. Then C is good
for L1, and the almost sure limit in (1) equals

T
T f dλ.

2. Bad ID chains. In this section we aim to present some material
derived from [Bo], that may be useful in proving an ID chain is bad: the
criteria are listed in Theorem 2, and Corollary 2 and Proposition 1 give some
straightforward application of them, which is used in Theorem 3 to prove
existence of an ID bad chain with zero density.

We consider an ID coprime generated chain C, C = C(p), and p = (pk).
As before we let (nk) be increasing and such that C = {nk : k ≥ 1}. For
f ∈ L2(T, λ), we let

(11) SKf(x) :=
1
K

K∑

k=1

f(nkx), x ∈ T.

The entropy method of Bourgain is based on the following facts [Bo,
Prop. 1, 2]: if (SKf(x)) converges λ-a.e. for all f ∈ L∞(T, λ) (resp. f ∈
L2(T, λ)) with ‖f‖2 ≤ 1, then for any δ > 0, there are uniform entropy
estimates for such f ’s, i.e. there exists C(δ) <∞ (resp. there exists a C > 0)
such that

N(f, δ) ≤ C(δ) (resp. δ
√
N(f, δ) < C)
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(N(f, δ) refers to the delta entropy number of the sequence (SKf) in Hilbert
space L2(T, λ), which is the minimal number of L2 balls of radius δ centered
at SKf ’s needed to cover the set {SKf : K ≥ 1}).

This was used in [Bo] to recover Rudin’s as well as Marstrand’s results.
We shall adapt Bourgain’s approach to the latter so as to fit it to the ID
chain case (notations are as in the previous sections).

For q, k, c, T ≥ 1 and 0 ≤ j < k, we let (cf. (3))

(12)
A(j, c) := T (p(j+1)c

1 ) \ T (pjc1 ), Aq(j, c) := Tq(p
(j+1)c
1 ) \ Tq(pjc1 ),

Aq(T, j, c) := Tq(p
T+(j+1)c
1 ) \ Tq(pT+jc

1 ).

For B ⊂ l0(N) finite and f ∈ L2(T, λ), we let (cf. (2))

SBf(x) :=
1

#B

∑

α∈B
f ◦ Γ (α)(x)

(recall Γ (α)(x) =
∏
i≥0 p

αi
i x mod 1). And for given c, k ≥ 1, we let

q := q(c, k) = q(pkc1 ) (recall pq(n) ≤ n < pq(n)+1)

and define for given T ≥ 1 (e(y) := exp(2iπy))

f (j) =
√

#Aq(T, j, c)SAq(T,j,c)e(x), 0 ≤ j < k.

Then obviously

‖f (j)‖2 = 1 and f (j) ⊥L2 f (j′) if 0 ≤ j 6= j′ < k.

Also, since q = q(pkc1 ),

w ∈ A(j, c) and n ∈ Aq(T, 0, c)⇒ w + n ∈ Aq(T, j, c) ∪Aq(T, j + 1, c).

Set

f := f (0).

Then, since #Aq(T, j, c) ≤ #Aq(T, j+ 1, c) (cf. (12)), we easily deduce that

〈SA(j,c)f, f
(j) + f (j+1)〉L2 ≥

√
#Aq(T, 0, c)

#Aq(T, j + 1, c)
≥
√

#Aq(T, 0, c)
#Aq(T, k − 1, c)

.

Hence, letting B(j, c) = A(0, c)∪ . . .∪A(j, c) (= T (p(j+1)c
1 )), 0 ≤ j < k− 1,

we get by positivity of the summands
〈
SB(j,c)f,

f (j) + f (j+1)
√

2

〉

L2

≥ #A(j, c)
#B(j, c)

√
#Aq(T, 0, c)

2#Aq(T, j + 1, c)
≥ #A(j, c)

#B(j, c)

√
#Aq(T, 0, c)

2#Aq(T, k − 1, c)
.
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Using (5) and (6), for given k and c, we may find T large enough so that

(13)
〈
SB(j,c)f,

f (j) + f (j+1)
√

2

〉

L2

≥ 1
4
· #A(j, c)

#B(j, c)
.

Define

(14) %(k, c) := %(c) = min
{

#A(j + 1, c)
#A(j, c)

: 0 ≤ j < k − 1
}

(≥ 1).

We introduce an orthonormal family

(φ(j)) :=
(
f (2j) + f (2j+1)

√
2

)

0≤j<[k/2]−1
.

Moreover, if j < l, then 〈SB(2j,c)f, φ
(l)〉 = 0. And using (13) and (14), for T

large enough, we get

(15) 〈SB(2j,c)f, φ
(j)〉L2 ≥ 1

4
· %(c)2j

1 + %(c) + . . .+ %(c)2j := β2j .

Define

βk := β2([k/2]−1),

Q1 = lim sup
k

sup
c≥1

βk
√

log k,

Q2 = lim sup
k

sup
c≥1

βk.

Theorem 2. Let C be a coprime generated chain. If Q1 =∞, then C is
bad for some f ∈ L2(T), and if Q2 > 0, then it is bad for some f ∈ L∞(T).

P r o o f. Take k ≥ 1 arbitrary, and notice that the finite sequence
(β2j)0≤j<[k/2]−1 of (15) is positive decreasing.

Using the Cauchy–Schwarz inequality in L2(T) we see that for 0 ≤ j 6=
l < [k/2]− 1 and T large enough, given c ≥ 1, if l < j, then

βk ≤ β2j ≤ |〈SB(2l,c)f − SB(2j,c)f, φ
(j)〉| ≤ ‖SB(2l,c)f − SB(2j,c)f‖L2 .

Hence N(f, βk) ≥ k/(4 + d) for some constant d > 0 (depending only on 4).
Now if we go back to Bourgain’s criteria stated at the beginning of

this section, we see that the L2 case is contradicted if Q1 = ∞, while for
0 < δ < lim supk supc≥1 βk the L∞ uniform entropy estimate holds, hence
L∞ convergence fails if Q2 > 0.

2.1. Bad ID chains and density . Let I ⊂ N. Its lower (resp. upper)
density, denoted by d?(I) (resp. d?(I)) is defined by

lim inf
N

#[1, N ] ∩ I
N

(
resp. lim sup

N

#[1, N ] ∩ I
N

)
.

We say I has a density d(I) if d?(I) = d?(I) =: d(I).
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Proposition 1. Let C be a coprime generated chain. If d?(C) > 0, then
C is bad for L∞.

P r o o f. Suppose that δ = d?(C) > 0; then it is easy to observe that for
any k ≥ 4, there exist arbitrarily large c’s such that %(k, c) ≥ δpc1/3. Hence
the “supc βk” in Q1 or Q2 is at least 1/2. By Theorem 2 the chain is bad.

Corollary 2. Assume C is generated by an increasing sequence p =
(pk) of primes and let (p′j) be the complementary sequence of primes. If∑
j 1/p′j < ∞, then d(C) exists and equals

∏
j(1 − 1/p′j). Hence C is bad

for L∞.

P r o o f. Applying [T, §III.1, Exercice 3(c)] (the Davenport–Erdős theo-
rem (1951)), since

∑
j 1/p′j <∞, if M = N \ C =

⋃
j p
′
jN, then

d(M) = 1− d(C) = 1−
∏

j

(
1− 1

p′j

)
< 1.

So d(C) exists and is strictly positive. It remains to apply Proposition 1.

2.2. Bad ID chains with zero density . We let P be the set of primes, and
(rt) be its increasing enumeration. Let 4 ≤ k1 < k2 < . . . and 0 = α0 < α1 <
α2 < . . . go to infinity, the ki’s being integers. We shall construct sequences
(ti), (ei), (ci), (Ti) and (fi) such that:

(i) t1 = 1, ti + ei < ti+1;
(ii) if N1 :=

⋃
i≥1{ti, . . . , ti + ei − 1}, and for each i ≥ 1, Ci denotes

the chain generated by {rt : t ∈ N1 ∩ [1, ti + ei − 1]}, then for c = ci and
T = Ti (cf. (15)) βki ≥ 1/2 for f = fi ∈ L∞(λ), ‖fi‖2 ≤ 1, referring to the
FD chain Ci (computations are done at each step i as at the beginning of
Section 2);

(iii) for each i ≥ 0,
∑
t 6∈N1, t<ti

1/rt ≥ αi;
(iv) C =

⋃
i≥1 Ci is a chain, generated by {rt : t ∈ N1}.

Induction. First step. As at the beginning of Section 2, and by Sub-
section 2.1 (Theorem 2), we may find c1 and T1 ≥ 1 such that if e1 =
#P ∩ [1, rk1c1

1 [ then βk1 ≥ 1/2, where the computations refer to the FD
chain generated by {rt : 1 ≤ t ≤ 1 + e1 − 1}, and coincide with those that
would be done for the chain N. We let f1 denote the f (0) from the beginning
of Section 2, and t1 = 1. Then N1 ∩ [1, e1] = [1, e1] is constructed.

Inductive step. Assume that for some i ≥ 1 the five finite sequences
(tj)j≤i, (ej)j≤i, (cj)j≤i, (Tj)j≤i and (fj)j≤i have been constructed and sat-
isfy the desired conditions, and hence N1 ∩ [1, ti + ei − 1] is known. Then
since Ci is generated by primes less than ti + ei − 1, and

∑
t 1/rt = ∞, we

can pick ti+1 > ti + ei such that
∑
ti+ei≤t<ti+1

1/rt ≥ αi.
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Since the chain C̃i+1 generated by Pi := P \ {rt : t < ti+1, t 6∈ N1} has
density 1 (positive), by the preceding subsection, we may find some ci+1

such that if ei+1 = #Pi ∩ [1, rki+1ci+1
1 [ then βki+1 ≥ 1/2, where again the

computations refer to the FD chain Ci+1 generated by Pi ∩ [1, ti+1 + ei+1[,
and coincide with those that would be done for the chain C̃i+1, fi+1 being
the corresponding “f (0)”, and Ti+1 the corresponding T . Then we let

N1 ∩ [1, ti+1 + ei+1 − 1] = (N1 ∩ [1, ti + ei − 1]) ∪ [ti+1, ti+1 + ei+1 − 1].

End of induction. From the construction it follows that C =
⋃
i Ci is a

chain generated by {rt : t ∈ N1}, and has the following two properties:

(a) d(C) = 0: indeed, since limi αi ≤
∑
t 6∈N1

1/rt = ∞, from [T, Exer-
cice 6(e), p. 281] it follows that

1 ≥ d?(N \ C) = 1−
∏

t 6∈N1

(
1− 1

rt

)
= 1,

hence by the identity

d?(C) = lim sup
N

#(C ∩ [1, N ])
N

= 1− d?(N \ C)

we deduce that 0 = d?(C) = d(C).
(b) For each i ≥ 1 we can find an f ∈ L∞(T) (f = fi), a c ≥ 1 (c = ci),

and a T ≥ 1 (T = Ti) such that βki ≥ 1/2, computed as in (15).

Hence the constructed ID chain C is such that Q1 =∞ and Q2 > 0, and
we therefore deduce from Theorem 2 the following

Theorem 3. The chain C is bad for L∞ and satisfies d?(C) = 0.
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[Bo] J. Bourga in, Almost sure convergence and bounded entropy, Israel J. Math. 63
(1988), 79–97.

[BW] Y. Bugeaud and M. Weber, Examples and counterexamples for Riemann sums,
preprint, I.R.M.A., Strasbourg, 1996.

[DP] L. E. Dubins and J. Pitman, A pointwise ergodic theorem for the group of
rational rotations, Trans. Amer. Math. Soc. 251 (1979), 299–308.

[J] B. Jessen, On the approximation of Lebesgue integrals by Riemann sums, Ann.
of Math. 35 (1934), 248–251.

[K] U. Krenge l, Ergodic Theorems, de Gruyter Stud. Math. 6, de Gruyter, Berlin,
1985.



290 Y. Lacroix

[M] J. M. Marstrand, On Khinchin’s conjecture about strong uniform distribution,
Proc. London Math. Soc. (3) 21 (1970), 540–556.

[N] R. Nair, On strong uniform distribution, Acta Arith. 56 (1990), 183–193.
[N1] —, On Riemann sums and Lebesgue integrals, Monatsh. Math. 120 (1995), 49–54.
[R] W. Rudin, An arithmetic property of Riemann sums, Proc. Amer. Math. Soc. 15

(1964), 321–324.
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