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An additive problem with primes and almost-primes
by

T. P. PENEVA and D. I. ToLEV (Plovdiv)

1. Introduction. In 1937 I. M. Vinogradov [10] proved that for every
sufficiently large odd integer N the equation

p1+p2+p3=N

has a solution in prime numbers p1, ps, ps3.

Two years later van der Corput [9] used the method of Vinogradov and
established that there exist infinitely many arithmetic progressions consist-
ing of three different primes. A corresponding result for progressions of four
or more primes has not been proved so far. In 1981, however, D. R. Heath-
Brown [5] proved that there exist infinitely many arithmetic progressions of
four different terms, three of which are primes and the fourth is P5 (as usual,
P,. denotes an integer with no more than r prime factors, counted according
to multiplicity). One of the main points in [5] is a result of Bombieri
Vinogradov’s type for the sum

> u(p1)u(p2)u(ps),

r<p2,p3 <27
P1+p3=2p2
p2—2p3=0 (mod d)
where d is squarefree, (d,6) = 1; u(n) = (logn)/log3x for n > 5 and
u(n) = 0 otherwise.
Recently Tolev [8] found an analogous result for the quantity

Jka(N) = > logpilogpslogps,

p1+p2+p3=N
p1=l(modk)

where N is a sufficiently large odd integer and (I, k) = 1. In [8] the Hardy—
Littlewood circle method and the Bombieri Vinogradov theorem were ap-
plied, as well as some arguments belonging to H. Mikawa.
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It would be interesting to prove that there exist infinitely many arith-
metic progressions of three different primes such that for two of them, p;
and ps, say, both the numbers p; + 2, ps + 2 are almost-primes. In the
present paper we study this problem. Our main tool is a result of Bombieri
Vinogradov’s type which we establish using the method developed in [8].

Let = be a sufficiently large real number and k;, ks be odd integers.
Denote by Dy, x,(z) the number of solutions of the equation

(1) p1+p2 = 2p3
in primes p1, pa, p3 such that

(2) x < p1,p2,p3 < 37
and

p1+2=0 (mod k1), p2+2=0 (mod k»).
Let us also define

1 1
V() Z log m4 log mo logms’ o0 H ( (p — 1)2>

r<mi,ma,m3<3x
mi+mo=2ms

We prove the following

THEOREM. For each A > 0 there exists B = B(A) > 0 such that

a07(2) p—1 2’
Dy 1k, () — < :
2.2 o p(k1)p(ks) (log )4

-2 log =
k1,k2a<v/z/(log z)® [(k1,k2) P 08T
(k1ks,2)=1

For squarefree odd k we define Ji(x) as the number of solutions of the
equation (1) in primes satisfying (2) and such that

(p1+2)(p2 +2) = 0 (mod k).
The Theorem stated above implies

COROLLARY 1. For each A > 0 there exists B = B(A) > 0 such that

2% — 5 z’
> wR) (@) — o) [] o ?)(p ~2)| < loga)A”
K<V (log z)" Pl ”
(k,2)=1

REMARK. We shall prove the Theorem and Corollary 1 with B =
16 A + 100.

Using Corollary 1 we get
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COROLLARY 2. There exist infinitely many triples p1, pa, ps of distinct
primes such that p; + pa = 2p3 and (p1 + 2)(p2 + 2) = Py.

2. Notations. Let z be a sufficiently large real number and A a positive
constant. The constants in O-terms and <-symbols are absolute or depend
only on A. We shall denote by m, n, d, dy, do, a, q, k, k1, ko, I, 7, h, f
integers, by p, p1, p2, ps prime numbers and by y, z, ¢, « real numbers. As
usual u(n), ¢(n) denote Mobius’s function and Euler’s function; 74 (n) is
the number of integer solutions of the equation dj ...d; = n; 7(n) = 2(n).
We denote by (m,n) and [m,n] the greatest common divisor and the least
common multiple of m and n, respectively. For real y, z, however, (y,z)
denotes the open interval on the real line with endpoints y and z. The
meaning is always clear from the context. Instead of m = n (mod k) we
shall write for simplicity m = n (k). We shall also use the notation e(t) =
exp(2mit). The letter ¢ denotes some positive real number, not the same in
all appearances. This convention allows us to write

(logt)e—c\/logt < e—c\/logt’

for example.

We define
N 4A+420 -1
H:W’ Q = (logz) . T=2Q
q—1
1 1 1 1
El:U U <g_’g+_>a E2:<_11_>\E13
S0 a0 N4 4T a T T T
(a,g)=1
(3) e(am)
Si(a) = Y elop), S(@)=51a), Vim)= Y
r<p<3z r<m<3x 08 m
p=—-2(k) -
ooy(x) p—1
E= Y Dhm) -—7— [ =—|
S, eUh)elke) ) e P2

3. Proof of the corollaries. Suppose that p?(k) = 1 and M, M, are
integers. The following identity holds:

(1 k| My My,

(@ u) Y wtkat) = { R
(k1 ka]=F
k1| M,
ko| Mo

A similar identity has been stated in [1, Lemma 8]. For convenience we
present a short proof.
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If k+ M1 M, the equality (4) is obvious. Suppose that k| M; M. We have

TOND SEFTAMSEVICE SRS DE T

[k1,k2]=Fk ki |k d|k:
k]lM] I{‘,]lM] kd/k]‘MQ
ko| Mo
P I JRNTU R SR
ki|(M1,k) d|(k1,M2k1/k) k1|(Mq,k)
MQk!lEO(k:) MQk:lEO(k)
(I{‘],Mzk]/k):].

since the only integer which satisfies the conditions imposed in the last sum
is k1 = k/(k, Ms). This completes the proof of (4).

Using (4) we get

(5) T(z)= D pk) > plk)p(k)

£<p1,pa,p3 <3 [k1,k2]=k
p1+p2=2p3 k1|(p1+2)

ka|(p2+2)

= u(k) Y p(k1)p(k2) Dy, g, (2).

[k1,k2]=F

Suppose that p?(k) = p?(1) = 1 and (k,2) = (1,2) = 1. We define

and

(6) Lk =p(k) S AERE) gy

tHE) et p(k1)p(k2) k) o=
()
(k) kilk dlk: ! kilk dlk:
_ w(k)o(k) (EY _ pR)o(k)7(k) §~ o(d)
BECR (3 W) 2@
p(k)o(k)T (k) o(p)
W H(” 2 )
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Using the definitions of p(l) and ¢(I) we easily compute

2p — 5
7 L(k) = —_—
" W =-Ug=he—9
plk
Now we apply (3), (5)—(7) and the Theorem to obtain
2p — 5
2
> i) - o) [ o)
E<H P (p—1(p—2)
(k,2)=1
= Y 4P(k)
k<H
(k,2)=1
< ulk) Y u(kl)uusg)(m] e [,ﬁ“ﬁ,ﬂ ) %)\
[k1,k2]=k pLELPLE P\(kl,k2)p
< ZZ ‘Dkk(x)—L(x) H p—1 < z?
= 1,k2 _ A’
A plk)g(ka) oo p—2]  (logz)
(k1ko,2)=1

Corollary 1 is proved.
Consider the sequence

A={(p1 +2)(p2 +2) |z <p1,p2 <3z, (p1 +p2)/2 prime}
and let B be the set of odd primes. Define

—oom(a). wlk) = kT 2P =5
X =on). ) =k G=pr

We apply Theorem 10.3 of [3] choosing k =2, a =1/4, p =4.1, ( = 0.4. Tt
is clear that we may get rid the extra factor 3*(4) in the condition R(k, )
using, for example, the Cauchy inequality. We obtain

LE2

og® x

|{P9 :Pg € .A}‘ >

Since the contribution of the terms for which p; = py is at most O(x),
the last estimate proves Corollary 2.

4. Proof of the Theorem. It is clear that
1-1/7
1 2
Diyga(m) = | Sk (@)Sk,(0)S(—20) dov = DY, (2) + D, (x).
—1/7
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where
DY (@) = | Sk (@)Sk, (@)S(—20) dar, i =1,2.
E;
Consequently,
(8) E<E + &,
where
p—1
O &= T3 |l i 1
ki,ko <H (k1,k2)
(k1k2,2)=1
2
(1) &= 33 D)
k1o <H
(k1k2,2):1
The proof of the Theorem follows from (3), (8) (10) and from the inequalities
2 z?
£ — & —
S Toga) T 7 {loga)?
4.1. The estimate of £1. We have
qg—1
1
(1) D@ =3 > Ia.q).
4<Q  a=0
a,q)=1
where
1/(q) a a a
(12)  I(a,q) = S Sk1<—+a>5k2<—+a>8<2<—+a>>da.
q q q
—1/(q7)
If
1
qr

then we have
(14) S<2<g+a>> = @V(*%I)Jro(l’e_”\/m),

where

h(q) = i e<2m>ﬂ<(q?2)>-s0(q)
" e(Gy)

(the proof is similar to that of [6, Lemma 3, X]).
Consider Si(a/q+ «) for a, g, « satisfying (13). We are not able to find
an asymptotic formula for that sum for a particular large & (unless we use
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some hypotheses which have not been proved yet). We shall find, however,
an asymptotic formula with an error term which is small on average.
We have

(15) Sk<g +a> - 1<§m:< e(@>T(a),

(m,q)=1
m=—2((k,q))

where

Using the elementary theory of congruences one may easily prove that
if the integers k, m, q satisfy (k,2) = (m,q) =1 and m = —2((k,q)) then
there exists an integer f = f(k,m,q) such that (f, [k, ¢]) = 1 and such that
for any integer n the congruence n = f ([k,q]) is equivalent to the system

n = —-2(k), n =m/(q). Hence we have
T(a) = Z e(ap).
r<p<3z
p=f ([k.a])
We define
Y
A(t, h) = 1 - —.
() = max oo, | 2 ToBr =
p<y
p=1(h)
Using Abel’s formula we obtain
3x
d [e(at) e(3ax)
T(a) = — 1 — dt 1
(@) S ( Z ng) dt ( 10gt> + ( Z ng) log 3%
T z<p<t r<p<3z
p=f ([k.q]) p=f ([k.q])
3z
t—x d (e(at)
= - —— + O(AQ3x, [k, q >—< )dt
§ <so([k,q]) (A0 15 a)) ) 35 Togs
2x e(3ax)
+ | ———— +O0(A3z, |k, q )
(e  Otaten )
3z
1 d t 2 (3ax:
_ S -2 e(at) gt 42 e(3ax)
o([k,q)) dt \ logt log 3z
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3z

e(at)
g gt dt = V(a) + O(1)
to get
V(e Q .
Tle) = o(ka) O( g A0k qD) '

We substitute this expression for 7'(a) in (15) and we find that under the
condition (13) we have

E al = Ck(a‘aq) a T
1) 52 +a) = HEDv() 4 0QAGS k)
where
(17) cx(a,q) = el 270,
o= 2 ()
i gy

An explicit formula for the quantity ¢ (a, g) is found in [7, p. 218]. It implies
that

(18) ek (a, q)| < 1.

T

Furthermore, we shall use the trivial estimates
T
<7 Vi<

a
S _
k(q+a> k

From (14), (16), (18), (19) and the well-known estimate ¢(n)>n(loglogn)~!
we get

3

— S, (g + a> Sk, (g + a> %V(—Qa) + o(kszeﬂ\/@>
)
)

(19)

h 1.
hepr @) <

o, N entea) o
“Omlgt )so(q oz @Y 2
Q.’E2 ‘TB —cy/log x
+ O(quA(g.’E, [kg,(]])) + O<k1k2€ )

— h(q)ck1 (aa q)ck2 (aa q)
o(q)o([k1,q))e([k2,q))

2 2
; O(%A(%, [kl,qn) " o(%’lmsm, [kz,q])).

V2(@)V (- 2a) + O(k‘kaer/@>
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For the integral I(a,q) defined by (12), we find

o Maen @ e (ag) T
@) 1) = e ey ) ¥V
zQ? zQ?

+ 0L Ao ha) ) + O£ Asa. )
We also have

1/(qT)
(21) S V2()V(—2a)da = y(z) + O(¢*1?)

—1/(qT)

(the proof is analogous to that in [6, Lemma 4, X]). Using (18)—(21) we find
that

_ h(q)cr, (a,q)ck, (a,q) ., 7272
(22) 19 = 2o o ])sa([kQ,q])”(")+O< Or ([kl,q])<p([k2,q])>

+ o(”CQz A3, [kl,q])> + O( o’ 5 A3z, [kz,q])>

k2q k q
+O(k1k2 C\/@)
Set
(23) br, x5 ( Z (0, q)cr, (. q),
(a :>°:
(24) Ak ko () = h(q )bk1 ks (g )‘P((klaq»SD((kzaQ))_

¥3(q)
From (11), (22)—(24) and the well-known formula

o([k, q))e((k,q) = (k)p(q)

we get
) ’
25) DM (z)= Aky o +O( (log z) 7>
k1.k2 kl)QD Q<ZQ SZ [kla ][kQa ]
+0

+0

<’I‘ STk kla ]))
29
(

<@
2
er Z 3’1‘ k‘z, )) —|—O< x e—c‘/logm>.
q<@Q

k1q 1k
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Consider the function by, x,(¢). From (18) and (23) we have

(26) bk ks (@)] < ().

It is not difficult to see that by, x,(¢) is multiplicative with respect to ¢ and
that for prime p we have

p—1 ifptki, pths,
1 if p| ki, ptka,
1 if ptke, p|ka,
-1 if plky, p|ks.
We also have by, ,(4) = 0. Therefore the function A, x,(q) defined by (24)
is multiplicative with respect to g and A, x,(p') = 0 if [ > 2. We apply

Euler’s identity (see [4, Theorem 286]) and also (19), (26), (27) and the
definition of oy. After some calculations we get

(28) Z}\kl o (q) = H P*l (z (kl,Q)(kz,Q))

2
4<Q pl(k ko) P ()

(27) bk1,k2 (p) -

From (25), (28) and the trivial estimate

() < —
T
7 log® z
we obtain
ooy() p—1 5 (k1,q9)(k2,q)logq
(29) DV (g) =20 ——I—(’)(m
k1o @(k1)o(ks) (Hk2)17—2 q>ZQ k1koq?
3 [k (3z, [k
roeqry 25 ) yofsgry 2 Te)
4<Q 4<Q 14

+ 0(72(loga:) q;) m> + o(kl;; W)

Using (9) and (29) we find
(30) & < xQ221 + 72(10?, x) Xy + 2 X5 + z2e vV logz’
where

3$ kg,
p- Yy ypAbed o v oy

k1q
I{‘],k2<H q<Q k],k2<H q<Q

_ kla k2a logq
Y= D D k1 k2g?

ki,k2<H ¢>Q

2,4
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Consider ;. We have

E<H ¢<Q q h<HQ

where
1 1
n(h):ZZ—: Z - < Z -~ < log’x
k<t g 1 a<Qr<m ez ! a<Q 4<q
[k,q]=h [k,q]=h q=0(d)
(k.q)=d

Hence

1 < (log® ) Z A(3z,h).
h<HQ
Now we use the definitions of H, ) and the Bombieri—Vinogradov theorem
(see [2, Chapter 28], for example) and we find

(31) I L (log 2)2A+72"

We now treat 5. We have

Z didy Z Z/ﬁkz

d1,d2<Q ki1,k2<H ¢<Q
(k1,9)=d1
(k2,q)=d>
did 1
<qQ Z - 2] Z i < Q(log” z) 7,
di, d2<Q 1, d2 kiko<H 172
k1EO(d1)
kQEO(dg)
where
. d
W r-y oy oy
d1,d2<Q 1,d a<Q dl,d2<Q 152

(d1 da)=

<Z Z Z —<<log'r

d<Q d<Q/d d2<Q/d

Hence
(33) Yy < Qlog® .
To complete the estimate of £ we have to consider X'3. Obviously
log q
34 Xy = did =4+ X
(34) 3 Z 152 Z Zklkqu 4+ 25,
dy,do<H k1,ko<H ¢>Q
(a,k1)=d1

(a,k2)=d>
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where
lo
s Y aa XY M
di,do<H ki ko<H kikaq
1,d2< 1,k2<H ¢>Q
[d1:d2]>Q (q,kl)zdl
(qykZ):dZ
lo
Se Y da XY M
k1kaq
[d1,d2]<Q k1,k2<H ¢>Q
(g,k1)=d1
(qykZ):dZ
We have
1 log(qldq,d
@) Si< Y dd Y y, gt
dv,dy<H kr ko <H kks q*[dy, do]
l1,d2 < 1,k < q¢>Q/[d1,d2]
[dl,d2]>Q klEO(dl)
kQEO(dg)
1 1+10gq
STEED S i o B
di,do<H 1772 ImSH/d] k2<H/d2 q=1
[d1,d2]>Q
h log*
logTZ Z 1 < (log? T)Z h(2)<< {2233
h>Q h? [d1,d2]=h h>Q

For the sum X5 we find

1 lo log*z _,
s < (log” z) Z [d1, da)? Z %q < % 22
[di,d2]<@ U 7 4>Q/1dr ds)

where X* is defined by (32). Consequently,

log x
Q

Finally, combining (30), (31), (33) (36) and using the definitions of ) and
T we get

(36) X5 &

2
(log 2)4

4.2. The estimate of 5. 1t is clear that

&< Y HSkl(a)SkQ(a)S(—Qa)da.

k1,ka<H Es

& K
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Using the definition of Sy, («) we get

Z Z ‘ S Sk, (@) S(—2a)e(ap) doz‘

k],kQSH z<p§3z EQ
p=-2(k2)

Z Z ‘ S Sk, (@) S(—2a)e(—2a)e(arks) do

Eike<H (242)/ka<r<(3z+2)/ks Ea

Yy (x oy )
k1<H n<3z4+2 ko<H (2+42)/ka<r<(3z+2)/k>
rko=n

X ‘ S Sk, (@) S(—2a)e(—2a)e(an) da‘

&

IA

IN

IN

IN

> ¥ T(n)HSk(a)S(—2a)e(—2a)e(an)da‘.

k<H n<3z+2 E>

By Cauchy’s inequality we get

72(n) 1/2 1-1/7 2y 1/2
&y < < Z Z ’ ) ( Z k Z ‘ S fla)e(an) da ) ,
kE<H n<3z+2 E<H n<3z+2 —1/r

where
) Sk(@)S(—2a)e(—2a) if a € Es,
f(a){ok ifoc

We now apply Bessel’s inequality to obtain

(37) & < 2'/%(log? .7;)( A \sk(a)sma)\?da)l/2

k<H E,

<aog?a) (kY| [ IS el(pr — p2)a) da
k<H x<p1,p2<3z E,
P1 Ep25—2 (k)

>1/2

= 22 (log? ) X%, say.

We have
68) ==k > (X 1)1 Sea)rdanda
k<H Ir| <2z r<p1,p2 <3z Es
r=0(k) p1=p2=-2(k)
P1—p2=r

<z ¥ ‘ { \S(2a)|2e(a7")da‘

kE<H |r|<2z E-
r=0 (k)

= 2(Z' + 2"),
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where
2 =3 (] 15@a)? da),
k<H E»
=Y > [ [18(2a)Re(or) dal.
E<H 1<|r|<2z E»
r=0 (k)
Obviously
1
Hzx
log x

0
By the Cauchy inequality we find

Y« Z Z ‘ S |S(2a)?e(ra) da‘

k<H 1<r<2z E,
r=0 (k)

Z (Z )H 1S(2a)|%e (7"0/)(]0/‘

1<r<2zx k<H

klr
< Y o7

)| | 15(20)%e(ra) doz‘

1<r<2z E>
1-1/7
1/2 2 1/2
<(X 7m) (X ] s@etayda] )"
1<r<2z 1<r<2z —1/71

where

0 ifa e Ey.
We again apply the Bessel inequality to obtain

(]((l’) - {S(Qa)|2 ifaeEQa

1/2
(40) 0" < 512 (10g2)*2( | [S(20))" da)

E»>
1

1/2
< 22 (log z)?/? Sélg |S(2cr)| ( S 1S(20)|? da)
o 2 0

< z(logx) sup |S(2a)].
a€ FEs

Using the definitions of ), 7 and Fs we can prove in the same way as in
[6, Theorem 3, X] that

T
41 sup |S(2a)| <« Toa 7 2457
(1) sup [5(20) < e
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From (37)—(41) we obtain

2

E < xi
> (logz)A”

The Theorem is proved.

Finally, the authors would like to thank the Ministry of Science and

Education of Bulgaria for financial support under grant MM—-430.
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