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On cubic Thue inequalities and a result of Mahler
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Introduction. Let F(X,Y) € Z[X,Y] be a form of degree d > 3 with
integral coefficients which is irreducible over the rational numbers Q. It is
well known that the number of integral solutions (z,y) € Z? to the Thue
inequality |F'(z,y)| < m is finite. Moreover, one can estimate the number
Npg(m) of such solutions.

Let A(F) denote the area of the region {(z,y) € R? : |F(z,y)| < 1}.
Mahler in [M] approximates Ng(m) by m?/¢A(F), getting

(1) INp(m) — m* PA(F)| = O(m/ @)

as m — oo, where the constant implicit in the O notation depends on F.
More recently, W. Schmidt showed that Ngp(m) < m?/%(d + log m), where
the implied constant is absolute ([S], Chap. 3, Th. 1C), and later the author
in [T2] proved essentially that Np(m) < dm?/?. See also [MS1], [MS2].

Now on the one hand, Mahler’s result (1) is better in that m?/¢A(F)
really should approximate Ng(m). But on the other hand, Ng(m) should be
bounded above by some function of m and d independent of the coefficients
of F, as it is in the latter two results mentioned above. While it is known
that A(F') is bounded above (see [B2]), the implicit constant in the error
term of (1) actually grows polynomially with the height of F' (see [B1]). The
obvious conjecture is that Np(m) and m?»/?A(F) should differ by a function
depending only on m and d.

The author in [T1] proved just such a result in the case of cubic forms,
i.e., when the degree d = 3:

(2) INg(m) — m?A(F)] = O(1 + m®/* log m)

as m — oo, where the constant implicit in the O notation is absolute.
Besides the fact that the error term here, as a function of m, is larger than
that in (1), this result is lacking in another way which we now describe.
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Suppose G(X,Y) € R[X,Y] is a form of degree d > 3 with discriminant
D(G) # 0. For T € GLy(R) we get a form GT(X,Y) = G(T(X,Y)). Two
important observations here are first that the product A(G)|D(G)[*/(#(d=1))
is invariant under such actions, i.e.,

A(GT)|D(GT) M=) = AG)|D(G) | D)

(see [B2]), and second that Ng(m) is invariant under the action by T €
GL2(Z).

Now suppose F(X,Y) € Z[X,Y] is a cubic form with a non-zero dis-
criminant. Such a form is equivalent under the action of GLy(R) to ei-
ther XY (X —Y) or X(X? + Y?), depending on whether it factors over R
or not. In particular, there are only two possible values for the product
A(F)|D(F)|/¢ (namely 3B(1/3,1/3) and v/3B(1/3,1/3), where B is the
standard beta function). Thus, for such forms F, the main term A(F)m?/3
in (1) and (2) above essentially decreases as a function of the absolute value
of the discriminant |D(F')|, yet neither of the error terms does. In fact, as
is well known (see [S], for example), the height of F' is bounded below by a
positive power of |D(F')|, so that the error term in Mahler’s result actually
increases as a function of |D(F')|.

What we are able to prove here is the following estimate for cubic forms
where we not only achieve the m'/? in the error term as in (1) with an
absolute constant as in (2), but this part of the error term decreases as a
function of |D(F)|.

THEOREM. Let F(X,Y) € Z[X,Y] be a cubic form of discriminant D(F)
which is irreducible over Q and let m > 1. Let Np(m) and A(F') be as above.
Then

2008m /2
NG

There is nothing special about the constants 9, 2008 and 3156 appearing
above; they are certainly not optimal. We have included them rather than
use the < notation to show that the constants we get are not egregiously
large. Note that the main term in our theorem is smaller than the error term
if |[D(F)|> m?, at which point the error term is 3>>< m'/3. This is not so
bad since Ng(m)>m!/? for any form with the coefficient of X3 or Y < 1.
In other words, the main term in the theorem is larger than the error term
exactly when one would reasonably expect it to approximate Ng(m).

The proof of the theorem follows the typical approach of considering
“small”, “medium” and “large” solutions. The major improvement here on
past efforts is the fairly large lower bound obtained for certain derivatives
arising from the related Diophantine approximation problem. This is dealt
with in the following section. Our treatment of “medium” solutions seems
to be new, as well.

|Np(m) —m?PAF) <9 + 3156m'/3.
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Derivatives, discriminants and heights. In this section we derive
relations and bounds for certain derivatives and heights arising from a cubic
form F' in terms of the discriminant. We first fix some notation.

Let F(X,Y) € Z[X,Y] be a cubic form which is irreducible over Q.
Write

3 3 3
FX,Y)=[](6:X +7Y) =a][(X — a;¥) =b][(V - B:X),
=1 i=1 =1
where
a=0005, b=mm, o= and fi=a;".
Write
3 3
fX)=a][(X —u) =F(X,1) and g(Y)=b][(Y - 8)=F(1,Y).
=1 =1

The §;’s and +;’s are not uniquely determined by F', of course, but the «;’s,
Bi’s, a, b, f and g are.

Let
Y

Ai = det <
Yi N

>’ j<l’ j’l#i’

and

3
A= HAi.
1=1

Then |D(F)| = A% # 0 (since F is irreducible over Q). Also, the height of
F, H(F), satisfies

0% + |il?
cont(F')

(See [S], Chap. 3, Lemma 2A.) Note that the |A;|’s are invariant under the
action of GL2(Z), but H(F') certainly is not.

H(E) = Hiog) = H(5) = =

LEMMA 1. Let F be a cubic form as above. After possibly applying a
T € GLy(Z), we have

1/6
min (700l (81 > DU
If all the «;’s are real, then
cont(F)H(F) < 130/221/3|D(F)| /3,
otherwise
cont(F)H(F) < 23/2|D(F)|"/2.
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Proof. Let L;(X,Y) = 6;X + ;Y fori =1,2 and 3. We have

01 0o O3
0 = det 51 (52 53 = 51A1 — 52A2 + 53A3,
T2 3

and similarly
0 =741 =742 + 7343,
so that
(3) L3(X,Y)As = Ly(X,Y) Ay — Li(X,Y)A;.
Also,

(4)  1f ()] = lalei — o) (s — )| = ala; =
for all 4, where 7,1 # 4, and similarly
4|
b} "B = ‘7
We first treat the case where all the a;’s are real. Let P be the parallel-
ogram defined by
P = {(z,y) € R? : |A;Li(z,y)| < 1 fori=1,2}.

Let A1 < A5 be the successive minima of P with respect to the integer lattice
Z?. We then get a basis {a;, a3} of Z? that satisfies

max{|AiLifan) [} = M. max{AiLi(as)]} = do.

Let a = a; and suppose without loss of generality that |A;Li(a)| = A;. Let
b be the greatest integer part of Ay;Lq(as)/(A1L1(a)) and let b = ay — ba.
Then {a, b} is a basis for Z?, |A;Li(b)| < A and |Ay Ly (b)| < 2),. Finally,
after applying a suitable T' € GL5(Z) to F (T is given by a and b), we may
assume that a = (1,0) and b = (0, 1).

We conclude from this and (3) that, after applying some T' € GLy(7Z)
and possibly reindexing, we have

|A1L1(1,0)],]A2Ly(1,0)],] A1 L1(0, 1)] < Ay,
(6) |A3L3(1,0)] < 2,
|A;L;(0,1)] <iXy for i =2 and 3.

We need an upper bound for As. By Minkowski’s theorem, we have

4
Mg < ——— = | A
172 = Sol(P) 4]
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Also, since F' is irreducible over Q,

3
Al < |F(1,004] = [T 1Li(1.0)A;] < 223
=1
by (6). Thus
(7) Ao < 213 A3,

The first part of Lemma 1 follows from (4) (7). As for the height, we
have by (6),
| Alcont(F)H(F) < V2X1V5 V13X = V130(A1X2)Xa < V130| 4| s,

so that the upper bound for the height follows from (7).

We now consider the case when the «;’s are not all real. We may assume
without loss of generality that d3,v3 € R and that §; = 05 and Y1 = g
Note that this implies A3L3(X,Y) = —2Im(A; L, (X,Y)) by (3). We let P
be the parallelogram given by

P ={(z,y) € R : [Re(A1L1(z,y))], Tm (A1 Ly (2,y))| < 1}

and let A\; < Ay be the successive minima of P. We conclude similarly to

above that, after applying a suitable T' € GLy(Z), we have
®) |A1L1(1,0)] = [A2La(1,0)] < V2A1,  [AsLs(1,0)] < 2,
|ALL1(0,1)] = [A2L(0,1)] < V2X2,  [A3L3(0,1)] < 2.

Similarly to above, we get 43 > |A|. Also,

R,G(Alél) Im(Alél)
det (Re(Al'Yl) Im(A171)>

(3 3 e (31 32

A(vol(P))~! = = [Tm(A10:4171))

1
2 Ay A 2 Ay Aoy 2
Thus,

4 |A‘2/3
Ao < .
2= Apvol(P) = 2173

The remainder of the lemma follows from this and (8).

Approximations and a gap argument. In this section we prove two
auxiliary results. They are routine Diophantine approximation fare, but
we have included them for completeness. We continue with the notation
established above.

LEMMA 2. Let F be a cubic form as in the Theorem and suppose (x,y) €
R? satisfies |F(z,y)| < m. If y # 0, then
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z| o 4m
(]{- _— — S e —
Coyl T R ()
for some 1 <14 < 3. Similarly, if x # 0, then for some i,
Y 4dm
gi- Y <
Coa] T Jadg(Bi)]

Proof. Suppose y # 0 and choose i so that |a; — (z/y)]| is smallest. For
j # 1 we have

T T T
QOtj—;ZOéj—;—i-az‘—; Z‘Otj—a”.
Thus,
3
m _|Fla.y) 51 (s)]
> = =\flz/y) =lal | ] |y — —| 2 i = —|F
\y?’\ y3 H 7 y ’ y 4

by (4). The proof for x # 0 is the same with the obvious changes.

From now on, when we write z/y € Q it is assumed that = and y are
relatively prime integers with y > 0.

LEMMA 3. Let o € C and let A,B,C € R with C > B > A > 0. The
number of z/y € Q with |a— (z/y)| < A/(2y3) and B <y < C is no greater
than

log C' — log A
1+1 —|.
logz (logB — 10gA>
Proof. Let zo/yo,z1/y1,... be the distinct rational numbers satisfying

the hypotheses of the lemma, arranged so that yo < y; < ... We claim that
yn > A(B/A)?". This is trivially true for n = 0. We proceed by induction
on n. We have

1

YnYn+1

Ly, - Tn41

IN

Tn
< |— - o/‘ +
Yn Yn+1 Yn
A A A
T2 2yp40 Ty
so that 4,41 > A~ 'y2. The claim follows from this and the induction hy-

pothesis.
By the claim, if y, < C, then C > A(B/A)?". This implies that

) logC' — log A S
0 — 2 n
&2 logB —logA) =

Tp41
—
Yn+1

proving the lemma.

Small solutions. Since A(F), |D(F)| and Ng(m) are all invariant
under the action of GL(Z), we may assume without loss of generality that
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our form satisfies the conclusions of Lemma 1. Specifically, we assume from
now on that

(9) [f'(ci)ls 19" (Bi)| >
and that

(10)  H(as) = H(B) = H(F) < 130"/2213|D(F)['/? = | D(F)]"/2
for s =1,2 and 3.

|D(F)[M°

_ 1/6
21/33 *Cl‘D(F)‘

LEMMA 4. Let Ni.(m) denote the number of solutions to |F(x,y)] < m
with max{|z|,|y|} < m'/?/|D(F)[*'2. Then

375m?!/?
[D(F) /12
Proof. For the time being, let M = m!/2/|D(F)|'/'2. By [D] we have
INp(m) — Br(m)] <9+ 12M,

where Bp(m) denotes the area of the region
{(5,y) € B2 : |F(z,y)| < m, max{fs],ly]} < M}.

Let Bj(m) denote the area of the region
{(5,9) € R : [F(z,y)| <m, max{lal, [y} > M},

so that Bp(m) 4+ Bl (m) = m?/3A(F).

Ny (m) — m2BA(F)| < 9+

By (9),
8 1
S S dz dy = |f/(TZ)‘ S —dy
> M o — oyl <dm/(y2] £ () Iysm Y
16m 16m1/2

~ M) = alDF)T?
and similarly
S S 16m1/2

dydr < ——————
2 Y= LD
o[> M |y—Bia|<4m/(2?|g'(8)])

for any . Thus, by Lemma 2,
. 6-16m'/? 363m!/2
r(m) < )
~alD(E)YE DRV
In conclusion, we have
[Np(m) = m*? Ap(m)| < |Np(m) = Bp(m)| +|Br(m) = m*/* Ap(m)|

12m'/? 375m/?
- __ .+ B <94+ —
D T Prm) <9t

<9+
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Medium solutions. For the time being, fix an a amongst a;, as and
az. We will say an (z,y) € Z? with y # 0 is closest to a if | — (z/y)]| is
minimal, i.e., no greater than |a; — (z/y)| for any i. While this does not
rule out (z,y) being closest to two «;’s, it is closest to at least one of them.

LEMMA 5. Let B > 0 and let (zo,y0) be a solution to |F(z,y)] < m
closest to a with B < yg < 2B. The number of solutions (z,y) € 72 to
|F(z,y)] <m closest to a with B <y < 2B and (z,y) not a scalar multiple
of (zo,y0) is less than 18m/(Bc,|D(F)|Y/®). The number of such solutions
that are a scalar multiple of (xg,yo) is no greater than g = ged(zo, yo)-

Proof. Write g(z’',y') = (z0,y0), where g is the greatest common divi-
sor of zg and yg. Note that |F(z',y')| < mg2 and (2',y') is closest to a.
Let a’,b' € 7Z satisfy o'y’ — b'z’ = 1.

Given any solution (z,y) satisfying the hypotheses, we get a unique pair
a,b € 7 with

z=oaa +bzx', y=ab +by', and a=y'z -2y

Lemma 2 gives

o T
lgal = [zoy — yoz| = yyo|— — —
Yo Y
< ( 4dm, N 4dm, ) < 9mn
= YYo .
wlf'(@)|  y?lf' ()]~ Blf' ()
Further, for a given a we have
B —ab — ab/ 2B — ab’
Ia <Y Ia e Ia 7
Y Y Y

giving no more than B/y' = gB/yy < g possible values of b. Note that (z,y)
is a scalar multiple of (zg,yo) if and only if @ = 0. Lemma 5 now follows
from (9).

LEMMA 6. The number of solutions (z,y) to |F(z,y)| < m closest to «
with m*/?|D(F)|Y/'? <y < 16m/(c1|D(F)|/%) is no greater than

36m1/2

1/3
W + 144m .

Proof. Let By = m'/?/|D(F)|'/'2 and let N be least such that 2V B, >
16m/(c1|D(F)|'/%). We will use Lemma 5, counting those solutions with
2'By < y < 2B, for i = 0,...,N — 1. For some, possibly not all,
i=0,...,N — 1, we have positive integers g; and z;/y; € Q with 2!By <
giyi < 2%1By, |F(zi,y:)| < mg; ® and (w;,y;) closest to a. Setting g; = 0
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for all other ¢, we get less than
N-1

Z ' 18m

36m!/
v QZBOCI‘D(F)‘I/G—i_gi BocﬂD 1/6+ZQZ* 1| D(F |1/12 Zgz
possible solutions.
Now 2V By < 32B32/c;, so that

N <5 —1log,c1 +log, By < 5 —1log, 1 + (21/(21og 2))m/?t.
Thus,

Z gi < (5 —1logyc1 + (21/(2log 2))ml/21)40;1/37712/7
gi<dc, 1821

< (5—1logy c1 + (21/(210g 2)))de; /3 m!/3 < 138m!/3.

It remains to estimate the sum over those g; greater than 401_1/3m2/7.
If g; > 4cq 1/3 m?/7, then we have
ml/7

ol <
o — — .
yi|l = (9iy:)>ea[D(F)MS 167 | D(F)[/°

Also, since g;gm > |F(zi,y;)| > 1, we have g; < m'/? and y; > Bym /3 =
m!8 /| D(F)|*/*2. We now use Lemma 3, with A = m!/7/(8 D(F)|*/%), B =
m!8/|D(F)|*/*? and C = 16m/(c;|D(F)|'/®). According to Lemma 3, we
have no greater than

1 —log, A 1 , — 1 g
1+ log, 10g20 082 <1+ log, 7+ (6/7) logym — logy
ogy B —log, A 3+ (1/42)logym

< 1+1og,((7/3) +36 — (1/3)logyc1) < 7
possible z; /y; with g; > 40;1/3m2/7. Thus,

Z gi < 6m*/3,

97>4C1 1/3 2/7

4m

All told, we have less than

36m1/

36m 1/2 1
o /3
c1|D(F 1/12 + Z 9i < (F)[1/12 + 1ddm

possible solutions.

LEMMA 7. Let Nj(m) denote the number of solutions (z,y) € 72 to
|F(x,y)| < m with

m1/2

16m
W < max{|z|, [y[} <

| D(F)[MS
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Then
36m!/2 1633m1/2
N 12 —— "
r(m) < <cl|D(F)|1/12 < |D(F)[1/12

Proof. Multiplying by two the estimate in Lemma 6 above counts all
those solutions with

m'/2|D(F)[V1? < |y| < 16m/(c1|D(F)]'/0)

+ 144m1/3> +1728m /3.

that are closest to a. Multiplying by 3 takes care of the different possibilities
for a. Finally, the arguments above are entirely symmetric with respect to z
and y, i.e., the same estimates hold for counting solutions (z,y) with z # 0
and y/z closest to 8 = ; for some i.

Large solutions

LEMMA 8. Fiz an i between 1 and 3 and suppose (z,y) € 72 is a solution
to |F(z,y)| < m closest to a; with y > 16m/(cy|D(F)[*%). Then there is an
'y € Q with (z,y) = g(z',y"), where g = ged(z,y) and (z',y") is closest
to o;. Further,

.’I/J

a; — —
i
Y

< 4dm s 16m
= gy Pa|DENE Y = cg[D(F)[

and g < m'/3,

Proof. The first statement is clear given our conventions mentioned
above about writing elements of Q. Certainly z’/y’ is closest to «;, so
that the second statement follows from Lemma 1 and (9). Finally, we have
9° < @IF(,y") = |F(z,y)| <m.

For the next two lemmas, fix an « as in the last section and a positive
integer g < m!/3.

LEMMA 9. Let
C = max{(Sm/(g301\D(F)‘l/ﬁ))‘l’ (83H(a))2'543}_
The number of z/y € Q with 16m/(cig|D(F)|Y/¢) <y < C satisfying

< 4m,
y| = y3gici|D(F)|1/6

a —

18 less than
log, m

25.6 +1 4 —1 —2c ).

s ( 0821 % 1+210g29>

Proof. Let

A

8m,

= W and B = max{?gQA, 1}
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Note that by (10),
(11) C < max{A*, (c38°|D(F)|)*"}.

We are then counting the number of z/y € Q with B < y < C satisfying
lo—(z/y)| < A/(2y®). We estimate the number of such z/y using Lemma 3.

First suppose B > 1, so that log, B — logs A = 1 + 2log, g and 16m >
c1g|D(F)|'C. 1f C = A*, then

logy C —logs A 3logy A
logo, B —loga A 142logyg
since A < 8m/c;. If C > A%, then by (11),
log, C' < 543(21og, ¢y + 18 4 log, | D(F)|)
< 543(21og, ¢y + 18 4 6(4 — log, ¢1 + log, m)).

3logy m
1+2logyg’

<9 —-3logyecr +

Thus,
logQCflogQASl_l_ log, C
logy B — log, A 14+ 2logy g
6log, m
< 543 2log, o — 6logy c1 +43 + ——2—— |,
< ( 0gq C2 0gy C1 + +1+210g29>

Now suppose B = 1. Then A < 1/(2¢?) and
log, C < 543(2log, ¢y + 18 4 log, | D(F))|)
by (11). We also have |D(F)| > 16, since |D(F')| € Z and
1> 16m/(ger | D(F)|Y/%) > 16/|D(F)].

We get
log, C 3
—=——— < 54°(2logy c2 + 19)
log, | D(F)] ’
and
log, |D(F)| _ logy (8m/(c19%)) — log, A <14 3+ logym —log, 1
—6log, A —log, A - —log, A
log, m
<4—logye; + ———.
- 0g2(1+1+210g2_q
Thus,
logo C —logs A log, C
log, B —logy A —log, A

log, m
6-543(2log, ¢ + 19) [ 4 — logy ¢4 + ——2—— .
< (21og, c2 + )( Og2pl+1+2logzg>
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In all cases we have

log, C — log, A

logy B — log, A
so that

log, C —log, A logo m
1+1 < 25.6 +1 4—1 — .
gz <10g2 B —log, A +logz o821+ 14+ 2logy g

log, m
6-54%(21og, co +19)[ 4 — logy cg + —22—
< (2log, co + )( Og2pl+1+2log2g>’

Lemma 9 follows from this and Lemma 3.

LEMMA 10. Let C be as in Lemma 9. The number of x/y € Q withy > C
and y > |x| satisfying

< 4dm
= y3g3cl\D(F)\1/6

Y

is no greater than 25.

Proof. For z/y € Q, set H(z/y) = \/x? + y? (recall our conventions
about z/y € Q). In particular, for the z/y € Q considered in Lemma 10,
y < H(z,y) <2y.

By Theorem 6A of [S], Chapter 2 (using m = 2 and x = 1/9), there is
some B > 0 such that all z/y € Q satisfying

1

T
"y Hag) Ve

Y

have either H(z/y) < (83H ()% or B < H(z/y) < B*%*’. Note that all
x/y € Q satisfying the hypotheses of Lemma 10 have

4m < 4m
y11/401/49361‘D(F)‘1/6

T
oa——| <

Y|~ (yg)3c1|D(F)|'/6
1 1

< 2y11/4 < H(z/y)10V6/9

and H(z/y) > (83 H(a))>5*.
A standard gap argument (Lemma 8B of [S], Chapter 2, for example)
shows that the number of z/y € Q with

1

T
N < 2y11/4

Y

and B <y < B+ ig no greater than

log(log(B4'543)/ log B)
log(7/4)

and the number with B/2 <y < B is at most 1. This proves Lemma 10.

1+ < 25
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LEMMA 11. Let N}!(m) denote the number of solutions (z,y) € 72 to
|F(x,y)| < m with

(el g} > —om
maxiy (o _
W= DR

Then Ny (m) < 1428m*/3.

Proof. Fix an i between 1 and 3. By Lemmas 8-10, the number of
solutions closest to «; with
16m
€T =y> ———
maX{|T‘a|y‘} y_ Cl|D(F)|1/6

is less than

log, m
Y 50.6+log, (4 logyer + —o2 ).

14+ 2logyg
ggm1/3

Now
log, m )

50.6 +1 4 —1 —_
Z + 0g2< Og261+1+210g29

ggml/ﬁ

< m'%(50.6 + log, (4 — log, ¢; + log, m))
< m*8(50.6 + log,(8 — 2log, ¢1) + log, m)
< mY%(54.4 +8.7m'/%) < 64m*/3

and

1 )
> 06+ g, (4 gy + 2
m1/6<g<m1/3 + 0829

< m3(50.6 + logy (4 — logy c1 + 3)) < 55m/3,

Thus, the number of solutions closest to «; with

16m
c1|D(F)[1/6
is less than 119m'/3. Moreover, the exact same estimates hold by the sym-
metry of our argument for the number of solutions closest to 8; with

16m
| D(F)[V6
Arguing exactly as in the proof of Lemma 7, we get

N (m) < 12-119m/? = 1428m*/3.

Proof of Theorem. By Lemmas 7 and 11 we have
1633m*/2
[D(F)[1/12

max{lzl, [y} =y >

max{|z|, [y} =z >

Ng(m) — Nj(m) = Nj(m) + Ny (m) < + 3156m /3.
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Also,
INF(m) — m*PA(F)| < |[Np(m) — Njp(m)| + |[Nj.(m) — m*/3 A(F)|
375m1/?
< INp(m) — Np(m)| +9 + D(F) 2

by Lemma 4. The Theorem follows.
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