
ACTA ARITHMETICALXXXIII.1 (1998)
On 
ubi
 Thue inequalities and a result of MahlerbyJeffrey Lin Thunder (DeKalb, Ill.)Introdu
tion. Let F (X;Y ) 2 Z[X;Y ℄ be a form of degree d � 3 withintegral 
oeÆ
ients whi
h is irredu
ible over the rational numbers Q . It iswell known that the number of integral solutions (x; y) 2 Z2 to the Thueinequality jF (x; y)j � m is �nite. Moreover, one 
an estimate the numberNF (m) of su
h solutions.Let A(F ) denote the area of the region f(x; y) 2 R2 : jF (x; y)j � 1g:Mahler in [M℄ approximates NF (m) by m2=dA(F ), getting(1) jNF (m)�m2=dA(F )j = O(m1=(d�1))as m ! 1, where the 
onstant impli
it in the O notation depends on F .More re
ently, W. S
hmidt showed that NF (m) � m2=d(d + logm); wherethe implied 
onstant is absolute ([S℄, Chap. 3, Th. 1C), and later the authorin [T2℄ proved essentially that NF (m)� dm2=d. See also [MS1℄, [MS2℄.Now on the one hand, Mahler's result (1) is better in that m2=dA(F )really should approximate NF (m). But on the other hand, NF (m) should bebounded above by some fun
tion of m and d independent of the 
oeÆ
ientsof F , as it is in the latter two results mentioned above. While it is knownthat A(F ) is bounded above (see [B2℄), the impli
it 
onstant in the errorterm of (1) a
tually grows polynomially with the height of F (see [B1℄). Theobvious 
onje
ture is that NF (m) and m2=dA(F ) should di�er by a fun
tiondepending only on m and d.The author in [T1℄ proved just su
h a result in the 
ase of 
ubi
 forms,i.e., when the degree d = 3:(2) jNF (m)�m2=3A(F )j = O(1 +m29=44 logm)as m ! 1, where the 
onstant impli
it in the O notation is absolute.Besides the fa
t that the error term here, as a fun
tion of m, is larger thanthat in (1), this result is la
king in another way whi
h we now des
ribe.1991 Mathemati
s Subje
t Classi�
ation: 11D75, 11J25.Resear
h partially supported by NSA grant MDA904-95-1-1087.[31℄



32 J. L. ThunderSuppose G(X;Y ) 2 R[X;Y ℄ is a form of degree d � 3 with dis
riminantD(G) 6= 0: For T 2 GL2(R) we get a form GT (X;Y ) = G(T (X;Y )): Twoimportant observations here are �rst that the produ
t A(G)jD(G)j1=(d(d�1))is invariant under su
h a
tions, i.e.,A(GT )jD(GT )j1=(d(d�1)) = A(G)jD(G)j1=(d(d�1))(see [B2℄), and se
ond that NF (m) is invariant under the a
tion by T 2GL2(Z).Now suppose F (X;Y ) 2 Z[X;Y ℄ is a 
ubi
 form with a non-zero dis-
riminant. Su
h a form is equivalent under the a
tion of GL2(R) to ei-ther XY (X � Y ) or X(X2 + Y 2), depending on whether it fa
tors over Ror not. In parti
ular, there are only two possible values for the produ
tA(F )jD(F )j1=6 (namely 3B(1=3; 1=3) and p3B(1=3; 1=3); where B is thestandard beta fun
tion). Thus, for su
h forms F , the main term A(F )m2=3in (1) and (2) above essentially de
reases as a fun
tion of the absolute valueof the dis
riminant jD(F )j, yet neither of the error terms does. In fa
t, asis well known (see [S℄, for example), the height of F is bounded below by apositive power of jD(F )j, so that the error term in Mahler's result a
tuallyin
reases as a fun
tion of jD(F )j.What we are able to prove here is the following estimate for 
ubi
 formswhere we not only a
hieve the m1=2 in the error term as in (1) with anabsolute 
onstant as in (2), but this part of the error term de
reases as afun
tion of jD(F )j.Theorem. Let F (X;Y ) 2 Z[X;Y ℄ be a 
ubi
 form of dis
riminant D(F )whi
h is irredu
ible over Q and let m � 1. Let NF (m) and A(F ) be as above.Then jNF (m)�m2=3A(F )j < 9 + 2008m1=2jD(F )j1=12 + 3156m1=3:There is nothing spe
ial about the 
onstants 9, 2008 and 3156 appearingabove; they are 
ertainly not optimal. We have in
luded them rather thanuse the � notation to show that the 
onstants we get are not egregiouslylarge. Note that the main term in our theorem is smaller than the error termif jD(F )j�m2, at whi
h point the error term is ��m1=3. This is not sobad sin
e NF (m)�m1=3 for any form with the 
oeÆ
ient of X3 or Y 3 � 1.In other words, the main term in the theorem is larger than the error termexa
tly when one would reasonably expe
t it to approximate NF (m).The proof of the theorem follows the typi
al approa
h of 
onsidering\small", \medium" and \large" solutions. The major improvement here onpast e�orts is the fairly large lower bound obtained for 
ertain derivativesarising from the related Diophantine approximation problem. This is dealtwith in the following se
tion. Our treatment of \medium" solutions seemsto be new, as well.



Cubi
 Thue inequalities 33Derivatives, dis
riminants and heights. In this se
tion we deriverelations and bounds for 
ertain derivatives and heights arising from a 
ubi
form F in terms of the dis
riminant. We �rst �x some notation.Let F (X;Y ) 2 Z[X;Y ℄ be a 
ubi
 form whi
h is irredu
ible over Q .WriteF (X;Y ) = 3Yi=1(ÆiX + 
iY ) = a 3Yi=1(X � �iY ) = b 3Yi=1(Y � �iX);where a = Æ1Æ2Æ3; b = 
1
2
3; �i = �
iÆi and �i = ��1i :Writef(X) = a 3Yi=1(X � �i) = F (X; 1) and g(Y ) = b 3Yi=1(Y � �i) = F (1; Y ):The Æi's and 
i's are not uniquely determined by F , of 
ourse, but the �i's,�i's, a, b, f and g are.Let �i = det� Æj Æl
j 
l� ; j < l; j; l 6= i;and � = 3Yi=1�i:Then jD(F )j = �2 6= 0 (sin
e F is irredu
ible over Q). Also, the height ofF , H(F ), satis�esH(F ) = H(�i) = H(�i) = Q3i=1pjÆij2 + j
ij2
ont(F ) :(See [S℄, Chap. 3, Lemma 2A.) Note that the j�ij's are invariant under thea
tion of GL2(Z), but H(F ) 
ertainly is not.Lemma 1. Let F be a 
ubi
 form as above. After possibly applying aT 2 GL2(Z), we havemin1�i�3fjf 0(�i)j; jg0(�i)jg � jD(F )j1=63 � 21=3 :If all the �i's are real , then
ont(F )H(F ) � 1301=221=3jD(F )j1=3;otherwise 
ont(F )H(F ) � 23=2jD(F )j1=2:



34 J. L. ThunderP r o o f. Let Li(X;Y ) = ÆiX + 
iY for i = 1; 2 and 3. We have0 = det0� Æ1 Æ2 Æ3Æ1 Æ2 Æ3
1 
2 
31A = Æ1�1 � Æ2�2 + Æ3�3;and similarly 0 = 
1�1 � 
2�2 + 
3�3;so that(3) L3(X;Y )�3 = L2(X;Y )�2 � L1(X;Y )�1:Also,(4) jf 0(�i)j = ja(�i � �j)(�i � �l)j = j�jja(�j � �l)j = j�jjLi(1; 0)�ijfor all i, where j; l 6= i, and similarly(5) jg0(�i)j = j�jjLi(0; 1)�ij :We �rst treat the 
ase where all the �i's are real. Let P be the parallel-ogram de�ned byP = f(x; y) 2 R2 : j�iLi(x; y)j � 1 for i = 1; 2g:Let �1 � �2 be the su

essive minima of P with respe
t to the integer latti
eZ2. We then get a basis fa1;a2g of Z2 that satis�esmaxi=1;2fj�iLi(a1)jg = �1; maxi=1;2fj�iLi(a2)jg = �2:Let a = a1 and suppose without loss of generality that j�1L1(a)j = �1. Letb be the greatest integer part of �1L1(a2)=(�1L1(a)) and let b = a2 � ba.Then fa;bg is a basis for Z2, j�1L1(b)j � �1 and j�2L2(b)j � 2�2. Finally,after applying a suitable T 2 GL2(Z) to F (T is given by a and b), we mayassume that a = (1; 0) and b = (0; 1).We 
on
lude from this and (3) that, after applying some T 2 GL2(Z)and possibly reindexing, we havej�1L1(1; 0)j; j�2L2(1; 0)j; j�1L1(0; 1)j � �1;j�3L3(1; 0)j � 2�1;(6) j�iLi(0; 1)j � i�2 for i = 2 and 3.We need an upper bound for �2. By Minkowski's theorem, we have�1�2 � 4vol(P ) = j�j:



Cubi
 Thue inequalities 35Also, sin
e F is irredu
ible over Q ,j�j � jF (1; 0)�j = 3Yi=1 jLi(1; 0)�ij � 2�31by (6). Thus(7) �2 � 21=3j�j2=3:The �rst part of Lemma 1 follows from (4){(7). As for the height, wehave by (6),j�j
ont(F )H(F ) � p2�1p5�2p13�2 = p130(�1�2)�2 � p130j�j�2;so that the upper bound for the height follows from (7).We now 
onsider the 
ase when the �i's are not all real. We may assumewithout loss of generality that Æ3; 
3 2 R and that Æ1 = Æ2 and 
1 = 
2.Note that this implies �3L3(X;Y ) = �2 Im(�1L1(X;Y )) by (3). We let Pbe the parallelogram given byP = f(x; y) 2 R2 : jRe(�1L1(x; y))j; jIm(�1L1(x; y))j � 1gand let �1 � �2 be the su

essive minima of P . We 
on
lude similarly toabove that, after applying a suitable T 2 GL2(Z), we have(8) j�1L1(1; 0)j = j�2L2(1; 0)j � p2�1; j�3L3(1; 0)j � 2�1;j�1L1(0; 1)j = j�2L2(0; 1)j � p2�2; j�3L3(0; 1)j � 2�2:Similarly to above, we get 4�31 � j�j. Also,4(vol(P ))�1 = ����det�Re(�1Æ1) Im(�1Æ1)Re(�1
1) Im(�1
1)����� = jIm(�1Æ1�1
1)j= 12 ����det��1Æ1 �1Æ1�1
1 �1
1����� = 12 ����det��1Æ1 �2Æ2�1
1 �2
2����� = j�j2 :Thus, �2 � 4�1vol(P ) � j�j2=321=3 :The remainder of the lemma follows from this and (8).Approximations and a gap argument. In this se
tion we prove twoauxiliary results. They are routine Diophantine approximation fare, butwe have in
luded them for 
ompleteness. We 
ontinue with the notationestablished above.Lemma 2. Let F be a 
ubi
 form as in the Theorem and suppose (x; y) 2R2 satis�es jF (x; y)j � m. If y 6= 0, then



36 J. L. Thunder�����i � xy ���� � 4mjy3f 0(�i)jfor some 1 � i � 3: Similarly , if x 6= 0; then for some i,�����i � yx ���� � 4mjx3g0(�i)j :P r o o f. Suppose y 6= 0 and 
hoose i so that j�i� (x=y)j is smallest. Forj 6= i we have 2�����j � xy ���� � �����j � xy ����+ �����i � xy ���� � j�j � �ij:Thus,mjy3j � ����F (x; y)y3 ���� = jf(x=y)j = jaj 3Yj=1 �����j � xy ���� � �����i � xy ���� jf 0(�i)j4by (4). The proof for x 6= 0 is the same with the obvious 
hanges.From now on, when we write x=y 2 Q it is assumed that x and y arerelatively prime integers with y > 0.Lemma 3. Let � 2 C and let A;B;C 2 R with C � B > A > 0. Thenumber of x=y 2 Q with j�� (x=y)j � A=(2y3) and B � y � C is no greaterthan 1 + log2� logC � logAlogB � logA�:P r o o f. Let x0=y0; x1=y1; : : : be the distin
t rational numbers satisfyingthe hypotheses of the lemma, arranged so that y0 � y1 � : : : We 
laim thatyn � A(B=A)2n . This is trivially true for n = 0. We pro
eed by indu
tionon n. We have 1ynyn+1 � ����xnyn � xn+1yn+1 ���� � ����xnyn � �����+ ����xn+1yn+1 � ������ A2y3n + A2y3n+1 � Ay3n ;so that yn+1 � A�1y2n: The 
laim follows from this and the indu
tion hy-pothesis.By the 
laim, if yn � C, then C � A(B=A)2n . This implies thatlog2� logC � logAlogB � logA� � n;proving the lemma.Small solutions. Sin
e A(F ), jD(F )j and NF (m) are all invariantunder the a
tion of GL2(Z), we may assume without loss of generality that



Cubi
 Thue inequalities 37our form satis�es the 
on
lusions of Lemma 1. Spe
i�
ally, we assume fromnow on that(9) jf 0(�i)j; jg0(�i)j � jD(F )j1=621=33 = 
1jD(F )j1=6and that(10) H(�i) = H(�i) = H(F ) � 1301=221=3jD(F )j1=2 = 
2jD(F )j1=2for i = 1; 2 and 3.Lemma 4. Let N 0F (m) denote the number of solutions to jF (x; y)j � mwith maxfjxj; jyjg � m1=2=jD(F )j1=12. ThenjN 0F (m)�m2=3A(F )j < 9 + 375m1=2jD(F )j1=12 :P r o o f. For the time being, let M = m1=2=jD(F )j1=12. By [D℄ we havejN 0F (m)�BF (m)j � 9 + 12M;where BF (m) denotes the area of the regionf(x; y) 2 R2 : jF (x; y)j � m; maxfjxj; jyjg �Mg:Let B0F (m) denote the area of the regionf(x; y) 2 R2 : jF (x; y)j � m; maxfjxj; jyjg > Mg;so that BF (m) +B0F (m) = m2=3A(F ).By (9),\jyj>M \jx��iyj<4m=(y2jf 0(�i)j) dx dy = 8mjf 0(�i)j \jyj>M 1y2 dy= 16mM jf 0(�i)j � 16m1=2
1jD(F )j1=12and similarly \jxj>M \jy��ixj<4m=(x2jg0(�i)j) dy dx � 16m1=2
1jD(F )j1=12for any i. Thus, by Lemma 2,B0F (m) � 6 � 16m1=2
1jD(F )j1=12 < 363m1=2jD(F )j1=12 :In 
on
lusion, we havejN 0F (m)�m2=3AF (m)j � jN 0F (m)�BF (m)j+ jBF (m)�m2=3AF (m)j� 9 + 12m1=2jD(F )j1=12 +B0F (m) < 9 + 375m1=2jD(F )j1=12 :



38 J. L. ThunderMedium solutions. For the time being, �x an � amongst �1; �2 and�3. We will say an (x; y) 2 Z2 with y 6= 0 is 
losest to � if j� � (x=y)j isminimal, i.e., no greater than j�i � (x=y)j for any i. While this does notrule out (x; y) being 
losest to two �i's, it is 
losest to at least one of them.Lemma 5. Let B > 0 and let (x0; y0) be a solution to jF (x; y)j � m
losest to � with B � y0 < 2B. The number of solutions (x; y) 2 Z2 tojF (x; y)j � m 
losest to � with B � y < 2B and (x; y) not a s
alar multipleof (x0; y0) is less than 18m=(B
1jD(F )j1=6). The number of su
h solutionsthat are a s
alar multiple of (x0; y0) is no greater than g = g
d(x0; y0).P r o o f. Write g(x0; y0) = (x0; y0), where g is the greatest 
ommon divi-sor of x0 and y0. Note that jF (x0; y0)j � mg�3 and (x0; y0) is 
losest to �.Let a0; b0 2 Z satisfy a0y0 � b0x0 = 1.Given any solution (x; y) satisfying the hypotheses, we get a unique paira; b 2 Z withx = aa0 + bx0; y = ab0 + by0; and a = y0x� x0y:Lemma 2 givesjgaj = jx0y � y0xj = yy0����x0y0 � xy ����� yy0� 4my30 jf 0(�)j + 4my3jf 0(�)j� < 9mBjf 0(�)j :Further, for a given a we haveB � ab0y0 � y � ab0y0 = b < 2B � ab0y0 ;giving no more than B=y0 = gB=y0 � g possible values of b. Note that (x; y)is a s
alar multiple of (x0; y0) if and only if a = 0. Lemma 5 now followsfrom (9).Lemma 6. The number of solutions (x; y) to jF (x; y)j � m 
losest to �with m1=2jD(F )j1=12 � y < 16m=(
1jD(F )j1=6) is no greater than36m1=2
1jD(F )j1=12 + 144m1=3:P r o o f. Let B0 = m1=2=jD(F )j1=12 and let N be least su
h that 2NB0 �16m=(
1jD(F )j1=6). We will use Lemma 5, 
ounting those solutions with2iB0 � y < 2i+1B0 for i = 0; : : : ; N � 1. For some, possibly not all,i = 0; : : : ; N � 1, we have positive integers gi and xi=yi 2 Q with 2iB0 �giyi < 2i+1B0, jF (xi; yi)j � mg�3i and (xi; yi) 
losest to �. Setting gi = 0



Cubi
 Thue inequalities 39for all other i, we get less thanN�1Xi=0 18m2iB0
1jD(F )j1=6+gi < 36mB0
1jD(F )j1=6+N�1Xi=0 gi = 36m1=2
1jD(F )j1=12+N�1Xi=0 gipossible solutions.Now 2NB0 < 32B20=
1, so thatN < 5� log2 
1 + log2B0 < 5� log2 
1 + (21=(2 log 2))m1=21:Thus, Xgi�4
�1=31 m2=7 gi < (5� log2 
1 + (21=(2 log 2))m1=21)4
�1=31 m2=7� (5� log2 
1 + (21=(2 log 2)))4
�1=31 m1=3 < 138m1=3:It remains to estimate the sum over those gi greater than 4
�1=31 m2=7.If gi > 4
�1=31 m2=7; then we have������ xiyi ���� � 4m(giyi)3
1jD(F )j1=6 < m1=716y3i jD(F )j1=6 :Also, sin
e g�3i m � jF (xi; yi)j � 1, we have gi � m1=3 and yi � B0m�1=3 =m1=6=jD(F )j1=12: We now use Lemma 3, with A = m1=7=(8jD(F )j1=6), B =m1=6=jD(F )j1=12 and C = 16m=(
1jD(F )j1=6). A

ording to Lemma 3, wehave no greater than1 + log2� log2 C � log2Alog2B � log2A� � 1 + log2�7 + (6=7) log2m� log2 
13 + (1=42) log2m �< 1 + log2((7=3) + 36� (1=3) log2 
1) < 7possible xi=yi with gi > 4
�1=31 m2=7. Thus,Xgi>4
�1=31 m2=7 gi � 6m1=3:All told, we have less than36m1=2
1jD(F )j1=12 + N�1Xi=0 gi < 36m1=2
1jD(F )j1=12 + 144m1=3possible solutions.Lemma 7. Let N 00F (m) denote the number of solutions (x; y) 2 Z2 tojF (x; y)j � m with m1=2jD(F )j1=12 < maxfjxj; jyjg < 16m
1jD(F )j1=6 :



40 J. L. ThunderThenN 00F (m) < 12� 36m1=2
1jD(F )j1=12 + 144m1=3� < 1633m1=2jD(F )j1=12 + 1728m1=3:P r o o f. Multiplying by two the estimate in Lemma 6 above 
ounts allthose solutions withm1=2jD(F )j1=12 � jyj < 16m=(
1jD(F )j1=6)that are 
losest to �. Multiplying by 3 takes 
are of the di�erent possibilitiesfor �. Finally, the arguments above are entirely symmetri
 with respe
t to xand y, i.e., the same estimates hold for 
ounting solutions (x; y) with x 6= 0and y=x 
losest to � = �i for some i.Large solutionsLemma 8. Fix an i between 1 and 3 and suppose (x; y) 2 Z2 is a solutionto jF (x; y)j � m 
losest to �i with y � 16m=(
1jD(F )j1=6). Then there is anx0=y0 2 Q with (x; y) = g(x0; y0), where g = g
d(x; y) and (x0; y0) is 
losestto �i. Further ,�����i � x0y0 ���� � 4m(gy0)3
1jD(F )j1=6 ; y0 � 16m
1gjD(F )j1=6and g � m1=3:P r o o f. The �rst statement is 
lear given our 
onventions mentionedabove about writing elements of Q . Certainly x0=y0 is 
losest to �i, sothat the se
ond statement follows from Lemma 1 and (9). Finally, we haveg3 � g3jF (x0; y0)j = jF (x; y)j � m.For the next two lemmas, �x an � as in the last se
tion and a positiveinteger g � m1=3.Lemma 9. LetC = maxf(8m=(g3
1jD(F )j1=6))4; (83H(�))2�543g:The number of x=y 2 Q with 16m=(
1gjD(F )j1=6) � y � C satisfying������ xy ���� � 4my3g3
1jD(F )j1=6is less than 25:6 + log2�4� log2 
1 + log2m1 + 2 log2 g�:P r o o f. LetA = 8mg3
1jD(F )j1=6 and B = maxf2g2A; 1g:



Cubi
 Thue inequalities 41Note that by (10),(11) C � maxfA4; (
2286jD(F )j)543g:We are then 
ounting the number of x=y 2 Q with B � y � C satisfyingj��(x=y)j � A=(2y3). We estimate the number of su
h x=y using Lemma 3.First suppose B > 1, so that log2B � log2A = 1 + 2 log2 g and 16m >
1gjD(F )j1=6. If C = A4, thenlog2 C � log2Alog2B � log2A = 3 log2A1 + 2 log2 g � 9� 3 log2 
1 + 3 log2m1 + 2 log2 g ;sin
e A � 8m=
1. If C > A4, then by (11),log2 C � 543(2 log2 
2 + 18 + log2 jD(F )j)� 543(2 log2 
2 + 18 + 6(4� log2 
1 + log2m)):Thus,log2 C � log2Alog2B � log2A � 1 + log2 C1 + 2 log2 g� 543�2 log2 
2 � 6 log2 
1 + 43 + 6 log2m1 + 2 log2 g�:Now suppose B = 1. Then A � 1=(2g2) andlog2 C � 543(2 log2 
2 + 18 + log2 jD(F )j)by (11). We also have jD(F )j � 16; sin
e jD(F )j 2 Z and1 � 16m=(g
1 jD(F )j1=6) � 16=jD(F )j:We get log2Clog2 jD(F )j < 543(2 log2 
2 + 19)and log2 jD(F )j�6 log2A = log2(8m=(
1g3))� log2A� log2A � 1 + 3 + log2m� log2 
1� log2A� 4� log2 
1 + log2m1 + 2 log2 g :Thus,log2 C � log2Alog2B � log2A = 1 + log2 C� log2A< 6 � 543(2 log2 
2 + 19)�4� log2 
1 + log2m1 + 2 log2 g�:



42 J. L. ThunderIn all 
ases we havelog2 C � log2Alog2B � log2A < 6 � 543(2 log2 
2 + 19)�4� log2 
1 + log2m1 + 2 log2 g�;so that1 + log2� log2 C � log2Alog2B � log2A� < 25:6 + log2�4� log2 
1 + log2m1 + 2 log2 g�:Lemma 9 follows from this and Lemma 3.Lemma 10. Let C be as in Lemma 9: The number of x=y 2 Q with y > Cand y � jxj satisfying ������ xy ���� � 4my3g3
1jD(F )j1=6is no greater than 25.P r o o f. For x=y 2 Q , set H(x=y) = px2 + y2 (re
all our 
onventionsabout x=y 2 Q). In parti
ular, for the x=y 2 Q 
onsidered in Lemma 10,y � H(x; y) < 2y.By Theorem 6A of [S℄, Chapter 2 (using m = 2 and � = 1=9), there issome B > 0 su
h that all x=y 2 Q satisfying������ xy ���� < 1H(x=y)10p6=9have either H(x=y) < (83H(�))2�543 or B � H(x=y) < B4�543 . Note that allx=y 2 Q satisfying the hypotheses of Lemma 10 have������ xy ���� � 4m(yg)3
1jD(F )j1=6 < 4my11=4C1=4g3
1jD(F )j1=6� 12y11=4 < 1H(x=y)10p6=9and H(x=y) > (83H(�))2�543 .A standard gap argument (Lemma 8B of [S℄, Chapter 2, for example)shows that the number of x=y 2 Q with������ xy ���� < 12y11=4and B � y < B4�543 is no greater than1 + log(log(B4�543)= logB)log(7=4) < 25and the number with B=2 � y < B is at most 1. This proves Lemma 10.



Cubi
 Thue inequalities 43Lemma 11. Let N 000F (m) denote the number of solutions (x; y) 2 Z2 tojF (x; y)j � m with maxfjxj; jyjg � 16m
1jD(F )j1=6 :Then N 000F (m) < 1428m1=3:P r o o f. Fix an i between 1 and 3. By Lemmas 8{10, the number ofsolutions 
losest to �i withmaxfjxj; jyjg = y � 16m
1jD(F )j1=6is less than Xg�m1=3 50:6 + log2�4� log2 
1 + log2m1 + 2 log2 g�:NowXg�m1=6 50:6 + log2�4� log2 
1 + log2m1 + 2 log2 g�� m1=6(50:6 + log2(4� log2 
1 + log2m))< m1=6(50:6 + log2(8� 2 log2 
1) + log2m)< m1=6(54:4 + 8:7m1=6) < 64m1=3and Xm1=6<g�m1=3 50:6 + log2�4� log2 
1 + log2m1 + 2 log2 g�< m1=3(50:6 + log2(4� log2 
1 + 3)) < 55m1=3:Thus, the number of solutions 
losest to �i withmaxfjxj; jyjg = y > 16m
1jD(F )j1=6is less than 119m1=3. Moreover, the exa
t same estimates hold by the sym-metry of our argument for the number of solutions 
losest to �i withmaxfjxj; jyjg = x > 16m
1jD(F )j1=6 :Arguing exa
tly as in the proof of Lemma 7, we getN 000F (m) < 12 � 119m1=3 = 1428m1=3:P r o o f o f T h e o r em. By Lemmas 7 and 11 we haveNF (m)�N 0F (m) = N 00F (m) +N 000F (m) < 1633m1=2jD(F )j1=12 + 3156m1=3:



44 J. L. ThunderAlso,jNF (m)�m2=3A(F )j � jNF (m)�N 0F (m)j+ jN 0F (m)�m2=3A(F )j� jNF (m)�N 0F (m)j+ 9 + 375m1=2jD(F )j1=12by Lemma 4. The Theorem follows.Referen
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