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Exact m-covers and the linear form Y% z,/n,
by

Zu1-WEl SuN (Nanjing)

1. Introduction. For a,n € Z with n > 0, we let
a+nZ={...,a—2n,a—n,a,a+n,a+2n,...}

and call it an arithmetic sequence. Given a finite system
(1) A={as+ nsZ}?zl
of arithmetic sequences, we assign to each x € Z the corresponding covering
multiplicity o(x) = {1 < s <k :z € a5+ nsZ}| (|S]| means the cardinality
of a set S), and call m(A) = infyez o(x) the covering multiplicity of A.
Apparently

k _
) = NZ (4)

where N is the least common multiple of those common differences (or
moduli) ny,...,nk. For a positive integer m, (1) is said to be an m-cover
of Z if its covering multiplicity is not less than m, and an exzact m-cover
of Z if o(xz) = m for all € Z. Note that k > m if (1) forms an m-cover
of Z. Clearly the covering function o : Z — Z is constant if and only if (1)
forms an exact m-cover of Z for some m = 1,2,... An exact 1-cover of Z is
a partition of Z into residue classes.

P. Erdés ([E]) proposed the concept of cover (i.e., 1-cover) of Z in the
1930’s, S. Porubsky ([P]) introduced the notion of exact m-cover of Z in
the 1970’s, and the author ([Su3|) studied m-covers of Z for the first time.
The most challenging problem in this field is to describe those nq,...,ng
in an m-cover (or exact m-cover) (1) of Z (cf. [Gu]). In [Su2, Su3, Su4]
the author revealed some connections between (exact) m-covers of Z and
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Egyptian fractions. Here we concentrate on exact m-covers of Z. In [Su3,
Sud] results for exact m-covers of Z were obtained by studying general
m-covers of Z and noting that an exact m-cover (1) of Z is an m-cover
of Z with Z§:1 1/ns = m. In Section 4 of the present paper we shall di-
rectly characterize exact m-covers of Z in various ways. (Note that in the
famous book [Gu] R. K. Guy wrote that characterizing exact 1-covers of Z is
a main outstanding unsolved problem in the area.) This enables us to make
further progress. With the help of the linear form Zle xs/ns (studied in
the next section), we will provide some new properties of exact m-covers of Z
(see Section 3). The fifth section is devoted to proofs of the main theorems
stated in Section 3.
For a complex number z and nonnegative integer n, as usual,

(1) i;h:@—j)

((5) is 1). For real & we use [z] and {z} to represent the integral part and
the fractional part of x respectively. For two integers a,b not both zero,
(a,b) denotes the greatest common divisor of a and b.

Now we state our central results for an exact m-cover (1) of Z:
(I) Fora =0,1,2,...and t = 1,..., k there are at least (m_l]) subsets T

[a/n.
of {1,...,k} for whicht ¢ I and > __,1/ns = a/n;, where the lower bounds
are best possible.

(I IfQ#ATC{1,...,k} and (ns,n¢) | as — a; for all s,t € I, then

{{Z;}:Jg{l,...,k}\l}g{ r :r:0,1,...,[ns]361—1}

seJ s [ns]sel

sel

where [ng|ser is the least common multiple of those ns with s € I.

(III) For any rational ¢, the number of solutions of the equation
E?les/ns = ¢ with z, € {0,1,...,ns — 1} for s = 1,...,k, is the sum
of finitely many (not necessarily distinct) prime factors of ni,...,nj if
c#0,1,2,..., and at least (k;m) if ¢ equals a nonnegative integer n.

2. On the linear form 25:1 xs/ns. In this section we shall say some-
thing general about the linear form Z§:1 xs/ns where ny, ..., ny are positive
integers.

Let us first introduce more notations. For z, y in the rational field Q,
if x —y € Z then we write x =y (mod 1). For n = 1,2,... we set R(n) =
{0,...,n — 1}. When we deal with a finite collection {ns}sc; of positive
integers, the least common multiple [ns]se; and the product [] ., ns will
be regarded as 1 if [ is empty.



FExact m-covers 177

DEFINITION. Two (finite) sequences {ng}*_; and {m;}!_, of positive
integers are said to be equivalent if k = | and (ng,n:) = (ms, my) for all

s,t =1,...,k with s # t. We call {n,}¥_, a normal sequence if n; divides
[ns]’;:l’#t for every t =1,... k.
ProrosiTION 2.1. Let ni,...,ng be arbitrary positive integers. Then

{(n¢, [n8]§:1,s¢t)}f:1 is the only normal sequence equivalent to {ns}*_,.
Proof. Foreacht=1,...,k we let

np = (e, ()i, apr) = (s, 1) Emy o

/

Clearly n; divides [ns]’;ZLS# because (ng,nt)|n for all s = 1,...,k with

s #t. Fori,j=1,....k with i # j, (nj,n}) = (ni,n;) since n; | [ng)5_, ..
and n; | [ns]’;:Ls#. Hence {n’}%_, is normal and equivalent to {ns}*_,. If

so is {ms}*_, where my, ..., m; are positive integers, then

my = (M, [maJesy spe) = (s, molicy, s = (05, 10)]im1, s = 1t

for every t =1,...,k. We are done.
PROPOSITION 2.2. Let ny,...,nx be positive integers. For 6 € Q the
equation
L
(3) Z—Szﬁ(modl) with x5 € R(ns) fors=1,...,k
s=1 s
is solvable if and only if [n1,...,ng)0 € Z, and in the solvable case the
number of solutions is ny...ng/[n1,...,ng], which does not change if we

replace {ns}*_; by an equivalent sequence.

Proof. We argue by induction. The case k = 1 is trivial. Let £ > 1 and
assume Proposition 2.2 for smaller values of k. Observe that

1 _ 1 1
7 — ([nlv , Nk 1]7nk)Z _ 7Z—|— 7.
[nl,...,nk} [nl,...,nk_l]nk N [nl,...,nk_l]
So [n1,...,nkl0 € Z if and only if [ny,...,nk_1](0 — x/nk) € Z for some
x € Z. For any a € Z with 0 < a < ny, the congruence
k=l a
Z—Sze—— (mod 1)
1 Ns ng

is solvable if and only if
[77,1,. . .,nk_l] <9 — a) S Z,
Nk
i.e.

[n1,...,ng—1]la = [n1,...,nE—1]ngf (mod ny).
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Hence (3) is solvable if and only if [nq,...,nk]0 € Z. In the solvable case
there are exactly ([n1,...,ng—1],n%) = [(n1,n%),...,(nk—1,nk)] numbers
a € R(ny) satisfying the last congruence, thus by the induction hypothesis
(3) has exactly

ny... Ng—1

[nh ey nk‘*l]

NiyeoyNg—1],NE) = 7
[Py, n)
solutions. As ny ...ng_1/[n1,...,nk_1] depends only on those (n;,n;) with
1 < i < j < k, the number ny...nx/[n1,...,nx] depends only on the
(ns,n¢), 1 < s <t <k. This ends the proof.

COROLLARY 2.1. Let a be an integer and nq,...,ng positive integers.
Then a/[ny,...,ng] can be written uniquely in the form q + E’;Zl Ts/ns
with ¢ € Z and x5 € R(ng) for s=1,...,k if and only if (ns,n¢) = 1 for all
s,t=1,...,k with s # t.

Proof. By Proposition 2.2, equation (3) with 6 = a/[n1,...,n] has a

unique solution if and only if ny...ng = [n1,...,nk]. So the desired result
follows.
COROLLARY 2.2. Let ny,...,n; be positive integers. Then the number of

solutions of the equation

(4) ZEEO (mod 1) withxs €Z and 0 < zs <ns fors=1,...,k

s=1 "%
equals
k n; n;
-1 k‘+ -1 k—t 1 TP
( ) Z( ) . Z [nin'"?nit]
t=1 1<i1<... < <k
which depends only on those (ns,n:) with 1 < s <t <k.
Proof. For I C {1,...,k} let #I denote the number of solutions of the
diophantine equation ) __;zs/ns = 0 (mod 1) with =, € {1,...,n, — 1}

for s € I, and consider #0 to be 1. By Proposition 2.2, > -, #J =
[I,erns/nslser for all I € {1,...,k}, therefore #{1,..., k} coincides with

k—|J|

> X (—1)’“—'J—s<k - U\>#J
JC{1,....k} s=0 S
= 2 S (=g

JC{1,...k} JCIC{1,...k}
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=Y Y= Y il

IC{1,....k} JCI IC{1,....k} [ns]ser
k
— (—1)k —1)kt e Ty
( ) +Z( ) . Z [nha'--anit]
t=1 1<i1<... <. <k
In view of Proposition 2.2, the number #{1,...,k} remains the same if an

equivalent sequence is substituted for {n,}*_,. The proof is now complete.

Remark 1. Equation (4) is closely related to diagonal hypersurfaces
over a finite field. The formula for the number of solutions of (4) was ob-
tained by R. Lidl and H. Niederreiter [LN], R. Stanly (cf. C. Small [Sm]),
Q. Sun, D.-Q. Wan and D.-G. Ma [SWM] with much more complicated
methods. The fact that the number does not vary if we replace {n,}*_;
by the corresponding normal sequence, was recently noted by A. Granville,
S.-G. Li and Q. Sun [GLS]. For necessary and sufficient conditions for the
solvability of (4), the reader is referred to [SW] where the authors deter-
mined when (4) has a unique solution.

COROLLARY 2.3. Let (1) be a system of arithmetic sequences with
(ns,n¢) |as — ay for all s,t =1,... k. Then for any 0 € Q with 0 < 0 < 1
we have

(5) ‘ Z e YE aszs/ns

zs€ER(ns) for s=1,....k
{25:1 $S/ns}:0

M1y ng)
0 otherwise.
Proof. By the Chinese Remainder Theorem in general form, the inter-
section ﬂ];:l as + nsZ is nonempty if and only if as + nsZ Na; + nyZ # 0
for all s,t =1,...,k. (For a proof see, e.g., [Sul].) Since (ns,n:) | as — a; for

_{nlnk if [n1,...,nk)0 € Z,

s,t=1,...,k, ﬂl;:l as + nsZ must contain an integer x. With the help of
Proposition 2.2,

E e2mi Sk aszs/ns — E eZﬂizQ

zsE€R(ng) for s=1,..., k zs€ER(ng) for s=1,..., k
(Xt zs/ns}=0 (Xt @s/ns}=0
vanishes if [ni1,...,n.]0 € Z, and otherwise equals %62“’”9. So (5)

holds.

To conclude this section we make a few comments. For system (1),
M(A) = sup,cy 0(x) does not change if an equivalent sequence takes the
place of {n,}*_,, because for § % I C {1,...,k} the set (,c;as + n,Z is
nonempty if and only if (ns,n:)|as — a; for all s,t € I. Observe that (1)
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forms an exact m-cover of Z if and only if Egzl 1/ns = m > M(A). So
whether nq,...,ny are the moduli of an exact m-cover of Z only depends on
25:1 1/ns and the k(k — 1)/2 numbers (ng,nt), 1 < s <t < k. For a given
exact m-cover (1) of Z, replacing {ns}*_, by the unique normal sequence
{n’}k_, equivalent to it we find that

"1 "1
2y SMAm=0 o
As n, < ng for s = 1,...,k, the sequence {ns}*_, must be identical with

{n’}*_, and hence normal. In the light of the above, the reader should not
be surprised by connections between the exact m-cover (1) of Z and the

linear form Ele Ts/Ns.

3. Main theorems and their consequences. In this section we let (1)
be an exact m-cover of Z; we also let 1 C {1,..., k} and I = {1,...,k}\ L.
For any rational ¢, we let I*(c) be the number of solutions (xs)scr to the
diophantine equation

(6) Z Ts — ¢ with zs € R(ng) for all s € 1,
sel ®

and I.(c) = [{J C1:) ,;1/ns = c}| be the number of solutions (ds)secs
to the equation

@ >

sel 8

¢ with §; € R(2) = {0,1} for all s € I.

(When I = () and ¢ = 0 we view each of (6) and (7) as having only the zero
solution.) We also set

(8) [,EO)(C): {Jg[:2lJ| and an—c}

seJ '’

) () = {JQI:QHJ| and Z;:c}.

seJ 8

Let us present our main theorems whose proofs will be given later, and
derive a number of interesting corollaries from them.

THEOREM 3.1. Let ¢ be a rational number.

(i) When |I| < m, if I*(c — n) = 1 for a nonnegative integer n then

(10) L(c)+m§:[ (m—l|f|>rk(c_l)Z <m7—1|ll>;

=0
l#n
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in particular, if ¢ can be uniquely written in the form n+3% " _; xs/ns where
n and xg lie in {0,1,...,m — |I|} and {0,1,...,ns — 1} respectively, then

L(c) > (m;”').

(ii) When |I| > m, if I.(c —n) = 1 for a nonnegative integer n then

(1) Fo+ Y (" ez (M),

=0
l#n

in particular, if ¢ can be uniquely expressed in the form n+y ey 1/ns where
JCI andne€{0,1,...,|I| —m}, then

I*(¢) > <|I|;m>.

Below there are corollaries involving the cases |I| < m, |I| = m and
|| > m.

COROLLARY 3.1. Assume that those ng with s € I are pairwise relatively
prime. Then |I| < m and

o fperpt s a2

seJ ¥ sel %

foralln=0,1,2,... and x5 € R(ns) with s € I; in particular,
a

1 = a
13 —=:JCI;D aeZ &I < Sm—[}
( ) {;jns } {[ns]sef | ‘ [ns]sel ’ |
and

- 1
(14) HJQI:;”SEHSZ[”S (mod 1)}' > om=ll - for every a € Z.

Proof. By the Chinese Remainder Theorem, (., as+nsZ # 0 if I # 0.
Since any integer lies in exactly m members of (1), || does not exceed m.
Let N = [ng]ser = [[;¢; ns- By Corollary 2.1, for each a € Z the number
a/N can be expressed uniquely in the form ¢+ ., x5/n, with ¢ € Z and
xs € R(ng) for s € I. Whenever x4 € R(ng) for all s € I, by Theorem 3.1,
(12) holds for every nonnegative integer n. If |[I|N < a < (m—|I|)N then the
corresponding integer ¢ = a/N — > _; xs/n, lies in the interval [0, m — [[]]

and hence
- 1 a Ts m — |I]
CI: —_ == — > .
{J_I Z”s N q+zns}‘_< q >>0

sel
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This yields (13). For (14) we observe that

{Jgf:znlsz; (modl)}

seJ

M \

%
i
~
/
3

3 |
~
~_
)
3

|
~

This concludes the proof.

Applying Corollary 3.1 with I = () we immediately get the theorem of
Sun [Su2].

Putting I = {t} (1 <t < k) in Corollary 3.1 we then obtain result (I)
stated in the first section. In the case m = 1, result (I) was first observed
by the author in [Sud]. When m > 1, we noted in [Sud| that, providing
ny < ...<ng—; <Ng—j41 = ... = nyg, for every r = 0,1,...,n, — 1 there
exists a J C {1,...,k — 1} with }°__;1/n, = r/np (mod 1). In [Sud| we
even conjectured that, if (1) forms an m-cover of Z with o(z) = m for all
x = a; (mod ny) where 1 <t <k, then

(15) {{;nl}:Ig{l,...,k}\{t}}ﬂéZ

:{T:T:O,...,nt—l}.
it

Result (I) confirms the conjecture for exact m-covers of Z. The lower bounds
are best possible as is shown by the following example.

ExXaMPLE. Let £ > m > 0 be integers. Let as = 0 and ngs = 1 for
s=1,....m—1,as =2 and ny = 2% for s =m,...,k — 1, also
ar = 0 and ny = 287 Tt is clear that A = {as + nsZ}*_, forms an exact
m-cover of Z. As each nonnegative integer can be expressed uniquely in

the binary form, the reader can easily check that for a = 0,1,2,... and
t=1,...,k we always have
1 a m—1
JCHAL, ...,k t}: — == .
{rea e 2.7, = (o)

COROLLARY 3.2. Suppose that |I| = m. Then no number occurs exactly
once among the 28=™ny ... n,, rationals

s 1 7
(16) ZZ—, zs € R(ng) fors € I Z—, JCI.

n
sel % seJ ' ®
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Proof. If I"(} ,.;xs/ns) = 1 where 2, € R(n,) for s € I then
L(Yerms/ns) > (mglll) = 1 by Theorem 3.1(i). If J C I and
(Y .c 1/ns) = 1, then I*(X, ., 1/ng) > (5™) = 1 by Theorem 3.1(ii).
We are done.

COROLLARY 3.3. Assume that |I| > m. For any J C I, if

Y-y

S

€{0,1,...,[I| —=m} formno J C I with J # J,

s€J’ ser
then
. 1 Il —m
(18) I<n+§ns>2(| |n ) forn=0,1,2,...
and hence
(19) Hns > 2ll=m [ J.er.

sel

Proof. Let J be a subset of I which satisfies (17). Note that (|I|;m2 =0
for every integer n > |I| —m. For n € Z with 0 <n < |I| —=m, if J' C I and
n' €{0,1,...,|I| — m} then by (17),

1
n+§ —n’+§ n—S:>J:J'andn:n’.
seJ s seJ’

So (18) holds in view of the latter part of Theorem 3.1, and thus by Propo-
sition 2.2,

M > H(xs>se] s € R(ng) for se I & Z Z (mod 1) H
[ns]sel SGI SGJ
|I‘ |I‘_m |I|—m |‘
=y r(ex)= ()

Putting I = {1,...,k} and J = ) in Corollary 3.3 we obtain the second
half of result (III). When 1 < ¢ < k and n; > 1, Corollary 3.3 in the case
I'={1,...,k}\ {t} and J = {t} also yields an interesting result.

Let p(1) = 1 and p(n) denote the smallest (positive) prime factor of n
for n = 2,3, ... For a positive integer n we also put

(20) D(n) = { mep : all the m,, are nonnegative integers}.
pln

THEOREM 3.2. Let ¢ be a rational number.
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(i) If |I| < m, then either

m—|I|
(21) L)+ Y I'(c—n)=p([n1,... ,nx))
n=0
m—|I| B
@ 0-10= 3 cr (") re-
i m ]
(23) Lo+ > < . >I*(c—n)ED([n1,...,nk])

if |SI,1T] <1 and SNT = 0 where
S={nmod2:ne€Z, 0<n<m-—|I| and I*(c —n) # 0}
and

T:{]J]mon:Jgfand lec}.

nS
seJ
(ii) If |I| > m, then either

| I|—m
(24) I"(e)+ > L(c—n) = p(n,...,nx)
n=0
[ I|—m
@) re= Y cor (A0 - 10— 0)
n=0
furthermore

26 I

(26) @+ > (",
if c£n+Y e 1/ng for anyn=0,1,....[I| —m and J C I withn = |J|
(mod 2).

COROLLARY 3.4. Let [I| <m and J C I. Suppose that Y . ;1/ns cannot
be expressed in the form n+3%  _;xs/ns wheren € {0,1,...,m —|I|} and
xs € R(ng) for s € I. Put

- 1 1
!
= C: — = — .
se{reny =y
seJ’ sed
Then either |J| > p([n1,...,ng]) or |J| = 0 (mod 2); either |J'| £ |J|
(mod 2) for some J' € J, or |J| can be expressed as the sum of some (not
necessarily distinct) prime divisors of [ni,...,ngl.
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Proof. Let =3, 1/n, As I,(c) = fio)(c) + j:il)(c), and I*(c —n)
= 0 for every n = 0,1,...,m — |I|, the desired results follow from Theo-
rem 3.2(i).

Remark 2. In the case I = () Corollary 3.4 was obtained by the author
in [Su4].

COROLLARY 3.5. Assume that |I| = m. Let 1 be the total number of ways
in which the rational c is expressed in the form Y _;xs/ns or Y 10s/ng

where x5 € R(ns) for s € I and 6, € {0,1} for s € I. Then we have

@) I>p(n,... ) o l:2HJCI:Z:S:c}

seJ

I

and 1 can be written as the sum of finitely many (not necessarily distinct)
prime divisors of ni,...,ng providing > .. ;1/ns = ¢ for no J C I with
|J] =0 (mod 2).

Proof. Obviously I = I*(c) + I.(c), and (22) or (25) says that LEO)(C) —
f,ﬁl)(c) =TI*(c), ie.l = 2f£0)(c). Therefore Theorem 3.2 yields Corollary 3.5.
COROLLARY 3.6. Let |[I| > m. Suppose that ) ., ms/ns cannot be ex-

pressed in the form n+ Y ., 1/ns withn € {0,1,...,|I| =m} and J C I,
where mg € R(ng) for each s € I. Then

@) |{@her o€ R fors e rana Y250

n
sel % sel 8

must be a finite sum of (not necessarily distinct) prime divisors of
[n1,...,nk].

Proof. Let ¢ = Y ., ms/ns. Note that I,(c —n) = 0 for each n =
0,1,...,]I] = m. By Theorem 3.2(ii), I*(c) belongs to D([n1,...,nk]).

Clearly Corollary 3.6 in the case I = {1,...,k} gives the first half of
result (III).

THEOREM 3.3. (i) If (ns,n¢)|as —a¢ for all s,t € I, then

(29) mz_:lj*<”+[n5 >:‘{J§I_:{§];}=[nsid}’
> Meerms

[ns]sel

for each r =0,1,...,[ns]ser — 1.
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(ii) Assume |I| =m, 0 <60 <1, and [ns)serd € Z or (n;,n;){a; —a; for
some i,j € I. Then either

(30) gf*<n+9> - ]{Jg iy :e}\ > plnser)

seg s
pern (g} perame {52}
and hence
(31) gf*(n+9):'{<]gf;{;é}: Hz (mod 2);
(32) gf*(n+9):‘{Jgf:{§;}ze} € D(jns).er)

if all the |J| mod 2 with J C I and {3, ;1/ns} =0 are the same.

Remark 3. When those ns with s € I are pairwise relatively prime,

Theorem 3.3(i) yields the lower bound 1 in (29) while (14) gives the bound
2m=Il,

COROLLARY 3.7. If T # 0 and (ns,ny)|as — ay for all s,t € I, then

(33) [I7s <257V, [ndser| nslser
sel

and

S =

Proof. (34) follows immediately from Theorem 3.3(i). Since } . ; 1/n
= 1/[ns]ser (mod 1) for some J C I, [ns]ser must divide [ng] 7. For the
inequality in (33) we notice that

|| [nstj]_l Z 1 r
#oe] Y per {50 i)
r—0 sel ng [ns]sel
[ns}szel_l { Z 1 T
8 e (5 i)
r=0 sel s [nS]SEI

Y
B
\gh)
|
—_
—
M
~
&
—
$
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Remark 4. By checking (33) and (34) with I taken to be K = {1,...,
m—1,k} and KU{k—1} in the previous example, we find that Corollary 3.7
is sharp. When (1) forms an exact 1-cover of Z and I C {1,...,k} contains
at least two elements, we cannot have (ng,n:)|as — a; for all s,t € I with
s #t, and (34) fails to hold because for all J C I we have

Z;SZ;Zl—ans<1— L _ [Inder =1

scy '8 scT sel [ns]sef [ns]sel

For any a,n € Z with n > 0, each integer in a 4+ nZ belongs to exactly
m members of (1) and hence

n
A =bs+ — 7
atm { * (n,ny) }seJ

also forms an exact m-cover of Z where J = {1 <s <k : (n,ns)|a—as},
bs € Z and a + bsn = as (mod ny) for s € J. Instead of A = Ay we
may apply our results to A,,) so as to get more general ones. See [Sud] for
examples of such transformations.

4. Characterizations of exact m-covers of Z

THEOREM 4.1. Let (1) be a system of arithmetic sequences. Let I C
{1,...,k} and I ={1,...,k}\ I. If |I| < m then (1) is an exact m-cover
of Z. if and only if
(85) Y (pMlemiNeesesn

JcI
Zs€J 1/ns=c

m—|I| (m— I 2mi Y ep QsTa /T
_ Z (_1) ( . ) Z e sel E

zsER(ns) for s€l
Yeer Ts/ns=c—n

is valid for all rational ¢ > 0. If |I| > m, then (1) forms an exact m-cover

of Z if and only if

(36) Z e2m’ Yeer @sTs/ns

zs€ER(ng) fors€l
ZSEI xS/nS:c

|[I|—m
= Z (_1)n<|1|;m> Z (—1)M1e2mi T ey as/ns

n=0 JCI
ZseJ 1/ns=c—n

holds for all rational ¢ > 0.
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Proof. Put N = [nq,...,ni]. We assert that (1) forms an exact m-cover
of Z if and only if we have the identity
k
(37) H(l _ ZN/nseQWias/ns) — (1 _ ZN)m‘
s=1

Apparently any zero of the left hand side of (37) is an Nth root of unity.
Observe that for every integer = the number e=2™*/N is a zero of the left
hand side of (37) with multiplicity m if and only if x lies in a5 + nsZ for
exact m of s =1,...,k. So the assertion follows from Viete’s theorem.

Now consider the case |I| < m. Clearly the following identities are equiv-
alent:

ﬁ(l _ ZN/n5€27Tia5/ns) =(1- SN ym—=|1] H N/ns 2ma5/ns)ns),
s=1 sel
ne—1
H(l _ ZN/nsezms/ns) =(1- ZN)m—\II H Z pmalN/na g2mimsas/na
sel sel ms=0
Z(_l)\J\ZzseJN/HSGZTFiZSeJas/ns
JCI
:milll(_l) ( II\) nNH Z JmaNn, 2mia.m,/n,
n=0 s€l ms=0

By the assertion the first one holds if and only if (1) forms an exact m-cover
of Z. Since the third one is valid if and only if (35) is true for every rational
c > 0, we get the desired result.

For the case |I| > m, that (1) forms an exact m-cover of Z is equivalent
to any of the identities given below:

H(l o ZN/nseQTrias/ns) . H(l - ZN/n5€2m'a5/nS) _ (1 - ZN)m7

sel sel
H(l - ZN/nSe27riaS/n5) . H(l o (ZN/nSGQTriaS/nS)nS)
sel sel
ng—1
_ (1 o zN)m H Z zmSN/nse%riasmS/ns
)
sel ms=0
[I|—m
3 (_1)n<|ﬂ > nN 3 (1)1 Eres N/ms 2 S a2/
n=0 JCI
ng—1

_ H § stN/nse2ﬂ'iaSmS/nS‘

sel ms=0
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As the last one holds if and only if (36) does for all rational ¢ > 0, we are
done.

Remark 5. In the case I = and ¢ € {1,...,m}, that (35) holds for
any exact m-cover (1) of Z was first observed by the author in [Su2] with
the help of the Riemann zeta function.

The characterization of exact m-cover (1) of Z given in Theorem 4.1

involves a fixed subset I of {1,...,k}. Now we present a new one which
depends on all the I C {1,... k} with |I| = m.

THEOREM 4.2. Let (1) be a system of arithmetic sequences. Then (1)
forms an exact m-cover of Z if and only if the relation

(38) Z (=Dl ey as/ms
JC{1,....k}\I
{Esé.] 1/ns}=0

— § 627”'2561‘13138/"8

zsER(ns) for s€l
{Zsel Ts/ns}=0

holds for all 0 € [0,1) and I C{1,...,k} with |I| =m.

Proof. Let N = [nq,...,ng]and I = {1,..., k}\I forall I C {1,...,k}.
First suppose that (1) forms an m-cover of Z. Let x be any integer and I
a subset of {1,...,k} with |I| = m. By taking z = r*/Ne?™@/N in (37), we
get the equality

k .
H(l - Tl/n5627rz(a:+a5)/ns) _ (1 o r)m
s=1

forallr > 0. If I = {1 <s<k:ng|x+ as}, then

ns—1

H(l _ e27ri(:c+as)/ns)/H Z e2mi(ztas)zs/ns
sel s€l zs=0
: 1— fns
S H _ 1 /ns 2mi(x4as)/ns . L=
}Ln% 61(1 r e )/SI;II f_)ezﬂ—}%irias)/ns 1— (/Fns)l/ns
. 1— Tl/ns
= i _ 1/ns 2mi(ztas)/nsy | L-r
rl—>rn1 7(1 " € ) H 1—7r
sel sel
k
= [ —_ Ml _ 1/ 2mi(ztas)/ns
= lim(1—7) Iyl rl/mee )
s=

= lim(1 —r) M1 —r)™=1.

r—
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If I #{1<s<k:ng|z+as}, then ng|z+a, for some s € I and nyfx+ay
for some t € I, therefore

’I’Lt—l
H(l _ e27ri(w+as)/ns) —0= H Z e27ri(ac+at)wt/nt.
sel tel ;=0
So we always have the identity
ng—1
(39) H(l o 627ri(ac+as)/ns) — H Z 627”'(1:—&—(13)1:3/113'
sel sel xs=0

Next assume (39) for all x € Z and I C {1,...,k} with |I| = m. For
each integer z, if [{1 < s < k : ng|x + as}| > m, then we can choose
a proper subset I of {1 < s < k : ng|z + as} with cardinality m for
which the left hand side of (39) is zero but the right hand side of (39)
is nonzero; if [{1 < s < k : ng|x + as}| < m, then we can select an
ID>{l1<s<k:ns|lz+as} with |I| = m for which the left hand side of
(39) is nonzero while the right hand side of (39) is zero. So (1) forms an
exact m-cover of Z.

Now let I be any subset of {1,...,k} with |I| = m. For every z € Z,

H(l N 627ri(a:+as)/ns) — Z(_l)\J\e%ri(zseJ as/ns+x Y oy 1/ns)

sel JCT
N-—1

_ eQTrirw/N Z (_1)\J\627rizsejas/ns

r=0 JCI
{Xses 1/nst=r/N

. =1 ; ' .. .
while [T,o; S0, e?mi@tas)es/ns coincides with
E 627”2(256[ asTs/Ns+x D, cpTs/Ns)
zsE€ER(ng) for s€l
— eQﬂ'irx/N § : e27ri2561 asxs/ns‘

r=0 zsER(ns) for s€l

{ZSEI IS/”s}:T/N

If (38) holds for all # € [0, 1) then (39) follows from the above for each x € Z.
Conversely, providing (39) for all x € Z, for any a = 0,1,..., N — 1 we have

N Z (—1)|J|62’TizseJ“S/"5
JCI
{3scs1/ns}t=a/N
N-1

N-1
(_1)|J|627Ti2561‘15/ns § : e27rz’(r7a)x/N
r=0 JCrI =0
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N-1 N-1
— Z e—Qﬂiaz/N( Z 627ri'rcc/N Z (71)|‘]|62ﬂ'izseJ‘ls/n$)
=0 r=0 JcI
{ESGJ 1/ns}’:T’/JV
N-1 N-1
_ Z eﬁm‘ax/N( Z p2mira/N Z e27rizselasms/n5)
=0 r=0 zsER(ng) for s€l
{Ese] mS/ns}’:”'/]\f
N-1 N-1
_ Z Z eZm’ZSeI asTs/ns Z eQﬂi(rfa)x/N
r=0 z,€R(ns)forsecl =0
{ZseIxS/ns}:T/N
=N Z 6271'1'2361 aszs/ns,

zsER(ns) for s€l

{ZSEI zs/ns}t=a/N

therefore (38) is valid for every 6 € [0,1).
Combining the above we obtain the desired result.

5. Proofs of Theorems 3.1-3.3

Proof of Theorem 3.1. (i) Assume |I| < m and [*(c—n) =1
where n is a nonnegative integer. Let (mg)scr be the unique tuple for which
Y serMs/ns = ¢ —n and my € R(n) for all s € I. Since (m;m) = 0 if
n >m — |I|, by (35) we have

Z (_1)|J\62wizseJas/ns _ (_1)n <m - ’I’>62m‘2861 asms/ns

* n
JCI
ESEJ 1/ns=c
m—|I|

_ Z (—1)! (m—l III) Z Q27 Y g A/
=0 rs€ER(ng) for sel
I#n Socr gss/)ngchl
Therefore I, (c) + Z;ZB‘{;" (m_lm)l*(c — 1) is greater than or equal to

‘ Z (_1)\J|€27riZS€JaS/ns

JCI
ZSEJ 1/nS:C

S - 11l
_ Z (_1)l<m l ) Z eQwizselanS/ns

{=0 2s€R(ns) for s€I
l;én ZSEI xs/ns:C_l
= ‘(_1)77, (m - |I|>€27rizselasms/ns _ <m — |I)
n n
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(ii) Now we suppose |I| > m and I.(c—n) = 1 where n is a nonnegative
integer. Let I’ be the unique subset of I such that >  _, 1/n, = c—n. By
(36) we have

Z 627riZseI asTs/ms (_1)n(|-[| - m) (—1)'1/‘627”;256[, as/ns

n
zsER(ns) for s€l

Esel xs/ns=c

_ (] —m [J| 270 Y o as/ns
l#n ZseJ 1/_ns=cfl
Thus (11) follows.
LEMMA. Let ¢y, ..., ci be nonnegative integers and dy, . . . ,d; positive in-
tegers. Assume that there exist nonzero numbers zi,...,zi for which

Zl;:l cszt = 0 for those positive integers t not divisible by any of dy, ..., d;.
Then c¢1 + ...+ ¢ is the sum of some (not necessarily distinct) numbers
among di, . ..,d;.

This is Lemma 9 of [Su4| and the initial idea is due to Y.-G. Chen.

Proof of Theorem 3.2. Let d be an integer prime to N =
[1,...,nk]. Since any integer can be written in the form dx + Ny where
x,y € Z, and dx + Ny = das (mod ny) if and only if x = as (mod ny), it
follows that Ay = {das + n,Z}%_, also forms an exact m-cover of Z. When
|I| < m, by applying Theorem 4.1 to A4 we get

Z (—1)|J‘62’Tidzs€J‘ls/”5

JCrI
ZSEJ 1/n5=c
m—|I| _ |I|
— § (_1)n (m ) 2 : 627"idzse1 asTs/Mns

n )

n=0 zsER(ns) for sl

ser Ts/Mms=c—n
that is, Y, ey, Bi(c w)e?™ 4% is zero, where W is the union of the sets

({5s)sere st -]

seJ seJ
and

asTs | N Ts B
{{Z }.a:seR(ns)forSEI,c Zn €{0,1,...,m |I\}},

n
sel '8 sel %
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and
Bi(c,w) = Z (_1)”'
JcI
Ysey I/ns=c

{EseJaS/"s}:w
m—|I| m— |I‘
- ) (—1)n( . )H@QSGI :x, € R(ny) for s € I,
n=0
rs asTs | _
n—s—c n&{z . } w}’

sel

sel

for w € Wy. If |I| > m, then by applying Theorem 4.1 to A; we obtain the
equality

§ : e27ridzselasacs/nS

zsER(ns) for sel
$ s 2 frae

[I|—m
_ n |I’_m [J] 2mid Y as/ns
- > (M S (Ve e,
n=0 JCI
Yeey /ns=c—n

2midw

e, Y, ew, Ba(c,w)e = 0, where W5 is the union of

_ 1
{{Z%}Jgjand Z_C—nfOrSOmen—(),l?"'?’I’_m}
SEJTLS "

seJ
and
AsTs | | Ts _
{{Z o }.xSGR(nS) for s € I and Zns —c},
sel sel
and
B2(07w)
T asts |
= H(ws>561.xs € R(ng) for s € I, Zn—s =c& {Zns }—w}‘
sel sel
[ I]—m
n “[‘ —m
- (M >y
n=0 JCI

ZSGJ 1/ns=c—n
{Xsesas/nst=w

for w € Ws.
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Case 1: |I| < m. In this case (22) and (23) are obvious if W; = 0.
Suppose that Wi is nonempty. If the inequality

m—|I|

Lo+ Y I'(e—n)> W] > p(N)
n=0

fails or N =1, then . Bi(c,w)e?™ v = ( for every d = 1,...,|Wy].
Since

|(€2mdw)1§dg|wll,wewl\/ H e

weWy
is a determinant of Vandermonde’s type, B;(c,w) = 0 for all w € W3 and
hence (22) follows. When |S|,|T| <1 and SNT = () where S and T are as
in Theorem 3.2, there is an € € {1, —1} such that

eB1(c,w) = |By(c,w)]

foer gt (g}

seJ ' ®
— |7
+ Z (mn\ ’>H<xs)561:xSER(ns) for s € I,
Ts asts | _
g )

S sel S

sel

for every w € Wi. If N # 1 then ) . [Bi(c, w)|(e?™ )4 = 0 for all
positive integers d divisible by none of prime divisors of N and therefore by
the Lemma

m—|I| B
L(c) + Z (mnu‘)I*(c—n)— Z |B1(c,w)| € D(N).
n=0 weW,

If N =1 then the last equality also holds because Bj(c,w) = 0 for every
w € Wq.

Case 2: |I| > m. Apparently (25) and (26) are valid if W5 = (). Now
assume |Ws| > 1. If the equality

[I]—m
Q)+ Y Lie—n) > Wl = p(N)
n=0
fails or N equals one, then » . Ba(c, w)e? v — 0 for every d =

1,...,|Wa|, hence Ba(c,w) = 0 for all w € Wy and so we have (25). If
c#n+) c;1/ng foreach n =0,1,...,|[I| =m and J C I with n = |J|
(mod 2), then
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BQ(Ca w)

= H(ms)sefzxs € R(ny) for s € I, Z%:C& {Za;xs} :w}‘

sel % sel

|[I|—m
[I| —m - 1 as
C . _——= _— _— =
X (e mene {0 —u
n=0 seJ seJ
for all w € Wy, so with the help of the Lemma, whether N = 1 or not, (26)
always holds.

Proof of Theorem 3.3. (i) First suppose |I|=m. Let r € R([ns]scr)-
In the light of Theorem 4.2,

Z (_1)|J\627riES€JaS/nS

Jci
{Xses1/nst=r/[nslser

_ E 6271'1'2561 anS/nS'

zsE€ER(ng) for s€l
{ZSEI xs/ns}:T/[nS}sel

As (ns,nt) | as —aq for all s,t € I, by Corollary 2.3 the absolute value of the
right hand side is [[,c; ns/[ns]ser. So

)

seJ

JCI
{ZSE,I 1/713}:7’/[713]361

_ HSEI s

B [ns]sel '

Next we handle the case where |I| # m. Choose an integer = such that
r € (\yep s +nsZif I # 0. Let

I'={1<s<k:z=a, (modny)}.

Then |I'| = m and I’ D I. By the previous argument,

‘{Jg{l,...,k}\f’:{zrj}_ a HZ e ns

seJg '8 [ns]sef/ [ns]sef’

for every a € R([ns]ser). So, for any r € R([ns|ser), we have
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et
{Jg {1, kI T {Z;} _ T[ns]sep/[ns]sez}'

scg 'S [ns]sel/

>

Hsejl Ns _ HSEI N+ HSGI'\I s > HSEI s
o [ns]sel’ Hns}seh [ns]sel’\l] o [nS]SEI

(ii) If [ns]ser® € Z, then {)_ ., vs/ns} # 0 whenever x, € R(n,) for all
s € I, and thus by Theorem 4.2,

(*) Z €2m'w Z (_1)\J\
weW JCI
{ng,] 1/”5}:9
{ngJ as/nst=w

— Z (_1)\J\627riZS€Jas/ns —0

JCIT
{ng.] 1/ms}=0

v-{{gs) s (i)}

seJ 8 seJ 8

where

If (ns,,ns,)tas, — as, for some sy, s2 € I, then {as + nsZ}scr covers each
integer at most m — 1 times because as, + ns, Z N as, + ns,Z = ), therefore
system {as + nsZ} 7 forms a cover of Z and (*) holds by Theorem 1 of
[Su3]. For each integer a prime to [ng],c7, by applying the automorphism
04 of the cyclotomic field Q(e27/["slser) with o, (e27/ [nslser) = g2mia/[nslser
we obtain from (*) the equality

(*a) D (e > o (=pl=o.

weW JCI

Observe that

W < HJQI‘: {an} :9}’ :milf*(nw).

seJ
If 0 < [W] < p([ns)ser), then (x,) holds for every a = 1,...,|W/, hence

Z (- =0 forallweWw
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and in particular

> 1= X 1= 3 (=,
JCI,2|1J| JCI,241J| Jcrt
{Pecs1/ns}=0 {3 s 1/ns}=0 {3Xses 1/ns}=0
for the determinant of the matrix ((62”"“’)“)1§GS|W|7 wew 18 nonzero. In the
case W = () we obviously have the last equality and (32). Assume W # ()

below. Provided that all the |.J| mod 2 with J C I and {}_,.;1/n.} = 0
are the same, if [ng|,c; = 1 then § = 0 and we must have I = 0, i.e.
k = |I| = m, which contradicts the fact that (n;,n;){a; — a; for some
i,j € I; if [ng]ser > 1, then (32) follows from the Lemma and the validity
of (x,) for all integers a prime to [ns],c7. This ends the proof.
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