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Exact m-covers and the linear form
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s=1 xs/ns
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1. Introduction. For a, n ∈ Z with n > 0, we let

a+ nZ = {. . . , a− 2n, a− n, a, a+ n, a+ 2n, . . .}
and call it an arithmetic sequence. Given a finite system

(1) A = {as + nsZ}ks=1

of arithmetic sequences, we assign to each x ∈ Z the corresponding covering
multiplicity σ(x) = |{1 ≤ s ≤ k : x ∈ as + nsZ}| (|S| means the cardinality
of a set S), and call m(A) = infx∈Z σ(x) the covering multiplicity of A.
Apparently

(2)
k∑
s=1

1
ns

=
1
N

N−1∑
x=0

σ(x) ≥ m(A)

where N is the least common multiple of those common differences (or
moduli) n1, . . . , nk. For a positive integer m, (1) is said to be an m-cover
of Z if its covering multiplicity is not less than m, and an exact m-cover
of Z if σ(x) = m for all x ∈ Z. Note that k ≥ m if (1) forms an m-cover
of Z. Clearly the covering function σ : Z → Z is constant if and only if (1)
forms an exact m-cover of Z for some m = 1, 2, . . . An exact 1-cover of Z is
a partition of Z into residue classes.

P. Erdős ([E]) proposed the concept of cover (i.e., 1-cover) of Z in the
1930’s, Š. Porubský ([P]) introduced the notion of exact m-cover of Z in
the 1970’s, and the author ([Su3]) studied m-covers of Z for the first time.
The most challenging problem in this field is to describe those n1, . . . , nk
in an m-cover (or exact m-cover) (1) of Z (cf. [Gu]). In [Su2, Su3, Su4]
the author revealed some connections between (exact) m-covers of Z and
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Egyptian fractions. Here we concentrate on exact m-covers of Z. In [Su3,
Su4] results for exact m-covers of Z were obtained by studying general
m-covers of Z and noting that an exact m-cover (1) of Z is an m-cover
of Z with

∑k
s=1 1/ns = m. In Section 4 of the present paper we shall di-

rectly characterize exact m-covers of Z in various ways. (Note that in the
famous book [Gu] R. K. Guy wrote that characterizing exact 1-covers of Z is
a main outstanding unsolved problem in the area.) This enables us to make
further progress. With the help of the linear form

∑k
s=1 xs/ns (studied in

the next section), we will provide some new properties of exact m-covers of Z
(see Section 3). The fifth section is devoted to proofs of the main theorems
stated in Section 3.

For a complex number x and nonnegative integer n, as usual,
(
x

n

)
:=

1
n!

n−1∏

j=0

(x− j)
((
x
0

)
is 1
)
. For real x we use [x] and {x} to represent the integral part and

the fractional part of x respectively. For two integers a, b not both zero,
(a, b) denotes the greatest common divisor of a and b.

Now we state our central results for an exact m-cover (1) of Z:

(I) For a = 0, 1, 2, . . . and t = 1, . . . , k there are at least
(
m−1
[a/nt]

)
subsets I

of {1, . . . , k} for which t 6∈ I and
∑
s∈I 1/ns = a/nt, where the lower bounds

are best possible.
(II) If ∅ 6= I ⊆ {1, . . . , k} and (ns, nt) | as − at for all s, t ∈ I, then

{{∑

s∈J

1
ns

}
: J ⊆ {1, . . . , k} \ I

}
⊇
{

r

[ns]s∈I
: r = 0, 1, . . . , [ns]s∈I − 1

}

where [ns]s∈I is the least common multiple of those ns with s ∈ I.
(III) For any rational c, the number of solutions of the equation∑k
s=1 xs/ns = c with xs ∈ {0, 1, . . . , ns − 1} for s = 1, . . . , k, is the sum

of finitely many (not necessarily distinct) prime factors of n1, . . . , nk if
c 6= 0, 1, 2, . . . , and at least

(
k−m
n

)
if c equals a nonnegative integer n.

2. On the linear form
∑k
s=1 xs/ns. In this section we shall say some-

thing general about the linear form
∑k
s=1 xs/ns where n1, . . . , nk are positive

integers.
Let us first introduce more notations. For x, y in the rational field Q,

if x − y ∈ Z then we write x ≡ y (mod 1). For n = 1, 2, . . . we set R(n) =
{0, . . . , n − 1}. When we deal with a finite collection {ns}s∈I of positive
integers, the least common multiple [ns]s∈I and the product

∏
s∈I ns will

be regarded as 1 if I is empty.
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Definition. Two (finite) sequences {ns}ks=1 and {mt}lt=1 of positive
integers are said to be equivalent if k = l and (ns, nt) = (ms,mt) for all
s, t = 1, . . . , k with s 6= t. We call {ns}ks=1 a normal sequence if nt divides
[ns]ks=1, s 6=t for every t = 1, . . . , k.

Proposition 2.1. Let n1, . . . , nk be arbitrary positive integers. Then
{(nt, [ns]ks=1, s 6=t)}kt=1 is the only normal sequence equivalent to {ns}ks=1.

P r o o f. For each t = 1, . . . , k we let

n′t = (nt, [ns]ks=1, s 6=t) = [(ns, nt)]ks=1, s 6=t.

Clearly n′t divides [n′s]
k
s=1, s 6=t because (ns, nt) |n′s for all s = 1, . . . , k with

s 6= t. For i, j = 1, . . . , k with i 6= j, (n′i, n
′
j) = (ni, nj) since ni | [ns]ks=1, s 6=j

and nj | [ns]ks=1, s 6=i. Hence {n′s}ks=1 is normal and equivalent to {ns}ks=1. If
so is {ms}ks=1 where m1, . . . ,mk are positive integers, then

mt = (mt, [ms]ks=1, s 6=t) = [(ms,mt)]ks=1, s 6=t = [(ns, nt)]ks=1, s 6=t = n′t
for every t = 1, . . . , k. We are done.

Proposition 2.2. Let n1, . . . , nk be positive integers. For θ ∈ Q the
equation

(3)
k∑
s=1

xs
ns
≡ θ (mod 1) with xs ∈ R(ns) for s = 1, . . . , k

is solvable if and only if [n1, . . . , nk]θ ∈ Z, and in the solvable case the
number of solutions is n1 . . . nk/[n1, . . . , nk], which does not change if we
replace {ns}ks=1 by an equivalent sequence.

P r o o f. We argue by induction. The case k = 1 is trivial. Let k > 1 and
assume Proposition 2.2 for smaller values of k. Observe that

1
[n1, . . . , nk]

Z =
([n1, . . . , nk−1], nk)

[n1, . . . , nk−1]nk
Z =

1
nk
Z+

1
[n1, . . . , nk−1]

Z.

So [n1, . . . , nk]θ ∈ Z if and only if [n1, . . . , nk−1](θ − x/nk) ∈ Z for some
x ∈ Z. For any a ∈ Z with 0 ≤ a < nk, the congruence

k−1∑
s=1

xs
ns
≡ θ − a

nk
(mod 1)

is solvable if and only if

[n1, . . . , nk−1]
(
θ − a

nk

)
∈ Z,

i.e.

[n1, . . . , nk−1]a ≡ [n1, . . . , nk−1]nkθ (mod nk).



178 Z. W. Sun

Hence (3) is solvable if and only if [n1, . . . , nk]θ ∈ Z. In the solvable case
there are exactly ([n1, . . . , nk−1], nk) = [(n1, nk), . . . , (nk−1, nk)] numbers
a ∈ R(nk) satisfying the last congruence, thus by the induction hypothesis
(3) has exactly

n1 . . . nk−1

[n1, . . . , nk−1]
([n1, . . . , nk−1], nk) =

n1 . . . nk
[n1, . . . , nk]

solutions. As n1 . . . nk−1/[n1, . . . , nk−1] depends only on those (ni, nj) with
1 ≤ i < j < k, the number n1 . . . nk/[n1, . . . , nk] depends only on the
(ns, nt), 1 ≤ s < t ≤ k. This ends the proof.

Corollary 2.1. Let a be an integer and n1, . . . , nk positive integers.
Then a/[n1, . . . , nk] can be written uniquely in the form q +

∑k
s=1 xs/ns

with q ∈ Z and xs ∈ R(ns) for s = 1, . . . , k if and only if (ns, nt) = 1 for all
s, t = 1, . . . , k with s 6= t.

P r o o f. By Proposition 2.2, equation (3) with θ = a/[n1, . . . , nk] has a
unique solution if and only if n1 . . . nk = [n1, . . . , nk]. So the desired result
follows.

Corollary 2.2. Let n1, . . . , nk be positive integers. Then the number of
solutions of the equation

(4)
k∑
s=1

xs
ns
≡ 0 (mod 1) with xs ∈ Z and 0 < xs < ns for s = 1, . . . , k

equals

(−1)k +
k∑
t=1

(−1)k−t
∑

1≤i1<...<it≤k

ni1 . . . nit
[ni1 , . . . , nit ]

which depends only on those (ns, nt) with 1 ≤ s < t ≤ k.

P r o o f. For I ⊆ {1, . . . , k} let #I denote the number of solutions of the
diophantine equation

∑
s∈I xs/ns ≡ 0 (mod 1) with xs ∈ {1, . . . , ns − 1}

for s ∈ I, and consider #∅ to be 1. By Proposition 2.2,
∑
J⊆I #J =∏

s∈I ns/[ns]s∈I for all I ⊆ {1, . . . , k}, therefore #{1, . . . , k} coincides with

∑

J⊆{1,...,k}

k−|J|∑
s=0

(−1)k−|J|−s
(
k − |J |
s

)
#J

=
∑

J⊆{1,...,k}

∑

J⊆I⊆{1,...,k}
(−1)k−|I|#J
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=
∑

I⊆{1,...,k}
(−1)k−|I|

∑

J⊆I
#J =

∑

I⊆{1,...,k}
(−1)k−|I|

∏
s∈I ns

[ns]s∈I

= (−1)k +
k∑
t=1

(−1)k−t
∑

1≤i1<...<it≤k

ni1 . . . nit
[ni1 , . . . , nit ]

.

In view of Proposition 2.2, the number #{1, . . . , k} remains the same if an
equivalent sequence is substituted for {ns}ks=1. The proof is now complete.

R e m a r k 1. Equation (4) is closely related to diagonal hypersurfaces
over a finite field. The formula for the number of solutions of (4) was ob-
tained by R. Lidl and H. Niederreiter [LN], R. Stanly (cf. C. Small [Sm]),
Q. Sun, D.-Q. Wan and D.-G. Ma [SWM] with much more complicated
methods. The fact that the number does not vary if we replace {ns}ks=1
by the corresponding normal sequence, was recently noted by A. Granville,
S.-G. Li and Q. Sun [GLS]. For necessary and sufficient conditions for the
solvability of (4), the reader is referred to [SW] where the authors deter-
mined when (4) has a unique solution.

Corollary 2.3. Let (1) be a system of arithmetic sequences with
(ns, nt) | as − at for all s, t = 1, . . . , k. Then for any θ ∈ Q with 0 ≤ θ < 1
we have

(5)
∣∣∣

∑

xs∈R(ns) for s=1,...,k
{∑k

s=1 xs/ns}=θ

e2πi
∑k
s=1 asxs/ns

∣∣∣

=

{ n1 . . . nk
[n1, . . . , nk]

if [n1, . . . , nk]θ ∈ Z,

0 otherwise.
P r o o f. By the Chinese Remainder Theorem in general form, the inter-

section
⋂k
s=1 as + nsZ is nonempty if and only if as + nsZ ∩ at + ntZ 6= ∅

for all s, t = 1, . . . , k. (For a proof see, e.g., [Su1].) Since (ns, nt) | as− at for
s, t = 1, . . . , k,

⋂k
s=1 as + nsZ must contain an integer x. With the help of

Proposition 2.2,∑

xs∈R(ns) for s=1,...,k
{∑k

s=1 xs/ns}=θ

e2πi
∑k
s=1 asxs/ns =

∑

xs∈R(ns) for s=1,...,k
{∑k

s=1 xs/ns}=θ

e2πixθ

vanishes if [n1, . . . , nk]θ 6∈ Z, and otherwise equals n1...nk
[n1,...,nk]e

2πixθ. So (5)
holds.

To conclude this section we make a few comments. For system (1),
M(A) = supx∈Z σ(x) does not change if an equivalent sequence takes the
place of {ns}ks=1, because for ∅ 6= I ⊆ {1, . . . , k} the set

⋂
s∈I as + nsZ is

nonempty if and only if (ns, nt) | as − at for all s, t ∈ I. Observe that (1)
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forms an exact m-cover of Z if and only if
∑k
s=1 1/ns = m ≥ M(A). So

whether n1, . . . , nk are the moduli of an exact m-cover of Z only depends on∑k
s=1 1/ns and the k(k − 1)/2 numbers (ns, nt), 1 ≤ s < t ≤ k. For a given

exact m-cover (1) of Z, replacing {ns}ks=1 by the unique normal sequence
{n′s}ks=1 equivalent to it we find that

k∑
s=1

1
n′s
≤M(A) ≤ m =

k∑
s=1

1
ns
.

As n′s ≤ ns for s = 1, . . . , k, the sequence {ns}ks=1 must be identical with
{n′s}ks=1 and hence normal. In the light of the above, the reader should not
be surprised by connections between the exact m-cover (1) of Z and the
linear form

∑k
s=1 xs/ns.

3. Main theorems and their consequences. In this section we let (1)
be an exact m-cover of Z; we also let I ⊆ {1, . . . , k} and Ī = {1, . . . , k} \ I.
For any rational c, we let I∗(c) be the number of solutions 〈xs〉s∈I to the
diophantine equation

(6)
∑

s∈I

xs
ns

= c with xs ∈ R(ns) for all s ∈ I,

and I∗(c) = |{J ⊆ I :
∑
s∈J 1/ns = c}| be the number of solutions 〈δs〉s∈I

to the equation

(7)
∑

s∈I

δs
ns

= c with δs ∈ R(2) = {0, 1} for all s ∈ I.

(When I = ∅ and c = 0 we view each of (6) and (7) as having only the zero
solution.) We also set

I
(0)
∗ (c) =

∣∣∣∣
{
J ⊆ I : 2 | |J | and

∑

s∈J

1
ns

= c

}∣∣∣∣(8)

and

I
(1)
∗ (c) =

∣∣∣∣
{
J ⊆ I : 2 - |J | and

∑

s∈J

1
ns

= c

}∣∣∣∣.(9)

Let us present our main theorems whose proofs will be given later, and
derive a number of interesting corollaries from them.

Theorem 3.1. Let c be a rational number.

(i) When |I| ≤ m, if I∗(c− n) = 1 for a nonnegative integer n then

(10) Ī∗(c) +
m−|I|∑

l=0
l 6=n

(
m− |I|

l

)
I∗(c− l) ≥

(
m− |I|
n

)
;
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in particular , if c can be uniquely written in the form n+
∑
s∈I xs/ns where

n and xs lie in {0, 1, . . . ,m− |I|} and {0, 1, . . . , ns − 1} respectively , then

Ī∗(c) ≥
(
m− |I|
n

)
.

(ii) When |I| ≥ m, if Ī∗(c− n) = 1 for a nonnegative integer n then

(11) I∗(c) +
|I|−m∑

l=0
l 6=n

(|I| −m
l

)
Ī∗(c− l) ≥

(|I| −m
n

)
;

in particular , if c can be uniquely expressed in the form n+
∑
s∈J 1/ns where

J ⊆ Ī and n ∈ {0, 1, . . . , |I| −m}, then

I∗(c) ≥
(|I| −m

n

)
.

Below there are corollaries involving the cases |I| ≤ m, |I| = m and
|I| ≥ m.

Corollary 3.1. Assume that those ns with s ∈ I are pairwise relatively
prime. Then |I| ≤ m and

(12)
∣∣∣∣
{
J ⊆ Ī :

∑

s∈J

1
ns

= n+
∑

s∈I

xs
ns

}∣∣∣∣ ≥
(
m− |I|
n

)

for all n = 0, 1, 2, . . . and xs ∈ R(ns) with s ∈ I; in particular ,

(13)
{∑

s∈J

1
ns

: J ⊆ Ī
}
⊇
{

a

[ns]s∈I
: a ∈ Z & |I| ≤ a

[ns]s∈I
≤ m− |I|

}

and

(14)
∣∣∣∣
{
J ⊆ Ī :

∑

s∈J

1
ns
≡ a∏

s∈I ns
(mod 1)

}∣∣∣∣ ≥ 2m−|I| for every a ∈ Z.

P r o o f. By the Chinese Remainder Theorem,
⋂
s∈I as+nsZ 6= ∅ if I 6= ∅.

Since any integer lies in exactly m members of (1), |I| does not exceed m.
Let N = [ns]s∈I =

∏
s∈I ns. By Corollary 2.1, for each a ∈ Z the number

a/N can be expressed uniquely in the form q +
∑
s∈I xs/ns with q ∈ Z and

xs ∈ R(ns) for s ∈ I. Whenever xs ∈ R(ns) for all s ∈ I, by Theorem 3.1,
(12) holds for every nonnegative integer n. If |I|N ≤ a ≤ (m−|I|)N then the
corresponding integer q = a/N −∑s∈I xs/ns lies in the interval [0, m− |I|]
and hence∣∣∣∣

{
J ⊆ Ī :

∑

s∈J

1
ns

=
a

N
= q +

∑

s∈I

xs
ns

}∣∣∣∣ ≥
(
m− |I|

q

)
> 0.



182 Z. W. Sun

This yields (13). For (14) we observe that∣∣∣∣
{
J ⊆ Ī :

∑

s∈J

1
ns
≡ a

N
(mod 1)

}∣∣∣∣

≥
m−|I|∑
n=0

∣∣∣∣
{
J ⊆ Ī :

∑

s∈J

1
ns

= n+
∑

s∈I

xs
ns

}∣∣∣∣

≥
m−|I|∑
n=0

(
m− |I|
n

)
= 2m−|I|.

This concludes the proof.

Applying Corollary 3.1 with I = ∅ we immediately get the theorem of
Sun [Su2].

Putting I = {t} (1 ≤ t ≤ k) in Corollary 3.1 we then obtain result (I)
stated in the first section. In the case m = 1, result (I) was first observed
by the author in [Su4]. When m > 1, we noted in [Su4] that, providing
n1 < . . . < nk−l < nk−l+1 = . . . = nk, for every r = 0, 1, . . . , nk − 1 there
exists a J ⊆ {1, . . . , k − 1} with

∑
s∈J 1/ns ≡ r/nk (mod 1). In [Su4] we

even conjectured that, if (1) forms an m-cover of Z with σ(x) = m for all
x ≡ at (mod nt) where 1 ≤ t ≤ k, then

(15)
{{∑

s∈I

1
ns

}
: I ⊆ {1, . . . , k} \ {t}

}
∩ 1
nt
Z

=
{
r

nt
: r = 0, . . . , nt − 1

}
.

Result (I) confirms the conjecture for exact m-covers of Z. The lower bounds
are best possible as is shown by the following example.

Example. Let k > m > 0 be integers. Let as = 0 and ns = 1 for
s = 1, . . . ,m − 1, as = 2s−m and ns = 2s−m+1 for s = m, . . . , k − 1, also
ak = 0 and nk = 2k−m. It is clear that A = {as + nsZ}ks=1 forms an exact
m-cover of Z. As each nonnegative integer can be expressed uniquely in
the binary form, the reader can easily check that for a = 0, 1, 2, . . . and
t = 1, . . . , k we always have∣∣∣∣

{
J ⊆ {1, . . . , k} \ {t} :

∑

s∈J

1
ns

=
a

nt

}∣∣∣∣ =
(
m− 1
[a/nt]

)
.

Corollary 3.2. Suppose that |I| = m. Then no number occurs exactly
once among the 2k−mn1 . . . nm rationals

(16)
∑

s∈I

xs
ns
, xs ∈ R(ns) for s ∈ I;

∑

s∈J

1
ns
, J ⊆ Ī .
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P r o o f. If I∗(
∑
s∈I xs/ns) = 1 where xs ∈ R(ns) for s ∈ I then

Ī∗(
∑
s∈I xs/ns) ≥

(
m−|I|

0

)
= 1 by Theorem 3.1(i). If J ⊆ Ī and

Ī∗(
∑
s∈J 1/ns) = 1, then I∗(

∑
s∈J 1/ns) ≥

(|I|−m
0

)
= 1 by Theorem 3.1(ii).

We are done.

Corollary 3.3. Assume that |I| ≥ m. For any J ⊆ Ī, if

(17)
∣∣∣∣
∑

s∈J′

1
ns
−
∑

s∈J

1
ns

∣∣∣∣ ∈ {0, 1, . . . , |I| −m} for no J ′ ⊆ Ī with J ′ 6= J,

then

(18) I∗
(
n+

∑

s∈J

1
ns

)
≥
(|I| −m

n

)
for n = 0, 1, 2, . . .

and hence

(19)
∏

s∈I
ns ≥ 2|I|−m[ns]s∈I .

P r o o f. Let J be a subset of Ī which satisfies (17). Note that
(|I|−m

n

)
= 0

for every integer n > |I| −m. For n ∈ Z with 0 ≤ n ≤ |I| −m, if J ′ ⊆ Ī and
n′ ∈ {0, 1, . . . , |I| −m} then by (17),

n+
∑

s∈J

1
ns

= n′ +
∑

s∈J′

1
ns
⇒ J = J ′ and n = n′.

So (18) holds in view of the latter part of Theorem 3.1, and thus by Propo-
sition 2.2,
∏
s∈I ns

[ns]s∈I
≥
∣∣∣∣
{
〈xs〉s∈I : xs ∈ R(ns) for s ∈ I &

∑

s∈I

xs
ns
≡
∑

s∈J

1
ns

(mod 1)
}∣∣∣∣

≥
|I|−m∑
n=0

I∗
(
n+

∑

s∈J

1
ns

)
≥
|I|−m∑
n=0

(|I| −m
n

)
= 2|I|−m.

Putting I = {1, . . . , k} and J = ∅ in Corollary 3.3 we obtain the second
half of result (III). When 1 ≤ t ≤ k and nt > 1, Corollary 3.3 in the case
I = {1, . . . , k} \ {t} and J = {t} also yields an interesting result.

Let p(1) = 1 and p(n) denote the smallest (positive) prime factor of n
for n = 2, 3, . . . For a positive integer n we also put

(20) D(n) =
{∑

p |n
pmp : all the mp are nonnegative integers

}
.

Theorem 3.2. Let c be a rational number.
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(i) If |I| ≤ m, then either

(21) Ī∗(c) +
m−|I|∑
n=0

I∗(c− n) ≥ p([n1, . . . , nk])

or

(22) Ī
(0)
∗ (c)− Ī(1)

∗ (c) =
m−|I|∑
n=0

(−1)n
(
m− |I|
n

)
I∗(c− n);

moreover

(23) Ī∗(c) +
m−|I|∑
n=0

(
m− |I|
n

)
I∗(c− n) ∈ D([n1, . . . , nk])

if |S|, |T | ≤ 1 and S ∩ T = ∅ where

S = {n mod 2 : n ∈ Z, 0 ≤ n ≤ m− |I| and I∗(c− n) 6= 0}
and

T =
{
|J | mod 2 : J ⊆ Ī and

∑

s∈J

1
ns

= c

}
.

(ii) If |I| ≥ m, then either

(24) I∗(c) +
|I|−m∑
n=0

Ī∗(c− n) ≥ p([n1, . . . , nk])

or

(25) I∗(c) =
|I|−m∑
n=0

(−1)n
(|I| −m

n

)
(Ī(0)
∗ (c− n)− Ī(1)

∗ (c− n));

furthermore

(26) I∗(c) +
|I|−m∑
n=0

(|I| −m
n

)
Ī∗(c− n) ∈ D([n1, . . . , nk])

if c 6= n+
∑
s∈J 1/ns for any n = 0, 1, . . . , |I| −m and J ⊆ Ī with n ≡ |J |

(mod 2).

Corollary 3.4. Let |I| ≤ m and J ⊆ Ī. Suppose that
∑
s∈J 1/ns cannot

be expressed in the form n+
∑
s∈I xs/ns where n ∈ {0, 1, . . . ,m− |I|} and

xs ∈ R(ns) for s ∈ I. Put

J =
{
J ′ ⊆ Ī :

∑

s∈J ′

1
ns

=
∑

s∈J

1
ns

}
.

Then either |J | ≥ p([n1, . . . , nk]) or |J | ≡ 0 (mod 2); either |J ′| 6≡ |J |
(mod 2) for some J ′ ∈ J , or |J | can be expressed as the sum of some (not
necessarily distinct) prime divisors of [n1, . . . , nk].
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P r o o f. Let c =
∑
s∈J 1/ns. As Ī∗(c) = Ī

(0)
∗ (c) + Ī

(1)
∗ (c), and I∗(c− n)

= 0 for every n = 0, 1, . . . ,m − |I|, the desired results follow from Theo-
rem 3.2(i).

R e m a r k 2. In the case I = ∅ Corollary 3.4 was obtained by the author
in [Su4].

Corollary 3.5. Assume that |I| = m. Let l be the total number of ways
in which the rational c is expressed in the form

∑
s∈I xs/ns or

∑
s∈Ī δs/ns

where xs ∈ R(ns) for s ∈ I and δs ∈ {0, 1} for s ∈ Ī. Then we have

(27) l ≥ p([n1, . . . , nk]) or l = 2
∣∣∣∣
{
J ⊆ Ī :

∑

s∈J

1
ns

= c

}∣∣∣∣,

and l can be written as the sum of finitely many (not necessarily distinct)
prime divisors of n1, . . . , nk providing

∑
s∈J 1/ns = c for no J ⊆ Ī with

|J | ≡ 0 (mod 2).

P r o o f. Obviously l = I∗(c) + Ī∗(c), and (22) or (25) says that Ī(0)
∗ (c)−

Ī
(1)
∗ (c) = I∗(c), i.e. l = 2Ī(0)

∗ (c). Therefore Theorem 3.2 yields Corollary 3.5.

Corollary 3.6. Let |I| ≥ m. Suppose that
∑
s∈I ms/ns cannot be ex-

pressed in the form n +
∑
s∈J 1/ns with n ∈ {0, 1, . . . , |I| −m} and J ⊆ Ī,

where ms ∈ R(ns) for each s ∈ I. Then

(28)
∣∣∣∣
{
〈xs〉s∈I : xs ∈ R(ns) for s ∈ I and

∑

s∈I

xs
ns

=
∑

s∈I

ms

ns

}∣∣∣∣

must be a finite sum of (not necessarily distinct) prime divisors of
[n1, . . . , nk].

P r o o f. Let c =
∑
s∈I ms/ns. Note that Ī∗(c − n) = 0 for each n =

0, 1, . . . , |I| −m. By Theorem 3.2(ii), I∗(c) belongs to D([n1, . . . , nk]).

Clearly Corollary 3.6 in the case I = {1, . . . , k} gives the first half of
result (III).

Theorem 3.3. (i) If (ns, nt) | as − at for all s, t ∈ I, then

m−1∑
n=0

Ī∗

(
n+

r

[ns]s∈I

)
=
∣∣∣∣
{
J ⊆ Ī :

{∑

s∈J

1
ns

}
=

r

[ns]s∈I

}∣∣∣∣(29)

≥
∏
s∈I ns

[ns]s∈I

for each r = 0, 1, . . . , [ns]s∈I − 1.



186 Z. W. Sun

(ii) Assume |I| = m, 0 ≤ θ < 1, and [ns]s∈Iθ 6∈ Z or (ni, nj) - ai − aj for
some i, j ∈ I. Then either

(30)
m−1∑
n=0

Ī∗(n+ θ) =
∣∣∣∣
{
J ⊆ Ī :

{∑

s∈J

1
ns

}
= θ

}∣∣∣∣ ≥ p([ns]s∈Ī)

or∣∣∣∣
{
J ⊆ Ī : 2 | |J | &

{∑

s∈J

1
ns

}
= θ

}∣∣∣∣ =
∣∣∣∣
{
J ⊆ Ī : 2 - |J | &

{∑

s∈J

1
ns

}
= θ

}∣∣∣∣

and hence

(31)
m−1∑
n=0

Ī∗(n+ θ) =
∣∣∣∣
{
J ⊆ Ī :

{∑

s∈J

1
ns

}
= θ

}∣∣∣∣ ≡ 0 (mod 2);

moreover ,

(32)
m−1∑
n=0

Ī∗(n+ θ) =
∣∣∣∣
{
J ⊆ Ī :

{∑

s∈J

1
ns

}
= θ

}∣∣∣∣ ∈ D([ns]s∈Ī)

if all the |J | mod 2 with J ⊆ Ī and {∑s∈J 1/ns} = θ are the same.

R e m a r k 3. When those ns with s ∈ I are pairwise relatively prime,
Theorem 3.3(i) yields the lower bound 1 in (29) while (14) gives the bound
2m−|I|.

Corollary 3.7. If I 6= ∅ and (ns, nt) | as − at for all s, t ∈ I, then

(33)
∏

s∈I
ns ≤ 2k−|I|, [ns]s∈I | [ns]s∈Ī ,

and

(34)
{{∑

s∈J

1
ns

}
: J ⊆ Ī

}
⊇
{

0,
1

[ns]s∈I
, . . . ,

[ns]s∈I − 1
[ns]s∈I

}
.

P r o o f. (34) follows immediately from Theorem 3.3(i). Since
∑
s∈J 1/ns

≡ 1/[ns]s∈I (mod 1) for some J ⊆ Ī , [ns]s∈I must divide [ns]s∈Ī . For the
inequality in (33) we notice that

2k−|I| ≥
∣∣∣∣

[ns]s∈I−1⋃
r=0

{
J ⊆ Ī :

{∑

s∈I

1
ns

}
=

r

[ns]s∈I

}∣∣∣∣

=
[ns]s∈I−1∑

r=0

∣∣∣∣
{
J ⊆ Ī :

{∑

s∈I

1
ns

}
=

r

[ns]s∈I

}∣∣∣∣

≥
[ns]s∈I−1∑

r=0

∏
s∈I ns

[ns]s∈I
=
∏

s∈I
ns.
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R e m a r k 4. By checking (33) and (34) with I taken to be K = {1, . . . ,
m−1, k} and K∪{k−1} in the previous example, we find that Corollary 3.7
is sharp. When (1) forms an exact 1-cover of Z and I ⊆ {1, . . . , k} contains
at least two elements, we cannot have (ns, nt) | as − at for all s, t ∈ I with
s 6= t, and (34) fails to hold because for all J ⊆ Ī we have

∑

s∈J

1
ns
≤
∑

s∈Ī

1
ns

= 1−
∑

s∈I

1
ns

< 1− 1
[ns]s∈I

=
[ns]s∈I − 1

[ns]s∈I
.

For any a, n ∈ Z with n > 0, each integer in a + nZ belongs to exactly
m members of (1) and hence

Aa(n) =
{
bs +

ns
(n, ns)

Z
}

s∈J

also forms an exact m-cover of Z where J = {1 ≤ s ≤ k : (n, ns) | a − as},
bs ∈ Z and a + bsn ≡ as (mod ns) for s ∈ J . Instead of A = A0(1) we
may apply our results to Aa(n) so as to get more general ones. See [Su4] for
examples of such transformations.

4. Characterizations of exact m-covers of Z

Theorem 4.1. Let (1) be a system of arithmetic sequences. Let I ⊆
{1, . . . , k} and Ī = {1, . . . , k} \ I. If |I| ≤ m then (1) is an exact m-cover
of Z if and only if

(35)
∑

J⊆Ī∑
s∈J 1/ns=c

(−1)|J|e2πi
∑
s∈J as/ns

=
m−|I|∑
n=0

(−1)n
(
m− |I|
n

) ∑

xs∈R(ns) for s∈I∑
s∈I xs/ns=c−n

e2πi
∑
s∈I asxs/ns

is valid for all rational c ≥ 0. If |I| ≥ m, then (1) forms an exact m-cover
of Z if and only if

(36)
∑

xs∈R(ns) for s∈I∑
s∈I xs/ns=c

e2πi
∑
s∈I asxs/ns

=
|I|−m∑
n=0

(−1)n
(|I| −m

n

) ∑

J⊆Ī∑
s∈J 1/ns=c−n

(−1)|J|e2πi
∑
s∈J as/ns

holds for all rational c ≥ 0.
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P r o o f. Put N = [n1, . . . , nk]. We assert that (1) forms an exact m-cover
of Z if and only if we have the identity

(37)
k∏
s=1

(1− zN/nse2πias/ns) = (1− zN )m.

Apparently any zero of the left hand side of (37) is an Nth root of unity.
Observe that for every integer x the number e−2πix/N is a zero of the left
hand side of (37) with multiplicity m if and only if x lies in as + nsZ for
exact m of s = 1, . . . , k. So the assertion follows from Viète’s theorem.

Now consider the case |I| ≤ m. Clearly the following identities are equiv-
alent:

k∏
s=1

(1− zN/nse2πias/ns) = (1− zN )m−|I|
∏

s∈I
(1− (zN/nse2πias/ns)ns),

∏

s∈Ī
(1− zN/nse2πias/ns) = (1− zN )m−|I|

∏

s∈I

ns−1∑
ms=0

zmsN/nse2πimsas/ns ,

∑

J⊆Ī
(−1)|J|z

∑
s∈J N/nse2πi

∑
s∈J as/ns

=
m−|I|∑
n=0

(−1)n
(
m− |I|
n

)
znN

∏

s∈I

ns−1∑
ms=0

zmsN/nse2πiasms/ns .

By the assertion the first one holds if and only if (1) forms an exact m-cover
of Z. Since the third one is valid if and only if (35) is true for every rational
c ≥ 0, we get the desired result.

For the case |I| ≥ m, that (1) forms an exact m-cover of Z is equivalent
to any of the identities given below:∏

s∈Ī
(1− zN/nse2πias/ns) ·

∏

s∈I
(1− zN/nse2πias/ns) = (1− zN )m,

∏

s∈Ī
(1− zN/nse2πias/ns) ·

∏

s∈I
(1− (zN/nse2πias/ns)ns)

= (1− zN )m
∏

s∈I

ns−1∑
ms=0

zmsN/nse2πiasms/ns ,

|I|−m∑
n=0

(−1)n
(|I| −m

n

)
znN

∑

J⊆Ī
(−1)|J|z

∑
s∈J N/nse2πi

∑
s∈J as/ns

=
∏

s∈I

ns−1∑
ms=0

zmsN/nse2πiasms/ns .
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As the last one holds if and only if (36) does for all rational c ≥ 0, we are
done.

R e m a r k 5. In the case I = ∅ and c ∈ {1, . . . ,m}, that (35) holds for
any exact m-cover (1) of Z was first observed by the author in [Su2] with
the help of the Riemann zeta function.

The characterization of exact m-cover (1) of Z given in Theorem 4.1
involves a fixed subset I of {1, . . . , k}. Now we present a new one which
depends on all the I ⊆ {1, . . . , k} with |I| = m.

Theorem 4.2. Let (1) be a system of arithmetic sequences. Then (1)
forms an exact m-cover of Z if and only if the relation

(38)
∑

J⊆{1,...,k}\I
{∑s∈J 1/ns}=θ

(−1)|J|e2πi
∑
s∈J as/ns

=
∑

xs∈R(ns) for s∈I
{∑s∈I xs/ns}=θ

e2πi
∑
s∈I asxs/ns

holds for all θ ∈ [0, 1) and I ⊆ {1, . . . , k} with |I| = m.

P r o o f. Let N = [n1, . . . , nk] and Ī = {1, . . . , k}\I for all I ⊆ {1, . . . , k}.
First suppose that (1) forms an m-cover of Z. Let x be any integer and I
a subset of {1, . . . , k} with |I| = m. By taking z = r1/Ne2πix/N in (37), we
get the equality

k∏
s=1

(1− r1/nse2πi(x+as)/ns) = (1− r)m

for all r ≥ 0. If I = {1 ≤ s ≤ k : ns |x+ as}, then

∏

s∈Ī
(1− e2πi(x+as)/ns)

/∏

s∈I

ns−1∑
xs=0

e2πi(x+as)xs/ns

= lim
r→1

∏

s∈Ī
(1− r1/nse2πi(x+as)/ns)

/∏

s∈I
lim

r̄→e2πi(x+as)/ns

1− r̄ns
1− (r̄ns)1/ns

= lim
r→1

∏

s∈Ī
(1− r1/nse2πi(x+as)/ns) ·

∏

s∈I

1− r1/ns

1− r

= lim
r→1

(1− r)−|I|
k∏
s=1

(1− r1/nse2πi(x+as)/ns)

= lim
r→1

(1− r)−|I|(1− r)m = 1.
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If I 6= {1 ≤ s ≤ k : ns |x+as}, then ns |x+as for some s ∈ Ī and nt -x+at
for some t ∈ I, therefore

∏

s∈Ī
(1− e2πi(x+as)/ns) = 0 =

∏

t∈I

nt−1∑
xt=0

e2πi(x+at)xt/nt .

So we always have the identity

(39)
∏

s∈Ī
(1− e2πi(x+as)/ns) =

∏

s∈I

ns−1∑
xs=0

e2πi(x+as)xs/ns .

Next assume (39) for all x ∈ Z and I ⊆ {1, . . . , k} with |I| = m. For
each integer x, if |{1 ≤ s ≤ k : ns |x + as}| > m, then we can choose
a proper subset I of {1 ≤ s ≤ k : ns |x + as} with cardinality m for
which the left hand side of (39) is zero but the right hand side of (39)
is nonzero; if |{1 ≤ s ≤ k : ns |x + as}| < m, then we can select an
I ⊃ {1 ≤ s ≤ k : ns |x + as} with |I| = m for which the left hand side of
(39) is nonzero while the right hand side of (39) is zero. So (1) forms an
exact m-cover of Z.

Now let I be any subset of {1, . . . , k} with |I| = m. For every x ∈ Z,
∏

s∈Ī
(1− e2πi(x+as)/ns) =

∑

J⊆Ī
(−1)|J|e2πi(

∑
s∈J as/ns+x

∑
s∈J 1/ns)

=
N−1∑
r=0

e2πirx/N
∑

J⊆Ī
{∑s∈J 1/ns}=r/N

(−1)|J|e2πi
∑
s∈J as/ns

while
∏
s∈I
∑ns−1
xs=0 e

2πi(x+as)xs/ns coincides with
∑

xs∈R(ns) for s∈I
e2πi(

∑
s∈I asxs/ns+x

∑
s∈I xs/ns)

=
N−1∑
r=0

e2πirx/N
∑

xs∈R(ns) for s∈I
{∑s∈I xs/ns}=r/N

e2πi
∑
s∈I asxs/ns .

If (38) holds for all θ ∈ [0, 1) then (39) follows from the above for each x ∈ Z.
Conversely, providing (39) for all x ∈ Z, for any a = 0, 1, . . . , N − 1 we have

N
∑

J⊆Ī
{∑s∈J 1/ns}=a/N

(−1)|J|e2πi
∑
s∈J as/ns

=
N−1∑
r=0

∑

J⊆Ī
{∑s∈J 1/ns}=r/N

(−1)|J|e2πi
∑
s∈J as/ns

N−1∑
x=0

e2πi(r−a)x/N
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=
N−1∑
x=0

e−2πiax/N
(N−1∑
r=0

e2πirx/N
∑

J⊆Ī
{∑s∈J 1/ns}=r/N

(−1)|J|e2πi
∑
s∈J as/ns

)

=
N−1∑
x=0

e−2πiax/N
(N−1∑
r=0

e2πirx/N
∑

xs∈R(ns) for s∈I
{∑s∈I xs/ns}=r/N

e2πi
∑
s∈I asxs/ns

)

=
N−1∑
r=0

∑

xs∈R(ns) for s∈I
{∑s∈I xs/ns}=r/N

e2πi
∑
s∈I asxs/ns

N−1∑
x=0

e2πi(r−a)x/N

= N
∑

xs∈R(ns) for s∈I
{∑s∈I xs/ns}=a/N

e2πi
∑
s∈I asxs/ns ,

therefore (38) is valid for every θ ∈ [0, 1).
Combining the above we obtain the desired result.

5. Proofs of Theorems 3.1–3.3

P r o o f o f T h e o r e m 3.1. (i) Assume |I| ≤ m and I∗(c − n) = 1
where n is a nonnegative integer. Let 〈ms〉s∈I be the unique tuple for which∑
s∈I ms/ns = c − n and ms ∈ R(ns) for all s ∈ I. Since

(
m−|I|
n

)
= 0 if

n > m− |I|, by (35) we have
∑

J⊆Ī∑
s∈J 1/ns=c

(−1)|J|e2πi
∑
s∈J as/ns − (−1)n

(
m− |I|
n

)
e2πi

∑
s∈I asms/ns

=
m−|I|∑

l=0
l 6=n

(−1)l
(
m− |I|

l

) ∑

xs∈R(ns) for s∈I∑
s∈I xs/ns=c−l

e2πi
∑
s∈I asxs/ns .

Therefore Ī∗(c) +
∑m−|I|
l=0, l 6=n

(
m−|I|
l

)
I∗(c− l) is greater than or equal to

∣∣∣∣
∑

J⊆Ī∑
s∈J 1/ns=c

(−1)|J|e2πi
∑
s∈J as/ns

−
m−|I|∑

l=0
l 6=n

(−1)l
(
m− |I|

l

) ∑

xs∈R(ns) for s∈I∑
s∈I xs/ns=c−l

e2πi
∑
s∈I asxs/ns

∣∣∣∣

=
∣∣∣∣(−1)n

(
m− |I|
n

)
e2πi

∑
s∈I asms/ns

∣∣∣∣ =
(
m− |I|
n

)
.
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(ii) Now we suppose |I| ≥ m and Ī∗(c−n) = 1 where n is a nonnegative
integer. Let I ′ be the unique subset of Ī such that

∑
s∈I′ 1/ns = c− n. By

(36) we have

∑

xs∈R(ns) for s∈I∑
s∈I xs/ns=c

e2πi
∑
s∈I asxs/ns − (−1)n

(|I| −m
n

)
(−1)|I

′|e2πi
∑
s∈I′ as/ns

=
|I|−m∑

l=0
l 6=n

(−1)l
(|I| −m

l

) ∑

J⊆Ī∑
s∈J 1/ns=c−l

(−1)|J|e2πi
∑
s∈J as/ns .

Thus (11) follows.

Lemma. Let c1, . . . , ck be nonnegative integers and d1, . . . , dl positive in-
tegers. Assume that there exist nonzero numbers z1, . . . , zk for which∑k
s=1 csz

t
s = 0 for those positive integers t not divisible by any of d1, . . . , dl.

Then c1 + . . . + ck is the sum of some (not necessarily distinct) numbers
among d1, . . . , dl.

This is Lemma 9 of [Su4] and the initial idea is due to Y.-G. Chen.

P r o o f o f T h e o r e m 3.2. Let d be an integer prime to N =
[n1, . . . , nk]. Since any integer can be written in the form dx + Ny where
x, y ∈ Z, and dx + Ny ≡ das (mod ns) if and only if x ≡ as (mod ns), it
follows that Ad = {das + nsZ}ks=1 also forms an exact m-cover of Z. When
|I| ≤ m, by applying Theorem 4.1 to Ad we get

∑

J⊆Ī∑
s∈J 1/ns=c

(−1)|J|e2πid
∑
s∈J as/ns

=
m−|I|∑
n=0

(−1)n
(
m− |I|
n

) ∑

xs∈R(ns) for s∈I∑
s∈I xs/ns=c−n

e2πid
∑
s∈I asxs/ns ,

that is,
∑
w∈W1

B1(c, w)e2πidw is zero, where W1 is the union of the sets
{{∑

s∈J

as
ns

}
: J ⊆ Ī &

∑

s∈J

1
ns

= c

}

and
{{∑

s∈I

asxs
ns

}
: xs ∈ R(ns) for s ∈ I, c−

∑

s∈I

xs
ns
∈ {0, 1, . . . ,m− |I|}

}
,
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and

B1(c, w) =
∑

J⊆Ī∑
s∈J 1/ns=c

{∑s∈J as/ns}=w

(−1)|J|

−
m−|I|∑
n=0

(−1)n
(
m− |I|
n

)∣∣∣∣
{
〈xs〉s∈I : xs ∈ R(ns) for s ∈ I,

∑

s∈I

xs
ns

= c− n &
{∑

s∈I

asxs
ns

}
= w

}∣∣∣∣

for w ∈ W1. If |I| ≥ m, then by applying Theorem 4.1 to Ad we obtain the
equality

∑

xs∈R(ns) for s∈I∑
s∈I xs/ns=c

e2πid
∑
s∈I asxs/ns

=
|I|−m∑
n=0

(−1)n
(|I| −m

n

) ∑

J⊆Ī∑
s∈J 1/ns=c−n

(−1)|J|e2πid
∑
s∈J as/ns ,

i.e.,
∑
w∈W2

B2(c, w)e2πidw = 0, where W2 is the union of
{{∑

s∈J

as
ns

}
: J ⊆ Ī and

∑

s∈J

1
ns

= c− n for some n = 0, 1, . . . , |I| −m
}

and {{∑

s∈I

asxs
ns

}
: xs ∈ R(ns) for s ∈ I and

∑

s∈I

xs
ns

= c

}
,

and

B2(c, w)

=
∣∣∣∣
{
〈xs〉s∈I : xs ∈ R(ns) for s ∈ I,

∑

s∈I

xs
ns

= c &
{∑

s∈I

asxs
ns

}
= w

}∣∣∣∣

−
|I|−m∑
n=0

(−1)n
(|I| −m

n

) ∑

J⊆Ī∑
s∈J 1/ns=c−n

{∑s∈J as/ns}=w

(−1)|J|

for w ∈W2.
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C a s e 1: |I| ≤ m. In this case (22) and (23) are obvious if W1 = ∅.
Suppose that W1 is nonempty. If the inequality

Ī∗(c) +
m−|I|∑
n=0

I∗(c− n) ≥ |W1| ≥ p(N)

fails or N = 1, then
∑
w∈W1

B1(c, w)e2πidw = 0 for every d = 1, . . . , |W1|.
Since

|(e2πidw)1≤d≤|W1|, w∈W1 |
/ ∏

w∈W1

e2πiw

is a determinant of Vandermonde’s type, B1(c, w) = 0 for all w ∈ W1 and
hence (22) follows. When |S|, |T | ≤ 1 and S ∩ T = ∅ where S and T are as
in Theorem 3.2, there is an ε ∈ {1,−1} such that

εB1(c, w) = |B1(c, w)|

=
∣∣∣∣
{
J ⊆ Ī :

∑

s∈J

1
ns

= c &
{∑

s∈J

as
ns

}
= w

}∣∣∣∣

+
m−|I|∑
n=0

(
m− |I|
n

)∣∣∣∣
{
〈xs〉s∈I : xs ∈ R(ns) for s ∈ I,

∑

s∈I

xs
ns

= c− n &
{∑

s∈I

asxs
ns

}
= w

}∣∣∣∣

for every w ∈ W1. If N 6= 1 then
∑
w∈W1

|B1(c, w)|(e2πiw)d = 0 for all
positive integers d divisible by none of prime divisors of N and therefore by
the Lemma

Ī∗(c) +
m−|I|∑
n=0

(
m− |I|
n

)
I∗(c− n) =

∑

w∈W1

|B1(c, w)| ∈ D(N).

If N = 1 then the last equality also holds because B1(c, w) = 0 for every
w ∈W1.

C a s e 2: |I| ≥ m. Apparently (25) and (26) are valid if W2 = ∅. Now
assume |W2| ≥ 1. If the equality

I∗(c) +
|I|−m∑
n=0

Ī∗(c− n) ≥ |W2| ≥ p(N)

fails or N equals one, then
∑
w∈W2

B2(c, w)e2πidw = 0 for every d =
1, . . . , |W2|, hence B2(c, w) = 0 for all w ∈ W2 and so we have (25). If
c 6= n +

∑
s∈J 1/ns for each n = 0, 1, . . . , |I| −m and J ⊆ Ī with n ≡ |J |

(mod 2), then
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B2(c, w)

=
∣∣∣∣
{
〈xs〉s∈I : xs ∈ R(ns) for s ∈ I,

∑

s∈I

xs
ns

= c &
{∑

s∈I

asxs
ns

}
= w

}∣∣∣∣

+
|I|−m∑
n=0

(|I| −m
n

)∣∣∣∣
{
J ⊆ Ī :

∑

s∈J

1
ns

= c− n &
{∑

s∈J

as
ns

}
= w

}∣∣∣∣

for all w ∈W2, so with the help of the Lemma, whether N = 1 or not, (26)
always holds.

P r o o f o f T h e o r e m 3.3. (i) First suppose |I|=m. Let r∈R([ns]s∈I).
In the light of Theorem 4.2,

∑

J⊆Ī
{∑s∈J 1/ns}=r/[ns]s∈I

(−1)|J|e2πi
∑
s∈J as/ns

=
∑

xs∈R(ns) for s∈I
{∑s∈I xs/ns}=r/[ns]s∈I

e2πi
∑
s∈I asxs/ns .

As (ns, nt) | as−at for all s, t ∈ I, by Corollary 2.3 the absolute value of the
right hand side is

∏
s∈I ns/[ns]s∈I . So

m−1∑
n=0

Ī∗

(
n+

r

[ns]s∈I

)
=
∣∣∣∣
{
J ⊆ Ī :

{∑

s∈J

1
ns

}
=

r

[ns]s∈I

}∣∣∣∣

≥
∣∣∣∣

∑

J⊆Ī
{∑s∈J 1/ns}=r/[ns]s∈I

(−1)|J|e2πi
∑
s∈J as/ns

∣∣∣∣

=

∏
s∈I ns

[ns]s∈I
.

Next we handle the case where |I| 6= m. Choose an integer x such that
x ∈ ⋂s∈I as + nsZ if I 6= ∅. Let

I ′ = {1 ≤ s ≤ k : x ≡ as (mod ns)}.
Then |I ′| = m and I ′ ⊃ I. By the previous argument,

∣∣∣∣
{
J ⊆ {1, . . . , k} \ I ′ :

{∑

s∈J

1
ns

}
=

a

[ns]s∈I′

}∣∣∣∣ ≥
∏
s∈I′ ns

[ns]s∈I′

for every a ∈ R([ns]s∈I′). So, for any r ∈ R([ns]s∈I), we have



196 Z. W. Sun

∣∣∣∣
{
J ⊆ Ī :

{∑

s∈J

1
ns

}
=

r

[ns]s∈I

}∣∣∣∣

≥
∣∣∣∣
{
J ⊆ {1, . . . , k} \ I ′ :

{∑

s∈J

1
ns

}
=
r[ns]s∈I′/[ns]s∈I

[ns]s∈I′

}∣∣∣∣

≥
∏
s∈I′ ns

[ns]s∈I′
=

∏
s∈I ns ·

∏
s∈I′\I ns

[[ns]s∈I , [ns]s∈I′\I ]
≥
∏
s∈I ns

[ns]s∈I
.

(ii) If [ns]s∈Iθ 6∈ Z, then {∑s∈I xs/ns} 6= θ whenever xs ∈ R(ns) for all
s ∈ I, and thus by Theorem 4.2,

(∗)
∑

w∈W
e2πiw

∑

J⊆Ī
{∑s∈J 1/ns}=θ
{∑s∈J as/ns}=w

(−1)|J|

=
∑

J⊆Ī
{∑s∈J 1/ns}=θ

(−1)|J|e2πi
∑
s∈J as/ns = 0

where

W =
{{∑

s∈J

as
ns

}
: J ⊆ Ī and

{∑

s∈J

1
ns

}
= θ

}
.

If (ns1 , ns2) - as1 − as2 for some s1, s2 ∈ I, then {as + nsZ}s∈I covers each
integer at most m− 1 times because as1 + ns1Z ∩ as2 + ns2Z = ∅, therefore
system {as + nsZ}s∈Ī forms a cover of Z and (∗) holds by Theorem 1 of
[Su3]. For each integer a prime to [ns]s∈Ī , by applying the automorphism
σa of the cyclotomic field Q(e2πi/[ns]s∈Ī ) with σa(e2πi/[ns]s∈Ī ) = e2πia/[ns]s∈Ī

we obtain from (∗) the equality

(∗a)
∑

w∈W
(e2πiw)a

∑

J⊆Ī
{∑s∈J 1/ns}=θ
{∑s∈J as/ns}=w

(−1)|J| = 0.

Observe that

|W | ≤
∣∣∣∣
{
J ⊆ Ī :

{∑

s∈J

1
ns

}
= θ

}∣∣∣∣ =
m−1∑
n=0

Ī∗(n+ θ).

If 0 < |W | < p([ns]s∈Ī), then (∗a) holds for every a = 1, . . . , |W |, hence
∑

J⊆Ī
{∑s∈J 1/ns}=θ
{∑s∈J as/ns}=w

(−1)|J| = 0 for all w ∈W
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and in particular
∑

J⊆Ī, 2 | |J|
{∑s∈J 1/ns}=θ

1−
∑

J⊆Ī, 2 - |J|
{∑s∈J 1/ns}=θ

1 =
∑

J⊆Ī
{∑s∈J 1/ns}=θ

(−1)|J| = 0,

for the determinant of the matrix ((e2πiw)a)1≤a≤|W |, w∈W is nonzero. In the
case W = ∅ we obviously have the last equality and (32). Assume W 6= ∅
below. Provided that all the |J | mod 2 with J ⊆ Ī and {∑s∈J 1/ns} = θ
are the same, if [ns]s∈Ī = 1 then θ = 0 and we must have Ī = ∅, i.e.
k = |I| = m, which contradicts the fact that (ni, nj) - ai − aj for some
i, j ∈ I; if [ns]s∈Ī > 1, then (32) follows from the Lemma and the validity
of (∗a) for all integers a prime to [ns]s∈Ī . This ends the proof.

Acknowledgments. The author is indebted to Professor R. K. Guy for
his sending the related sections from the new edition of his book [Gu]. The
paper was written during the author’s visit in Italy; he is grateful to Trento
University for financial support. He also thanks the referee for his valuable
advice.

References
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