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1. Introduction. Let p be a prime number and F be a CM-field. Let
F. be the cyclotomic Zj-extension of F. For every n, we have a unique
subextension IF,, of degree p™ over F in F.,. We denote by F' the maximal
real subfield of F, and let h,; be the relative class number of F,,/F;'. Then
we have a well known result:

ordy(h, ) = p p" + A" n+v7,
u~ >0, A7 >0, and v~ are integers, when n is sufficiently large.
Let E be a CM-field and a p-extension of F. Under the assumption
pr =0, Y. Kida ([5]) proved a striking analogue of the classical Riemann—
Hurwitz genus formula from the theory of compact Riemann surfaces, by

describing the behavior of A~ in the p-extension. His result can be stated as
follows:

THEOREM 0 (see [8, Theorem 4.1]). pur = 0 if and only if pg =0, and
when this is the case,

Mg = 08 = [Boo s Foo] (A =) + Y _(e(w'/v)) =1) =) (e(w/v) — 1),
w’ w
where the summation is taken over all places w' on B, (resp. w on EXL)
which do not lie above p and V' = W[5 (resp. v = wlp+ ), e(w/v) (resp.
e(w'/V")) is the ramification index of w (resp. w') over v (resp. V') and
dg =1 or 0 (resp. g = 1 or 0) according as E (resp. F) contains ¢, (or (4
if p=2) or not.

There are several ways to prove this result. K. Iwasawa ([4]) showed us
a proof by using Galois cohomology. W. Sinnott ([8]) gave a proof by using
the p-adic L-function and J. Satoh ([6]) obtained it by using the theory of
I'-transforms of rational functions. In this paper, we generalize the above
result to basic Zg-extensions when E and F are abelian.

Let S = {p1,...,ps} be a finite set of primes, Zgs = [],cgZ; and Qg
be the Zg-extension of Q. Then Fg = FQg is called the basic Zg-extension

(1



2 Y. Ouyang and F. Xu

of F. Let N = pi*...p" and Fy be the unique subextension of degree N

of Fg. Let h)y denote the relative class number of Fy/ F} From a theorem

of E. Friedman ([2]), when F is an imaginary abelian number field, we have
ordy, (hy) = A" (pi, S)ni + v~ (pi, 5),

where all n; are sufficiently large and p; € S.

In this paper, using the relationship between A\~ (p;, S) and the A-invari-
ant of the Dirichlet character of F, we obtain the following main result.

THEOREM 1. For fixed p € S, let E and F be imaginary abelian number
fields and E be a p-extension of F. We have

Az (p,S) — 0 = [Es : Fs]( ( ) 5]F)

Z Z (w/v) —1),

w

where the summation is taken over all places w' on Eg (resp. w on EY)
which do not lie above p and V' = W'|p, (resp. v = w|F§), and e(w/v) (resp.
e(w'/V")) is the ramification index of w (resp. w') over v (resp. V') and
dg =1 or 0 (resp. g = 1 or 0) according as E (resp. F) contains , (or (4
if p=2) or not.

2. Preliminaries. Let p € S be a fixed prime number and put

_ {4, p=2,
= \p p#£2
Let wy, be the Teichmiiller character mod g. For every m € Z with (m,p) =1
and m # +1, we have
m = wp(m)(L + map™™),

with my € Z,,(m1,p) = 1 and n,, being a positive integer. We let Q@)
denote the basic Zy-extension on Q and T'= S — {p}.

Let O be a ring of integers of a finite extension over Q, and let f(X) =
ap+ a1 X + ... € O[[X]] be a non-zero power series. We define

p(f) =min{ord, a; : i >0}, A(f) =min{i > 0:ord,a; = pu(f)}.

Clearly we have u(fg) = u(f) + pu(g) and A(fg) = A(f) + Alg) if f,g are
non-zero elements of O[[X]]. So p and A can be defined in the quotient field
of O[[X]] in a natural way.
Let Z§ denote the unit group of Zg. So
Zg = Us X Vs,

where Vs is the torsion part of Zg and Ug = [],cg(1+21Z;). Let ( )s and wg
denote the projections from Zg to Us and Vs respectively. When s = 1, wg
is the Teichmiiller character. Let 8 be an odd primitive Dirichlet character
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with values in C,,, where C, is a fixed completion of the algebraic closure
of Qp. Any primitive Dirichlet character whose conductor is divisible only
by the primes in S can be regarded as a character of Z3. Such a character
is called of the second kind for S if it is trivial on Vg. For a character ¥ of
the second kind for S, we have the decomposition ¥ = w@ (1) where ¥®)
(resp. ¥(1)) is of the second kind for p (resp. T) (see [9]).

Let 6 be an odd primitive Dirichlet character with values in C,. Fix a
generator u of U,. When 6w, is not of the second kind for p, we define

A(0) = Ago(X — 1)),
where
go(X —1) € 20[[X —1]] with gp(u® —1) = Ly(s,0w,)

and Ly(s,0wy) is the p-adic L-function associated with 6w,. When 6w, is
of the second kind for p, we define A\(#) = —1. The following proposition is
Theorem 1 of [6].

PROPOSITION 1. Let 6 be an odd primitive Dirichlet character, T be an
even primitive Dirichlet character and O be the integer ring of the field
generated over Q, by the values of 0 and 7. Suppose

(1) 7 has a p-power order and its conductor | is a prime number,

(2) for all a € Z,07(a) = 6(a)7(a).
Then
(i) if 0 #w,', we have

(MO 4+ g i 6) =1 mod o,
M) = { A(9) if 0(0) £ 1 mod ¢,

where @ is a prime ideal of O above p,

(i) if 6 =w, ", we have

Ty
AOr) =2 1.
q
Remark 1. This proposition can also be proved by using the p-adic
L-function (see [8, §2]).

PROPOSITION 2. Let 6 be an odd primitive Dirichlet character of order
prime to p, T be an even primitive Dirichlet character of p-power order and
01(a) = O(a)T(a). Suppose the conductor f(T) of T is prime to p. Write
f(r) =TI, 1", where k; > 1 and 1 are primes. Then
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(i) ki =1, for all I,
(ii) if 6 # w, ', then

]
NGENOESY %,
9(15:1

if 0= w;l, then

\NOT) = <Zl:pqm> —1.

Proof. (i) By the Chinese Remainder Theorem, we have 7 = [], 7,
where [** is the conductor of 7; and 7; has p-power order.
If k; # 1, consider the natural map

i 21 — Z/ (1R,

For any x € ker ¢, x has l[-power order. Thus 7;(x) is an I-power root of unity.
Note 7; has p-power order and (p,l) = 1, and so we have 7;(x) = 1. This is
a contradiction because [** is the conductor of 7.

(ii) When 6 # w, ', the assertion follows from Proposition 1 and (i)
since 67(l) = 1 mod g if and only if §(I) = 1. If § = w, !, then [ = 1 mod p
since 7; has p-power order. Therefore §(I) = 1 mod p and we are done by
Proposition 1. =

3. The number of splitting primes. Let k be a finite abelian exten-
sion of Q. In this section, we compute the number of primes of kg above
a prime number [, which is closely related to the characters of the Galois
group. The character group of an abelian profinite group G is the set of
continuous homomorphisms from G to the roots of unity in C; with the
induced topology. We denote this character group as G”.

Now we take x € Gal(ks/Q)”. Then ker y is a close subgroup with finite
index of Gal(kgs/Q) (an open subgroup) and Y is essentially a usual Dirichlet
character. Let kX be the subfield of kg fixed by ker x. Then we define

= 0 if [ is ramified in kX,
XU = X(Frob;) if [ is unramified in kX.

Keeping the above notations, we have the following lemma:
LEMMA 1. For any prime number [,

(i) there are finitely many primes in kg above l,
(ii) the number of primes above | in kg is equal to

#{x € Gal(ks/Q)" : x(I) = 1}.
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Proof. (i) First consider S = {p}. Let Q be a prime in k above .
If [ = p, the assertion is trivial by [10, Lemma 13.3]. If [ # p, then Q is
unramified in kg/k. Write

l=wp(D)(1+p"ly).
Then the number of primes of k above Q is equal to

#(Gal(ks/k)/(Frobg))
< #(Gal(Q™ /Q)/(Froby)) - [k: Q] < p™[k : Q] < o0
and the case s = 1 is proved.

If s > 1, let D(Q) be the decomposition group of Q. Then D(Q) is a
closed subgroup of Zg and has the form p'il L, X ... xpZy 0 <t; <o0,i=
1,...,s, where p°Z,, = 0. It is sufficient to prove that ¢; < 0o, i =1,...,s.
Suppose t; = co. Let k(P) C IL be a basic Z,,-extension of k and D®)(Q)
be the decomposition group of Q over k(). So we have

D(pi)(Q) = D(Q)|Ga1(k(?’i)/k) =0.
This is a contradiction to the case of s =1 and (i) is proved.

(ii) Let D(I) denote the decomposition group of a prime in kg above [.
Then the number of primes in kg above [ is equal to

#(Gal(ks/Q)/D(1)) = #((Gal(ks/Q)/D(1))")
= #{x € Gal(ks/Q)" : x(I) = 1}.

This is the desired result. =

Remark 2. Lemma 1 is not true for arbitrary Zg-extension (see [10,
Ex. 13.2)).

From Lemma 1, we immediately have the following lemma:

LEMMA 2. Suppose kNQg =Q, p € S with ptk:Q], T =S5—{p} and |
s a prime number different from p. Then the number of prime ideals above
[ in kQg is
#{x € Gal(kQr/Q)" : x(I) = 1}#{x € Gal(Q" /Q)" : x(I) = 1}
= (0" /@)#{x € Gal(kQr/Q)" : x(I) = 1}.
Proof. By Lemma 1, it is sufficient to prove
#{x € Gal(kQs/Q)" : x(I) = 1}
= #{x € Gal(kQr/Q)" : x(1) = }#{x € Gal(Q"/Q)" : x(1) = 1}.
Since

Gal(kQs/Q) = Gal(kQ7/Q) x Gal(Q®)/Q),

we have

Gal(kQg/Q)" = Gal(kQ7/Q)" x Gal(Q® /Q)".
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Therefore for any x € Gal(kQgs/Q)", we have x = xr - xp, With xr €

Gal(kQr/Q)", x, € Gal(Q® /Q)" and x(I) = x7(1)x,(1). Note x,(1) is a
p-power root of unity and xr(l) is not, so we have

x() =1 xr(l) =1and x,(l) =1

and Lemma 2 is proved. m

4. Proof of Theorem 1. First let k be a finite abelian extension of Q
and we use the following notations associated with k:

o Xy (resp. X ): the set of all (resp. odd) Dirichlet characters associated
with k.

o Xi (1) (resp. X, (1)): all the elements of Xy (resp. X, ) whose conduc-
tors are divisible by a prime number [.

e Ji(I): all the elements of X} whose conductors are prime to a prime
number .

e We write yy for an element of Xy and fyx as the conductor of k. Let e, f
and g denote the usual meaning as the ramification index, the residue class

degree, the number of splitting primes respectively. For a prime number [,
by [10, Th. 3.7], we have

#N(l) = filDge(l)  and  #(Xic/ k(1)) = ex(l)-

Now E, F are the same as in Section 1. Let K be the maximal p-exten-
sion of @Q in E, and L. be the maximal extension of Q in E with p{[L : Q).
w (resp. w') is a prime of EY (resp. Eg) which does not lie over the prime
p, V= w|F§ (resp. v = w'|p,) and u = cu|]L;r (resp. u' = wlLg)-

Suppose w|g = | # p. Since the residue field at w or u’ has no finite
p-extensions, it is clear that f(w/u) = f(w'/u’) = 1. Furthermore,

ex(l) = e(W'/u'), ex+(l) = e(w/u),
#Jx = g(W' /'), #Jx+ = g(w/u).

We also note the following:

1) It is easy to check that if Theorem 1 holds for two of E/F, K/F and
E/K, it holds for the third. This allows us to reduce ourselves to the case
where [F : Q] is not divisible by p for p > 2.

2) We can also assume ENFg = F, FN Qs = Q and the conductor of
[E is not divisible by ¢p, since any number field between E and Eg has the
same A(p, S)-invariant as that of E.

3) By the above assumption, we have [Eg : Fg] = [E : F] and ENQg = Q.

With the above notations, we have the following lemma:
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LEMMA 3.
D (e V) = 1) = (e(w/v) —1)
S # Xk (D# D < xp odd, xp® (1) = 1} ifp>2
= 22 XL (1) — [B: Fl X () 340w @ v @ () =13,

if p=2,
where w' (resp. w) runs over all the primes in Eg (resp. EY) which do not

lie over p, | runs over all the prime numbers different from p and ¥(T) is
taken over the characters of Gal(Qr/Q).

Proof. We have
() D (e(w/u)=1)— Z( (w/u) —1)

—Zg "Ju')( Zgw/u (e(w/u) —1).
Ifp>2then F=L, v =u, v =4 and K= K". By Lemma 2, we have

=D #Xe(D) D> 1= #Xk() Y1

I#p wnQ=l  l#p unQ=1
= #XxO)# e xw @ (1) = 1}pm !
I#p
= #XOH#{xer T xp (1) = 1
l#p
= Z#XK(l)p"’_l#{X]FW(T) s xr odd, xg? D) (1) = 1}.
l#p

For p =2, we have F D L and L = L.*. So

(1) () =D #Xe() D 1= #Xe (1) Y 1

I#p u|g=l1 I#p ulo=l
=S #X (1) 272 # 0wl v () =1,
l#p

Let E = F. We have
2) D (e(/u)=1) =) (e(v/u)—1)

=S o X (Ol w0 = 1),
l#p

Since [Eg : Fg] = [E : F] and f(w'/v') = 1, we have
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e V)g! V) = [E:F), el fu) = e(w! V) )e(w! Ju).
Then

[E:F]> (e(v'/u) 1)
= g V) (e /u) — e V) =D (e(w /u') — e(w! /1),

The same is true for w, u,v. By (1) and (2), we obtain

D (e /v) = 1) =Y (elw/v) — 1)

(A)/

=D 2" X () - [B: Fl#X e O3 0™ ™ (1) = 13 w
I#p

Now we begin our proof of the main theorem.

Proof of Theorem 1. We know that for any imaginary abelian field
k, A(p, S) satisfies the following relation (cf. [9]):

Ac(p8) = b+ )Y Mow™),
0 w(T)

where the outer sum is taken over all odd characters of k/Q and the inner
sum is taken over all (™) € Gal(Qr/Q)" with A(#®(T)) #£ 0, and 6y = 1 if
and only if w,, is a character of k/Q. Therefore

() M@ S)=de= Y > A?™)=>>" > Maxx?™)
XE odd @ (T) XL xx w(T)

where yxxrL is odd.

When p > 2, the conductor of x € Gal(K/Q)" is not divisible by p since
fg is a not divisible by p? and [K : Q] is a p-power. Note L = F and K = K+
in this case. By Propositions 1 and 2, we have

(xx) = Z Z Z ()\(XF![/(T)) + Z pnl_l)

xrodd xx @(T) I f(xx)
xe? T (1)=1
=E:F S S A0+ 3T YT #Xxp !
xr odd ¢ (T) xr odd ¢ (T) l#p
xr? D) (1)=1
= [E:FI(Af (p,S) — 0%) + > p™ " # Xk (1) > 1
I#p xr odd, x=¥ (1) (1)=1

= [E: F](Ag (p,5) = r)
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+) o p T #EXk(D# P xr odd, e (1) = 1}
l#p

= [E:F] (p,S) = b8) + ) _(e(w'/v)) = 1) = Y (e(w/v) = 1).

w

If p=2, then L = LT, L CF and the conductor of each character of K is
not divisible by 8. By [6, Th. 1],

D Axx) =D 2MT#X (1) - [KT: Q.
XKk odd l#p

Since KNF is an imaginary abelian extension of Q, we can choose a primitive
odd character xo of Gal((F N K)/Q) with order 2. Then, for any x € X,
we have xy = xoX with ¥ € Xgk+. By Propositions 1 and 2, we have

Z Z Axax ¥ ™)

Xk odd X]Lq/(ﬂ;ﬂ

= > 22X (D# D # 1 x M (1) =1}
l#p

+EKY QL D Aoxe?™).
xL¥ (1) #1
Therefore

(3) o) =D > > Axeow?™)

XL Xk odd ¢ (T)

= > ) Awa?T)+ D Ak

XKk odd X]LW(T) ;é]_ XKk odd

=K QY Awar™®) 1)

XL (T)#1
+ ) 2P HEX (D# O (1) = 13,
l#p
If we set E = F in the above equality, then we obtain
@) NS -G =K NF:Q( Y Mwowr®) -1)
xL¥ (M #1
+ > 2 X (DDl D) = 13,
l#p

By (3)-[ET : F](4) we obtain the desired result since [ET : FT|[KT NF : Q]
=[Kt:Q]and [E:F]=[Et :Ft]=[Es:Fg]. m
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