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1. Introduction. The Greek mathematician Diophantus of Alexandria
noted that the set

{
1
16 ,

33
16 ,

17
4 ,

105
16

}
has the following property: the product

of any two of its distinct elements increased by 1 is a square of a rational
number (see [5]). Fermat first found a set of four positive integers with the
above property, and it was {1, 3, 8, 120}.

Let n be an integer. A set of positive integers {x1, . . . , xm} is said to have
the property D(n) if for all 1 ≤ i < j ≤ m the following holds: xixj+n = y2

ij ,
where yij is an integer. Such a set is called a Diophantine m-tuple.

Davenport and Baker [4] showed that if d is a positive integer such that
the set {1, 3, 8, d} has the property of Diophantus, then d has to be 120. This
implies that the Diophantine quadruple {1, 3, 8, 120} cannot be extended to
the Diophantine quintuple with the property D(1). Analogous result was
proved for the Diophantine quadruple {2, 4, 12, 420} with the property D(1)
[17], for the Diophantine quadruple {1, 5, 12, 96} with the property D(4) [15]
and for the Diophantine quadruples {k − 1, k + 1, 4k, 16k3 − 4k} with the
property D(1) for almost all positive integers k [9].

Euler proved that every Diophantine pair {x1, x2} with the property
D(1) can be extended in infinitely many ways to the Diophantine quadruple
with the same property (see [12]). In [6] it was proved that the same conclu-
sion is valid for the pair with the property D(l2) if the additional condition
that x1x2 is not a perfect square is fulfilled.

Arkin, Hoggatt and Straus [3] proved that every Diophantine triple with
the property D(1) can be extended to the Diophantine quadruple. More
precisely, if xixj + 1 = y2

ij , then we can set x4 = x1 + x2 + x3 + 2x1x2x3 +
2y12y13y23. For the Diophantine quadruple obtained in this way, they proved
the existence of a positive rational number x5 with the property that xix5+1
is a square of a rational number for i = 1, . . . , 4.
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Using this construction, in [2, 7, 8, 11] some formulas for Diophantine
quintuples in terms of polynomials, Fibonacci, Lucas, Pell and Pell–Lucas
numbers were obtained.

In the present paper we prove that for all positive rational numbers
q, x1, x2, x3, x4 such that xixj + q2 = y2

ij , yij ∈ Q, for 1 ≤ i < j ≤ 4, and
x1x2x3x4 6= q4, there exists a positive rational number x5 such that xix5+q2

is a square of a rational number for i = 1, . . . , 4. As a corollary we get the
result that for all Diophantine quadruples {x1, x2, x3, x4} with the property
D(1) there exists a rational number x5 such that xix5 + 1 is a square of a
rational number for i = 1, . . . , 4.

2. Extension of Diophantine quadruples

Theorem 1. Let q, x1, x2, x3, x4 be rational numbers such that xixj +
q2 = y2

ij , yij ∈ Q, for all 1 ≤ i < j ≤ 4. Assume that x1x2x3x4 6= q4. Then
the rational number x5 = A/B, where

A= q3[2y12y13y14y23y24y34 + qx1x2x3x4(x1 + x2 + x3 + x4)

+ 2q3(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4) + q5(x1 + x2 + x3 + x4)],

B = (x1x2x3x4 − q4)2,

has the property that xix5 + q2 is a square of a rational number for i =
1, . . . , 4. To be more precise, for i ∈ {1, 2, 3, 4} we have

xix5 + q2 =
(
q
xiyjkyjlykl + qyijyikyil

x1x2x3x4 − q4

)2

, where {i, j, k, l} = {1, 2, 3, 4}.

P r o o f. Let i ∈ {1, 2, 3, 4} and {i, j, k, l} = {1, 2, 3, 4}. Then

(x1x2x3x4 − q4)2(xix5 + q2)

= 2q3xiy12y13y14y23y24y34 + q4x1x2x3x4xi(x1 + x2 + x3 + x4)

+ 2xiq6(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)

+ xiq
8(x1 + x2 + x3 + x4) + q2x2

1x
2
2x

2
3x

2
4 − 2q6x1x2x3x4 + q10

= q2[2qxiy12y13y14y23y24y34 + q2x2
ixjxkxl(xi + xj + xk + xl)

+ 2q4x2
i (xjxk + xjxl + xkxl) + 2q4xixjxkxl + q6x2

i

+ q6(xixj + xixk + xixl) + x2
ix

2
jx

2
kx

2
l − 2q4xixjxkxl + q8]

= q2[2qxiy12y13y14y23y24y34 + x2
i (xjxk + q2)(xjxl + q2)(xkxl + q2)

+ q2(xixj + q2)(xixk + q2)(xixl + q2)]

= q2(2qxiy12y13y14y23y24y34 + x2
i y

2
jky

2
jly

2
kl + q2y2

ijy
2
iky

2
il)

= [q(xiyjkyjlykl + qyijyikyil)]2,

which proves the theorem.
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Since the signs of yij are arbitrary, we have two choices for x5. Let x+
5 and

x−5 denote these two numbers, and let x+
5 be the number which corresponds

to the case where all yij are nonnegative.

Corollary 1. Let {x1, x2, x3, x4} ⊂ N be the set with the property D(1).
Then there exists a rational number x5, 0 < x5 < 1, such that xix5 + 1 is a
square of a rational number for i = 1, . . . , 4.

P r o o f. We claim that the number x+
5 , obtained by applying the con-

struction from Theorem 1 to the set {x1, x2, x3, x4} has the desired property.
Indeed, it is sufficient to prove that x+

5 < 1. Let us introduce the following
notation:

σ1 = x1 + x2 + x3 + x4,

σ2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4,

σ3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4,

σ4 = x1x2x3x4,

X = σ1σ4 + 2σ3 + σ1,

Y = y12y13y14y23y24y34.

The proof that

x+
5 =

2Y +X

(σ4 − 1)2 < 1

is completed by showing that

(1) 2X < (σ4 − 1)2 and 4Y < (σ4 − 1)2.

Without loss of generality we can assume that x1 < x2 < x3 < x4. If
x1 = 1, then x2 6= 2. Therefore, x2 ≥ 3, x3 ≥ 4 and x4 ≥ 5. Hence σ4 ≥ 60.
Furthermore, from

1
x1x2x3

+
1

x1x2x4
+

1
x1x3x4

+
1

x2x3x4
≤ 13

60
<

1
4

it follows that 52 ≤ 4σ1 < σ4. In the same manner we can see that 59 ≤
σ2 < σ4 and 107 ≤ σ3 < 2σ4 (see also [12]). Hence

(σ4 − 1)2 − 2X > σ2
4 − 2σ4 + 1− σ2

4

2
− 8σ4 − σ4

2
=

1
2

(σ2
4 − 21σ4 + 2) > 0

(since σ4 ≥ 60). To get the second inequality from (1), we note that

Y 2 = (x1x2 + 1)(x1x3 + 1)(x1x4 + 1)(x2x3 + 1)(x2x4 + 1)(x3x4 + 1)

= σ3
4 + σ2σ

2
4 − σ2

4 + σ1σ3σ4 + σ2
1σ4 − 2σ2σ4 + σ2

3 − σ4 + σ1σ3 + σ2 + 1

< σ3
4 + σ3

4 − σ2
4 +

σ3
4

2
+
σ3

4

16
− 118σ4 + 4σ2

4 − σ4 +
σ2

4

2
+ σ4 + 1

=
41
16
σ3

4 +
7
2
σ2

4 − 118σ4 + 1.
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Therefore,

(σ4 − 1)4− 16Y 2 > σ4
4− 4σ3

4 + 6σ2
4− 4σ4 + 1− 41σ3

4 − 56σ2
4 + 1888σ4− 16

= σ4
4 − 45σ3

4 − 50σ2
4 + 1884σ4 − 15 > 0

(since σ4 ≥ 60), which completes the proof.

Corollary 2. Let q, x1, x2, x3 be rational numbers such that xixj+q2 =
y2
ij , yij ∈ Q for all 1 ≤ i < j ≤ 3. Let

x4 = [2y12y13y23 + 2x1x2x3 + q2(x1 + x2 + x3)]/q2,

x5 =
4y12y13y23(x1y23 + y12y13)(x2y13 + y12y23)(x3y12 + y13y23)

(x1x2x3x4 − q4)2 .

Then the set {x1, x2, x3, x4, x5} has the property that the product of any two
distinct elements of it increased by q2 is equal to the square of a rational
number. In the notation of Theorem 1, we have

x5 =
4q3y12y13y14y23y24y34

(x1x2x3x4 − q4)2 .

P r o o f. Let z1 = x1, z2 = x2, z3 = x3, z4 = 0. Then the rational numbers
z1, z2, z3, z4 satisfy the conditions of Theorem 1, and its application gives us
the number

z5 = [2y12y13y23 + 2x1x2x3 + q2(x1 + x2 + x3)]/q2.

Set x4 = z5. We can now apply Theorem 1 to the numbers x1, x2, x3, x4.
Let x5 be the number which is obtained by this construction. Observe that,
by Theorem 1, for all i ∈ {1, 2, 3},
(2) qyi4 = xiyjk + yijyik,

where {i, j, k} = {1, 2, 3}. Let us introduce the following notation:

Σ1 = x1 + x2 + x3, Σ2 = x1x2 + x1x3 + x2x3, Σ3 = x1x2x3,

V = y12y13y23, W = y14y24y34.

We have

V 2 = (x1x2 + q2)(x1x3 + q2)(x2x3 + q2) = Σ2
3 + q2Σ1Σ3 + q4Σ2 + q6.

From (2) it follows that

q3W = (x1y23 + y12y13)(x2y13 + y12y23)(x3y12 + y13y23)

= 4Σ2
3 + 3q2Σ1Σ3 + 2q4Σ2 + q6 + V (4Σ3 + q2Σ1).

Now it is easy to check that, in the notation of Corollary 1,

(3) q4σ1σ4 + 2q6σ3 + q8σ1 = 2q3VW.
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Consequently,

x5 =
4q3VW

(x1x2x3x4 − q4)2 =
4q3y12y13y14y23y24y34

(x1x2x3x4 − q4)2

=
4y12y13y23(x1y23 + y12y13)(x2y13 + y12y23)(x3y12 + y13y23)

(x1x2x3x4 − q4)2 .

Let us now consider the question when one or both (since x+
5 and x−5

can be equal) of the numbers x+
5 and x−5 will be equal to zero. For obvious

reasons, such an extension of a Diophantine quadruple will be called trivial.
We will see that the answer to this question is closely connected to the
construction of Corollary 2. From now on, we assume that q 6= 0.

Proposition 1. In the notation of Theorem 1, we have x+
5 = x−5 = 0 if

and only if there exist 1 ≤ i < j ≤ 4 such that xixj = −q2 and xi + xj =
xk + xl, where {i, j, k, l} = {1, 2, 3, 4}.

P r o o f. From x+
5 = x−5 we conclude that there exist 1 ≤ i < j ≤ 4 such

that yij = 0, i.e. xixj = −q2. Substituting this into the expression for x5 we
obtain

(4) x5 =
q2(xi + xj − xk − xl)

xkxl + q2 .

Consequently, the condition x5 = 0 implies that xi + xj = xk + xl.
Conversely, suppose that x1, x2, x3, x4 satisfy the condition of the propo-

sition. Then yij = 0, and (4) implies that x+
5 = x−5 = 0.

Proposition 2. In the notation of Theorem 1, we have 0 ∈ {x+
5 , x

−
5 } if

and only if there exists i ∈ {1, 2, 3, 4} such that

xi = [2yjkyjlykl + 2xjxkxl + q2(xj + xk + xl)]/q2,

where {i, j, k, l} = {1, 2, 3, 4}.
P r o o f. We can assume that yij 6= 0 since otherwise the assertion of the

proposition follows from Proposition 1. If x5 = 0, then xix5 + q2 = q2 for
i = 1, . . . , 4. Hence, if 0 ∈ {x+

5 , x
−
5 }, then Theorem 1 implies that for an

appropriate choice of the sign of yij we have

xiyjkyjlykl + qyijyikyil = ±(x1x2x3x4 − q4),

where {i, j, k, l} = {1, 2, 3, 4}. Hence, there is no loss of generality in assum-
ing that

x1y23y24y34 + qy12y13y14 = x2y13y14y34 + qy12y23y24.

This gives (x1y34 − qy12)y23y24 = (x2y34 − qy12)y13y14. Set x1y34 − qy12 =
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αy13y14. Then x2y34 − qy12 = αy23y24, and so

α(x1y23y24y34 + qy12y13y14) = x1y34(x2y34 − qy12) + qy12(x1y34 − qy12)

= x1x2y
2
34 − q2y2

12 = x1x2x3x4 − q4.

We thus get α = ±1 and x1y34 − qy12 = ±y13y14. Squaring this relation we
obtain

x2
1x3x4 + q2x2

1 + q2x1x2 + q4− 2qx1y12y34 = x2
1x3x4 + q2x1x3 + q2x1x4 + q4,

and (if x1 6= 0) 2y12y34 = q(x1 + x2 − x3 − x4). Squaring again we obtain
the quadratic equation in x4:

q2x2
4 − 2x4[q2(x1 + x2 + x3) + 2x1x2x3]

+ q2(x2
1 + x2

2 + x2
3 − 2x1x2 − 2x1x3 − 2x2x3 − 4q2) = 0,

with the solutions

(5) x4 = [q2(x1 + x2 + x3) + 2x1x2x3 ± 2y12y13y23]/q2.

We have been working under the assumption that x1 6= 0. Now suppose that
x1 = 0. In the same manner, using Corollary 2, it can be proved that x1 = 0
implies

x4 = x2 + x3 ± y23,

which is exactly the relation (5) for x1 = 0.
This proves one implication of the proposition. The opposite implication

is a direct consequence of (3).

3. Examples

Example 1. Let us first show that the condition x1x2x3x4 6= q4 from
Theorem 1 is not superfluous. Indeed, the set {25600, 50625, 82944, 518400}
has the property D(864002) and

25600 · 50625 · 82944 · 518400 = 864004.

As an illustration of the situation from Proposition 1 let us consider the
set {−25, 25,−24, 24} with the property D(625) and the set {−1, 64, 48, 15}
with the property D(64). In both cases the construction from Theorem 1
gives x+

5 = x−5 = 0.
From [10, (13)], for a = 2 and k = 3, we obtain the Diophantine quadru-

ple {2, 20, 44, 72} with the property D(81). It is easy to check that this
quadruple does not satisfy the conditions of Proposition 2. Therefore the
numbers x+

5 and x−5 are different from 0. Indeed, x+
5 = 4860

169 and x−5 =
− 1156680

1054729 . Using x+
5 , we obtain the Diophantine quintuple {338, 3380, 4860,

7436, 12168} with the property D(394).
If we apply the construction from Theorem 1 to Diophantus’ original set{

1
16 ,

33
16 ,

17
4 ,

105
16

}
, we obtain x+

5 = 1557225246720
425212 and x−5 = − 4387246080

425212 .
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The definition of a Diophantine m-tuple can be extended to subsets of Q.
Let q be a rational number. We call a set A = {x1, . . . , xm} ⊂ Q \ {0} a
(rational) Diophantine m-tuple with the property D(q) if the product of any
two distinct elements of A increased by q is equal to the square of a rational
number. The construction of the rational Diophantine quintuple with the
property D(1) which extends a given Diophantine triple was described in
[3]. That construction is equivalent to the construction from Corollary 2.
But Theorem 1 enables extension of Diophantine quadruples which are not
of the form {x1, x2, x3, x4} from Corollary 2. One such quadruple is the set
{2, 20, 44, 72} from Example 1. Let us now examine two ways for generation
of such Diophantine quadruples.

Example 2. Let {x1, x2, x3, x4} ⊂ Q be an arbitrary set with the prop-
erty D(q2) and let x5 ∈ Q be the number which is obtained by applying
Theorem 1 to this set. Then {x2, x3, x4, x5} also has the property D(q2),
and we can apply Theorem 1 again. In this way we obtain x6 ∈ Q such that
{x2, x3, x4, x5, x6} has the property D(q2).

For example, if x1 = k − 1, x2 = k + 1, x3 = 4k and x4 = 16k3 − 4k,
then {x1, x2, x3, x4} has the property D(1) ([6, p. 22]) and we obtain

x5 =
4k(2k − 1)(2k + 1)(4k2 − 2k − 1)(4k2 + 2k − 1)(8k2 − 1)

(64k6 − 80k4 + 16k2 − 1)2 ,

and x6 = P (k)/Q(k), where

P (k) = (8k3 − 4k2 + 1)(8k3 + 4k2 − 4k − 1)(8k3 − 12k2 + 1)

× (8k4 + 4k3 − 8k2 − k + 1)(32k4 − 8k3 + 28k2 + 3)

× (32k4 + 8k3 − 12k2 + 1)(32k4 + 24k3 − 12k2 − 4k + 1)

× (32k4 + 40k3 + 4k2 − 4k + 1),

Q(k) = (131072k14 + 131072k13 − 184320k12 − 180224k11 + 96256k10

+ 86016k9 − 26880k8 − 18432k7 + 4480k6 + 1792k5 − 480k4

− 64k3 + 32k2 − 1)2.

It turns out that this factorization of the numerator of x6 is not accidental.
Namely, it can be checked that, in the notation of Theorem 1, x6 = P/Q,
where

P = q3(y12y13y14 + qy12y13 + qy12y23 + qy13y23)

× (y12y13y14 + qy12y13 − qy12y23 − qy13y23)

× (y12y13y14 − qy12y13 + qy12y23 − qy13y23)

× (y12y13y14 − qy12y13 − qy12y23 + qy13y23)(y23y24 + y23y34 + y24y34)
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× (y23y24 + y23y34 − y24y34)(y23y24 − y23y34 + y24y34)

× (−y23y24 + y23y34 + y24y34),

Q = x4
1(4x2x3x4y12y13y14y23y24y34 − qx2

1x
2
2x

2
3x

2
4 + 2q5x1x2x3x4 − q9)2.

Proposition 3. Let x1, x2 and x3 be rational numbers such that the
denominator of

x4 =
8(x3 − x1 − x2)(x1 + x3 − x2)(x2 + x3 − x1)

(x2
1 + x2

2 + x2
3 − 2x1x2 − 2x1x3 − 2x2x3)2

is different from 0. Then x1x4 + 1, x2x4 + 1 and x3x4 + 1 are squares of
rational numbers.

P r o o f. It follows immediately that

x1x4 + 1 =
(
x2

2 − 2x2x3 + x2
3 − 3x2

1 + 2x1x2 + 2x1x3

x2
1 + x2

2 + x2
3 − 2x1x2 − 2x1x3 − 2x2x3

)2

,

and analogous relations hold for x2x4 + 1 and x3x4 + 1.

Example 3. Observe that the set {x1, x2, x3} in Proposition 3 does not
need to have the property D(1). Take for example x1 = F2n+1, x2 = F2n+3

and x3 = F2n+5. Then {x1, x2, x3} has the property D(−1) for every positive
integer n (see [13, 14]). Proposition 3 implies that there exists a rational
number x4 with the property that xix4 +1, i = 1, 2, 3, are squares of rational
numbers. We will show that in this case x4 is an integer. Indeed,

x2
1 + x2

2 + x2
3 − 2x1x2 − 2x1x3 − 2x2x3

= (x1 − x2 + x3)2 − 4x1x3

= [F2n+1 − F2n+3 + (3F2n+3 − F2n+1)]2 − 4F2n+1F2n+5

= 4(F 2
2n+3 − F2n+1F2n+5) = −4.

Hence,

x4 =
8
16
· 2F2n+2 · 2F2n+3 · 2F2n+4 = 4F2n+2F2n+3F2n+4.

Example 4. If x1x2 + 1 = y2
12 and x3 = x1 +x2 + 2y12, then {x1, x2, x3}

has the property D(1). If we apply the construction from Proposition 3 to
this set we obtain

x4 = 4y12(x1 + y12)(x2 + y12).

If we apply the construction from Corollary 2 we obtain exactly the same
result.

Example 5. Let x1 = 1, x2 = 3 and x3 = 120. Then Proposition 3 gives
x4 = 834968

33612 . The set {x1, x2, x3, x4} has the property D(1) and we can apply
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the construction from Theorem 1. We obtain

x+
5 =

3985166705520 · 4812

6014392 · 4812 , x−5 =
426360 · 6014392

4812 · 6014392 .

It turns out that this cancellation is not accidental. Namely, let {x1, x2, x3}
be an arbitrary set with the property D(1), let x4 be obtained by apply-
ing Proposition 3 to this set, and let x+

5 and x−5 be obtained by applying
Theorem 1 to {x1, x2, x3, x4}. Then

√
x1x

+
5 + 1 ·

√
x1x
−
5 + 1 =

∣∣∣∣
(a+ b)(a− b)cd

c2d2

∣∣∣∣,

where

a = x1y23[x2
1(4x2x3 + 1)− 2x1(x2 + x3)(2x2x3− 1)− (3x2

2 + 2x2x3 + 3x2
2)],

b = y12y13[x2
1(−4x2x3 − 3) + 2x1(x2 + x3)(2x2x3 + 1) + (x2 − x3)2],

c = (x1 + x2 + x3)2 − 4(x1x2x3 − y12y13y23)2 + 4,

d = 4(x1x2x3 + y12y13y23)2 − (x1 + x2 + x3)2 − 4.

For x1 = 1, x2 = 3 and x3 = 120, we get c = 4 · 481 and d = 4 · 601439.

4. Some open problems. One question still unanswered is whether
there exists a (positive integer) Diophantine quintuple with the property
D(1). Corollary 1 shows that if such a quintuple exists it cannot be ob-
tained by the construction from Theorem 1. Let us mention that the anal-
ogous result for the sets with the property D(l2), where l > 1, does not
hold. For example, if we apply the construction from Theorem 1 to the
quadruples {4, 21, 69, 125} and {7, 12, 63, 128} with the property D(400),
we obtain x+

5 = 384, x−5 = − 4032000
11292 and x+

5 = 375, x−5 = − 11856000
20212 , re-

spectively. Hence, the sets {4, 21, 69, 125, 384} and {7, 12, 63, 128, 375} are
Diophantine quintuples with the property D(400).

One may ask what is the least positive integer n1, and what is the great-
est negative integer n2, for which there exists a Diophantine quintuple with
the property D(ni), i = 1, 2. Certainly n1 ≤ 256 and n2 ≥ −255, since
the sets {1, 33, 105, 320, 18240} and {5, 21, 64, 285, 6720} have the property
D(256), and the set {8, 32, 77, 203, 528} has the property D(−255).

In the present paper we have considered quintuples with the property
D(q), where q was a square of a rational number. However, the last set
with the property D(−255) indicates that there exist quintuples with the
property D(q), where q is not a perfect square (see also [9, 16]). Thus we
come to the following open problem: For what rational numbers q does there
exist a rational Diophantine quintuple with the property D(q)? It follows
easily from [6, Theorem 5] that for every rational number q there exists a
rational Diophantine quadruple with the property D(q).
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At present it is not known whether there exists a rational number q 6= 0
such that there exists a rational Diophantine sextuple with the property
D(q). In [1], some rational “sextuples” with the property D(1) were ob-
tained, but all of them have two equal elements. Thus, they are actually
quintuples with the additional property that x2

1+1 is a perfect square. There
exists also a rational Diophantine quintuple {x1, . . . , x5} with the property
D(1) such that x2

1 + 1, x2
2 + 1 and x2

3 + 1 are perfect squares. However, the
question of the existence of Diophantine sextuples is still open.
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