ArticleOriginal scientific text

Title

The unit equation and the cluster principle

Authors 1, 2, 3

Affiliations

  1. Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540, U.S.A.
  2. Department of Mathematics, Fordham University, Bronx, New York 10458, U.S.A.
  3. Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, U.S.A.

Bibliography

  1. [BW] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
  2. [BS] F. Beukers and H. P. Schlickewei, The equation x+y=1 in finitely generated groups, Acta Arith. 78 (1996), 189-199.
  3. [C1] J. W. S. Cassels, On a class of exponential equations, Ark. Mat. 3 (1960), 231-233.
  4. [C2] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959.
  5. [D] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401.
  6. [EGST] J.-H. Evertse, K. Győry, C. L. Stewart and R. Tijdeman, On S -unit equations in two unknowns, Invent. Math. 92 (1988), 461-477.
  7. [G] K. Győry, On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helv. 54 (1979), 583-600.
  8. [MKS] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, 2nd ed., revised, Dover, New York, 1976.
  9. [P] M. Poe, On distribution of solutions of S-unit equations, J. Number Theory 62 (1997), 221-241.
  10. [R] P. Ribenboim, Catalan's Conjecture, Academic Press, Boston, 1994.
  11. [S] C. L. Siegel, Abschätzung von Einheiten, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. 9 (1969), 71-86.
  12. [V] J. D. Vaaler, A geometric inequality with applications to linear forms, Pacific J. Math. 83 (1979), 543-553.
Pages:
361-389
Main language of publication
English
Received
1997-02-22
Published
1997
Exact and natural sciences