ArticleOriginal scientific text
Title
The unit equation and the cluster principle
Authors 1, 2, 3
Affiliations
- Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540, U.S.A.
- Department of Mathematics, Fordham University, Bronx, New York 10458, U.S.A.
- Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, U.S.A.
Bibliography
- [BW] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
- [BS] F. Beukers and H. P. Schlickewei, The equation x+y=1 in finitely generated groups, Acta Arith. 78 (1996), 189-199.
- [C1] J. W. S. Cassels, On a class of exponential equations, Ark. Mat. 3 (1960), 231-233.
- [C2] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959.
- [D] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401.
- [EGST] J.-H. Evertse, K. Győry, C. L. Stewart and R. Tijdeman, On S -unit equations in two unknowns, Invent. Math. 92 (1988), 461-477.
- [G] K. Győry, On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helv. 54 (1979), 583-600.
- [MKS] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, 2nd ed., revised, Dover, New York, 1976.
- [P] M. Poe, On distribution of solutions of S-unit equations, J. Number Theory 62 (1997), 221-241.
- [R] P. Ribenboim, Catalan's Conjecture, Academic Press, Boston, 1994.
- [S] C. L. Siegel, Abschätzung von Einheiten, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. 9 (1969), 71-86.
- [V] J. D. Vaaler, A geometric inequality with applications to linear forms, Pacific J. Math. 83 (1979), 543-553.